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Abstract

A new notion of solutions is introduced to study degenerate nonlinear
parabolic equations in one space dimension whose diffusion effect is so strong
at particular slopes of the unknowns that the equation is no longer a partial dif-
ferential equation. By extending the theory of viscosity solutions, a comparison
principle is established. For periodic continuous initial data a unique global con-
tinuous solution (periodic in space) is constructed. The theory applies to motion
of interfacial curves by crystalline energy or more generally by anisotropic inter-
facial energy with corners when the curves are the graphs of functions. Even if
the driving force term (homogeneous in space) exists, the initial-value problem
is solvable for general nonadmissible continuous (periodic) initial data.

1. Introduction

We are concerned with degenerate nonlinear parabolic equations (in one space
dimension) whose diffusion effect is very strong at particular slopes of unknown



118 M.-H. Giga & Y. Giga

functions. A typical example is a quasilinear equation
(1.1) U — a(ux) (W' (ux))x =0,

whereW is a givenconvexfunction onR but may not be of clas€?! so that
its derivativeW’ may have jumps althoug’ is nondecreasing; her is a
given nonnegative continuous function amdanduy denote the time and space
derivatives ofu. We also consider the more general form

1.2) U — a(U)((W'(ux))x — C(t)) =0
with a given functionC, or even the fully nonlinear equation
(1.3) U+ F(t, ux, (W (U))x) =0

with a given functionF satisfying monotonicity or degenerate ellipticity condi-
tion

(1.4) F(t,p,X) = F(t,p,Y) for X 2Y

so that (1.3) is degenerate parabolic. At the first glance the evolution law given
by these equations is unclear. Sint€ may have jumps, so th&/” contains a
sum of delta-type functions, the diffusion coefficiea(ux)W" (uy) is no longer

a function ofuy. For example, ifW(p) = |p|, thenW"(p) is twice the delta
function é. In this case, (1.1) becomes

U — 2a(uy)d(Ux)Uxx = O,

which is, of course, not a classical partial differential equation. So far, this type
of equation was analyzed only for a very restrictive class of piecewise linear
unknown functions with piecewise line&¥ [T1, AG1] or only for (1.1) [FG].

Our eventual goal is a synthetic approach to analyze (1.3).

The purpose of this paper is threefold: (i) to introduce a new notion of solu-
tions to (1.3) (where both solutions alid need not be piecewise linear), (ii) to
establish a comparison principle for our solutions, and (iii) to prove the unique
existence of global-in-time solutions for (1.3) (with (1.4)) when initial data are
only continuous and periodic under a very weak regularity assumptioR.on
For this purpose we extend the theory of viscosity solutions [CIL] to our setting
although our equations are not partial differential equations. It turns out that our
extended version is suitable for studying (1.3) wh#h has jumps.

Our equations (1.1)—(1.3) stem from material sciences and physics as a ge-
ometric evolution law of interfacial curves bounding two phases of materials
[Gu, Ch]. However, in the present work no knowledge of material science is
assumed.
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1.1. Notions of Solutions

J. TAvLOR [T1] proposed an evolution law for a special class of piecewise
linear closed curves called admissible, which are movedrggtalline energy.
If the curve is represented as the graph of a functipthe governing equations
in [T1] formally correspond to (1.1) with (positivg)iecewise linear W where
a is assumed to be proportional W. Independently ANGENENT & GURTIN
[AG1] derived the same evolution laws (for curves) corresponding to (1.2) by
establishing a continuum thermomechanical theory of crystal growth with no
relation ofa andW (even if W is not piecewise linear). However, this class of
curves is still restricted. We first reproduce their equation in our setting. Assume,
for simplicity, thatW’(p) has a jump ap = 0. Suppose thai(t, -) is constant
on some closed interval(t) = (a(t), 5(t)). Suppose in a neighborhood bft)
that thex-derivative ofu has a definite sign to the left (and right) bft) and
that it is small so thati(t, x) lies outside other jumps dV’. Integrating (1.1)
in a neighborhoodd((t) — ¢, B(t) +6), d > 0 of the intervall (t) we get

B+ B+6
/ tdx = / a(U) (W ()
% )

-0

2

B+6
a(O)/ia (W' (uy))xdx (4 is small)

a0 W' (ux(B + ) — W' (ux( — )}

We postulate that(t, x) is independenof x on | (t). Sendingd to zero, we
now obtain
(1.5) U —a(u)Aw(u) =0 forx e I(t)
with
AW(U) = XA/Lv
A=W/(+0) - W'(-0), L=4(t) - aft),
W/(+0) = Iimw’(g), W'(-0) = Iim W/ (—e);
herey is the transition numbedefined by

1 if both ux(a — 6) anduy (8 + )
_ are positive (for smalb),
X=Y -1 if both are negative,
0 otherwise.

The quantity Aw(u) is called the weighted curvaturen I (t). Assume for a
moment thatW is piecewise linear and that the jumps\WW arep; < p2 <
-+ < pm- Assume that is an admissible evolving crystah a time intervald,
i.e.,

(a) uf(t,-) is piecewise linear whose slope consisto$;
(b) for eacht € J, if u(t,-) has slopgy on an interval, then the slope aoft, -)
in an adjacent neighborhood is eith®g; or p;_1;
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(c) u is continuous in space-time and (the abscissa of) a jumg (©f-) moves
smoothly in timet € J; jumps do not collide with each other.

We have abused the use of word ‘crystal’ to represent functions rather than
curves. Using an argument similar to that used in deriving (1.5), we find that
(1.5) holds on each space (maximal) interk@) = (o (t), 5 (t)), whereu(t, -)

is constanfy and

A=W'(p +0)—W'(pi —0), L =the length ofl(t);

the transition numbex = 1 if both ux(oy — ) and ux(8; + d) are greater than
pi (for smalld); x = —1 if both are smaller thap;; x = 0 otherwise. This (1.5)
is the evolution law we seek (for an admissible evolving crystal) corresponding
to (1.1). It turns out that equation (1.5) on edg(t) yields a system of ordi-
nary differential equations for the end points lpft) or the length ofl; (t) (cf.
[T1,T3,AG1, GirK1, GMHG2]). If the sefl; } is finite or if u(t,-) is periodic
in X, then the system of ordinary differential equations has only finitely many
unknowns and is solvable locally in time. So, in particular, if initial data satisfy
(@) and (b) and are periodic ix, then there is an admissible evolving crystal
satisfying (1.5) (locally in time) with these initial data. Sorfj&s may disap-
pear at the maximal tim&, where the ordinary differential equation system is
solvable on (0tp). Fortunately, ifa is positive, u(tp, -) fulfills (a) and (b) (at
tp) so one can again solve the ordinary differential equation system with initial
data u(tp, -); repeating this argument we extend the solution globally in time
[T3, GirK1]. In the terminology of [GMHG2}here is a global weakly admissible
evolving crystal satisfyin¢l.5) with given periodic initial data satisfyin¢a) and
(b) with t = 0 provided that a> 0. The same argument applies to (1.2) with a
trivial modification [GMHG2].

This approach is good especially for computational purpose. However, there
arise at least two fundamental questions:

() If initial data do not satisfy (a), (b), i.e., if they are not admissible, what is a
natural formulation of solutions to (1.1) or (1.2)?

(I) Is it possible to solve the initial-value problem for (1.1) or (1.2) what
has jumps buW is not necessarily piecewise linear?

For (1.1) Fukulr & Gica [FG] introduced a new notion of solutions for
generalW and general Lipschitz initial data by adapting the theory of nonlinear
semigroups initiated bi)XoMURA [Ko]. For periodic initial data they constructed
a unique global-in-time solution to (1.1). The problems (1), (I) are settled in this
case. They rewrote (1.1) in a divergence form

U — W(u)x =0
by setting .
W(p) = /0 a()W" (q) dg

and applied the theory of subdifferential equations in periddispaces to get
solutions. We should ask whether or not a solution of [T1] and [AG1] is also
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a solution in [FG] wherW is piecewise linear. Fortunately, both solutions are
consistent. Indeed, in [FG] it is shown that the time derivative of their solutions
actually agrees with the one given by (1.5uifis piecewise linear.

Recently, ELLIOT, GARDINER & SHATZLE [EGS] proved that a weakly
admissible evolving crystal satisfying (1.5) on each linear portion of the graph
of u(t,-) (calledface) is a solution in the sense of [FG] whéN is piecewise
linear. The solution in [FG] is given by the limit of solutions of (1.1) wht
replaced by a regularized/c approximatingW. Thus the evolution law (1.5)
for admissible evolving crystals is justified. The behavior of solutions of [FG] is
studied both analytically and numerically in [EGS]. Although the theory in [FG]
works well for (1.1), it seems very difficult to apply the theory to (1.2) in the
presence o even ifC is a (nonzero) constant.

There is another justification of the evolution law (1.5) (for closed curves)
by ALMGREN & TAYLOR [AT] when W is piecewise linear. They investigated
a semi-discretized implicit scheme introduced by [ATW]. The time is discretized
and at each time step the value of a solution is given by solving a (non-discretized)
variational problem. Their scheme does not require that the solution be piecewise
linear at each time step. Their approximate solutions converge as the time grid
tends to zero (by taking a subsequence) for general interfacial energy [ATW].
The limit weak solution is called a flat curvature flow. In [AT] it is shown that a
weakly admissible evolving crystal (of closed curves) is the unique flat curvature
flow with the same initial data provided that two adjacent facets do not vanish
simultaneously. This justifies (1.5). For smodth see also [FK] and [LS]. In
particular, it is shown in [FK] that the limit is contained in the level-set flow of
[CGG] and [ES].

In this paper we introduce a new notion of solutions for (1.2) or its general
form (1.3) with (1.4). Since our theory is interpreted as an extension of the theory
of viscosity solutions [CIL], we should define sub- and supersolutions of (1.3)
for nonsmooth functions. At issue is the class of test functions we choose so
that we define weighted curvatures. We shall always assume that the set of jump
discontinuities ofW’ is a discrete se. For technical reasons we also assume
thatW € C?(R\P) has bounded second derivatives on each bounded B&n

We introduce the notion oH-) faceted functions in an open interval. Roughly
speaking, a piecewige! function f € C(12) is P-faceted if for eaclp € P the set
{x; f’(x) = p} consists of a union of closed (nontrivial) intervals (calfadeted
regiong and the transition numbey is well-defined on each faceted region. We
then introduce the class &-faceted C functionson an open intervall so that
the weighted curvaturdyy is defined everywhere?). Let us give a definition
of subsolution at least for continuous functions. We say a continuous function
u:[0,T) x Q — R is asubsolutionof (1.3) inQ = (0, T) x Q if

g@)+F({E (%), Aw(f)()) 0
wheneverg € C1(0,T), f € C3(Q) satisfies

max(u — ) = (u - W %), EReQ
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with 9 (t, x) = g(t) +f (x) (called a test function af (X)), whereC2(£2) denotes
the set of allP-facetedC? functions onQ. If f/(R) € P, as already explained
we set

Aw(f)(X) = xA/L,

wherelL is the length of faceted region containirgIf f'(X) ¢ P, then we set
Aw(f)R) = W7(F/(R) T (R).

It is standard to extend this definition to semicontinuous functions &2.i\
supersolution is defined in the similar way. Bygeneralized solutiome mean a
sub- and supersolution. It turns out that a generalized solution is consistent with
an admissible solution in [T1] and [AG1] whéN is piecewise linear. Indeed, it

is shown in [GMHGZ2] thata weakly admissible evolving crystal satisfyifigs)

in each faceted region is a generalized solution in this sefike.argument can

be extended to (1.2) with extra assumptionsaomVhenC in (1.2) does depend

on X, our present theory does not apply. Moreover, the assumptionuthiat
constant orl (t) in deriving (1.5) seems to be unnatural [R, GMHG1, GMHG3,
GMHGS5].

1.2. Comparison Results

It is always crucial to establish a comparison principle in the theory of vis-
cosity solutions. It is, modulo suitable assumptions, of the form:

Comparison Principle. If u and v are a sub- and supersolution ¢£.3) when
(1.4) holdg in Q = (0,T) x Q, then u< v in Q provided that u< v on the
parabolic boundaryd,Q of Q.

We establish this comparison principle for a bounded open intéivahder
uniform continuity assumptions df in

[0,T'] x [-K,K] xR for eachT’ < T, K > 0.

(If F is independent of, we only need continuity oF.) This result applies to
(2.1) and (1.2) whem = 0 andC are continuous iR and [Q T), respectively.

The basic strategy of the proof is the same as that for the case Whin
smooth. However, several new ideas and extra work are necessary. This is why
the proof is long §§4—7). Since the standard maximum principle for semicontinu-
ous functions [CIL] does not handle our weighted curvature, we establish a max-
imum principle for faceted functiong4). To handle semicontinuous functions
we need to regularize them by sup-convolutions [CIL]. Unfortunately, the usual
sup-convolutions are not good for our purpose. We introduce a sup-convolution
by faceted functions and study its propertiesséy A new aspect of our sup-
convolution is that iff assumes a local maximum st then its sup-convolution
is faceted neax {Theorem 5.3). Usually, there is an equivalent definition of sub-
solutions using semijets. We have to introduce similar equivalent definitions of
subsolutions. It is very sensitive how to define time semijets in a neighborhood
of a faceted region so that both definitions of subsolutions are equiva@nt (
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With these preparations we prove the Comparison Principtg iLet us briefly
explain the idea of our proof. We argue by contradiction. Using an extension of
the method developed in [CGG] and [Go] we reduce our problem so that our
sup-convolutions of both and—v are faceted at a point we are interested in. We
construct suitable test functions of battandv from these sup-convolutions with
the help of equivalent definitions of solutions. Applying the maximum principle
for faceted functions and (1.4), we get a contradiction. Note that our method
does apply wherP is an infinite set. However, it seems difficult to extend our
proof to unbounded because so far the method in [CGG] and [Go] requires the
boundedness dk. If both functionsu andv are periodic in space with the same
period (independent of time) we also have a comparison principle as shown in
87.

Our comparison principle is totally new even for (1.1) wh#hhas jumps. In
[FG] a comparison principle is proved for their solutions for (1.1). It is obtained
as a limit of approximate solutions satisfying a comparison principle. Besides the
difference of definitions of solutions, their results are weaker than ours since they
assume that both andv are solutionsperiodic in space. In [GGu] a maximum
principle and a comparison principle are proved for admissible evolving crystals.
Although they handle curves of finitely many facets with no end points for a
comparison principle, their maximum principle applies to yield a comparison
principle for weakly admissible evolving crystals satisfying

U — a(ux)(Aw(u) = C(t)) =0

on each faceted region whéi is piecewise linear; this equation corresponds
to (1.2), of course. (In [GGUL is assumed to be a constant but the method
and result apply to nonconsta@t with trivial modifications.) Our results are
considered as a natural extension of this type of results since a weakly admissible
evolving crystal satisfying (1.5) is a generalized solution [GMHG2].

If the singularities ofV € C2(R\P) are weak, for example, W’ is Lipschitz
continuous, then the comparison principle for viscosity solutions has already been
proved in [G]; see also [OhS] and [GSS] for evolutions of closed curves.

1.3. Existence Results

In our formulation we shall prove the (unique) existence of a global-in-time,
continuous, periodic-in-space solution of (1.3) if initial data are continuous and
periodic. This answers our questions (I) and (I) at least for periodic data. For
the homogeneous Dirichlet problem on a bounded intefvaf (1.3) we obtain
some global existence results by reducing the problem to a periodic situation.
This result applies to (1.1). However, it does not apply to (1.2) eved i§ a
(nonzero) constant. This is not a technical restriction. In fact, even for smooth
W with W” > 0, a local solution may break down at the boundafy and
boundary detachment phenomena may occur (cf., e.g., [KK]). On the contrary,
our global solution for the Dirichlet problem actually attains zer@@tfor all
time. This is an intrinsic reason why our global result does not apply to (1.2).
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We do not pursue the boundary-value problems in this paper except for a few
remarks.

To show existence results we establish the Perron-type existence theorem to
our equations. This is by now standard in the theory of viscosity solutions [CIL]
for partial differential equations. However, in our setting, we must prove it when
the test function is faceted at a point of interest. Unfortunately, this is not a trivial
modification of the standard results. We must modify the test funatidn a
class ofC? P-faceted functions in space so that igéx — ¢) is attained only
at one timef and at one faceted region. We introduce canonical modification of
C? P-faceted functions for this purpose. Another property we use in the proof is

W7(f' (%) f7(%) — 0 asxn — Xo

for f € C3(Q), wherex, is the boundary of a faceted regionfoaindf’(x,) ¢ P.
This convergence follows from the fact that” is bounded in every bounded
set inR\P and thatf € C3(2). We shall prove the Perron-type existence results
in §8. In the last section we construct a sub- and supersolution for given initial
data. This together with the Perron-type existence results and comparison results
yield an existence result for periodic data. To construct sub- and supersolutions
we modify the method developed in [CGG] and improved by [IS].
Our existence result for general continuous (not necessarily Lipschitz con-
tinuous) initial data (periodic ix) is new even for (1.1). The existence result
in [FG] needs Lipschitz continuity of initial data. We do not know whether a
solution in [FG] is continuous in space-time although it applies to all coWex
Our solution is consistent with a solution in [FG] as we proved in [GMHG3].
WhenW is piecewise linear, a solution with nonadmissible data (question I1)
for (1.1) has been studied in [T3] and [EGS]. If initial data are piecewise linear
nonadmissible, a ‘solution’ is constructed in [T3] by solving ordinary differential
equations. It turns out [EGS] that it is a solution in the sense of [FG] for (1.1).
Even for some piecewisg! initial data, a solution given by ordinary differential
equations is proposed in [T3, EGS]. However, the initial data are very restricted.
Instead of proving that each proposed solution is a solution in our sense, we give
an example of solutions with nonadmissible dat&2n

1.4. Background of Problems

Surface-energy-driven motion of interfaces has attracted many mathemati-
cians and physicists to study the evolution of phase bounddiiesich as a
surface of crystal. Lenh denote the unit normal vector field determining the
orientation ofl;. We assume thaf; is a curve in the plane. L&Y denote the
normal velocity in the direction of. If V depends on local geometry, a typical
evolution equation is of the form

1 (&0
(1.6) V—ﬁ(m(;m@.vm»wm) on I,

Here~ : R?> — R is of the form
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v(@) =1lalo(@/lal), a=(o, %) €R? q%0,

and o, 8 are positive functions defined on the unit circle. In (156} denotes
the partial derivative)y/0q; as a function orR?. The quantityyo is calledthe
interfacial energy densitywhile 5 is calledthe kinetic coefficientThe function
C(t) is given. Physically it describes the bulk free energy of crystal relative to
that of the other phase. Typically, this is the difference of temperature between
two phases or; or the difference of pressure. The equation (1.6) was derived
mathematically byANGENENT & GURTIN [AG1] (see also [Gu]) from axioms
of continuum thermomechanical theory. In the physics literature, (1.6) was first
formulated byMULLER-KRUMBHAAR et al. [MBK] as a gradient flow of free
energy in the spirit of the time-dependent Ginzburg-Landau theory. This model
is good if the crystal surrounded hy is so small that surface effects dominate
bulk effects, since in this case we may assume that bulk eré(tyis given
and is independent of the space variablendfis a positive constantyg is
called isotropic. If both v¢ and 5 are isotropic, (1.6) withC = 0 becomes
the famous curve-shortening equation. We focus on the initial-value problem
for anisotropic curve shortening equation (1.6) when the interfacial energy may
have singularities. To classify the problems it is convenient to reballFrank
diagramof ~o:

7 ={(t1, %) € R? () = 1}.
We always assume tha¥ is convex, so that (1.6) is degenerate parabolic at
least formally. There are three typical situations as explained in [GMHG1].

(1) .7 is smooth and has positive curvaturg;is calleda strict convex smooth
energy

(2) .7 is at most of clas€’! and of classC? except at finitely many points.
The curvature of7 is bounded but may be zero somewheygijs calleda
singular energy without corners

(3) .7 is of classC? except at finitely many points but is not of cla8$. The
curvature of.7 is bounded but may be zero somewhetg;is called an
energy with corners

An isotropic energy is a typical example of a strictly convex smooth energy.
In the case of (1) the equation (1.6) is quasilinear (nondegenerate) parabolic so
the classical theory [LSU] applies to get a local-in-time smooth solution to (1.6)
provided thats is smooth. Even ifC exists, it is possible to extend the solution
globally in time in the level-set sense ([CGG], [ES]). Note that the level-set
method applies to (1.6) i is of classC? and is convex; the strict convexity is
unnecessary [CGG, GGo]. There is by now an extensive literature for the case
(1). We suggest that the reader consult the book [Gu], the review [TCH], the
review [GMHGL1] and the references therein.

Even in the case of (2) the level-set method yields global generalized solutions
for given initial curves [OhS, GSS]. A local existence of “strong” solutions is
established by [AG2]. If’; is given as a graph of = u(t, x), then (1.6) becomes

(1.7) U — a(U)(W'(u))x — C(t)) =0
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with
a(p) = (L+p)Y2M(p),
(1.8) 1/M(p) = B(—p/(1 +p?)Y/2, (1 +p?)~Y/?),
W(p) = 7(-p,1).

Here (2) says thatV is in C1! and is inC? except at finitely many points. In
[G] properties of a global generalized solution are studied as well as comparison
and existence results. See [GMHG1] and the references therein.

In the case of (3) the existing level-set method does not apply to evolving
closed curves so farWe discuss the case whéhis represented as the graph of
functions. OurW in (1.8) satisfies our assumption of regularity if (and only if)

70 IS an energy with corners. This paper extends the theory of viscosity solutions
to establish fundamental comparison and existence of solutions so that it applies
to this setting.

A typical example of an energy with cornersascrystalline energywhere
7 is assumed to be a convex polygon. For (1.7) this is the case Whes
piecewise linear with finite jumps ofV’. As mentioned before, its evolution
law (1.6) is reduced to a system of ordinary differential equations for admissible
evolving crystals. This was first observed ByyLor [T1] (for 3-v =const.) and
independently b\ ANGENENT & GURTIN [AGL1]. Their evolution is qualitatively
similar to the case wheng is smooth. For example, we have a comparison
principle for admissible evolving crystals ‘solving’ (1.6) [GGu].4f- v = const.
andC = 0, a closed convex admissible evolving crystal shrinks to a point and
the way of shrinking is asymptotically similar to the Wulff shapeyoprovided
that the initial polygon has more than five corners [St] as conjecturéiAby.or
[T1]. The Stefan-type problem with crystalline interfacial energy is studied in
[Ry]. Although it is interesting to study the behavior of our solutions, we do not
discuss them in this paper. Recentfyrfaceevolutions by crystalline energy
were analyzed by [GGuM]. Among other results, a comparison principle for
admissible evolution was established there. For the background of a crystalline
energy see the review afAYLOR [T2].

It is a geometrically natural idea to approximate a strictly convex smooth
energy by a crystalline one. In fact, this approximation has been used in the
calculation of curve evolutions. Ift is a graph, the convergence result of [FG]
applies to (1.1). It says that an approximate solution actually converges to the true
solution with no convergence rate. At the same tiGAo & KoHN [GirK1]
studied this problem and obtained the convergence rate in the Sobolevispace
(for Dirichlet and Neumann problems). For convex closed cuiasao [Gir]
obtained a convergence rate in the topology of Hausdorff distance. Recently
this result was extended bysHiiimMa & YAazakr [UY] for the equationV =
—(divn)* on I} with « > 0. See also the review paper [GirK2]. Unfortunately,
these works do not apply € exists in (1.2). We shall discuss convergence result

! Recently, based on the results in the present paper, it turns out that the level-set method
can be extended in the case of (3). We shall discuss this topic in one of our forthcoming
papers.
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even for general equations (1.3) in the realm of viscosity solutions in [GMHGA4,
GMHGS5].

In the crystal growth problem there often arises an eneggwith corners
so that its Wulff shape has a flat portion called a facet. It is natural to consider
such ayg if the temperature is lower than the roughening temperature. Although
this phenomenon is common in all crystal growth [Ch], a typical example is the
growth of crystals of Helium. If facets exists in evolving crystals, it is explained
in physics [Ch] that the velocity on facets is not proportional to the chemical
potential differenceAp which is the weighted curvature plus the pressure dif-
ference, although the velocity is nondecreasingijm and it is zero forAu = 0.
If Ap is small, the velocity may be zero in some situation. This is a reason why
we consider

W +F(ug, Awu)+C)=0

or its more general form (1.3) instead of (1.2).

2. Definition of Generalized Solutions

This section establishes conventions of notation and introduces several no-
tions of functions and weighted curvature. The goal of this section is to define
generalized solutions for evolution equations with singular interfacial energy.

2.1. Assumption(SetP and functionW). Let P be a closed discrete set i

In other wordsP is either a finite set or a countable set having no accumulation
points inR. If P is nonemptyP is of form {p; }1;, {pj}7<_ . { P }jgl_oo, or
{35 with limj o pj = oo, limj_._ pj = —oc, where thep;’s are indexed

in increasing ordep; < pj+1 andm is a positive integer. Le¥V be a convex
function onR with values inR. We assume thatV is of classC? outsideP.
Moreover, we assume thslY” is bounded in any compact set except all points
in P.

These assumptions dh andW hold throughout this paper.

2.2. Definition. Let 2 be an open interval. A functiohin C(2) is calledfaceted
at xo with slope p in Q if there is a closed nontrivial finite interval(C )
containingxy such thaff agrees with an affine function

lp(x) = p(x — X0) +f (x0)

in 1 andf(x) F Ip(x) for all x € J \ | with some neighborhood(c ) of I.
The intervall is called afaceted regionof f containingxy and is denoted by
R(f,%o). A functionf is calledP-facetedat Xy in Q2 if f is faceted atg in
with some slopg belonging toP .

2.3. Definition. Let xg be a point inQ2. Forf € C(Q2) we set
Aw(f,%0) = W"(f'(x0)) " (x0)
if f is twice differentiable ak, andf’(xp) ¢ P, and set
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Aw(f,x0) = T4,

if f is P-faceted atg in Q with slopep;, whereA; = W/(p; +0)— W/'(p; — 0).
We call the valuedw(f,xo) the weighted curvature of f at ox This value is
invariant under the addition of affine functions Wé. Here L = L(f,Xp) is the
length of the faceted regioh containingxy and x = x(f,xo) is the transition

numberdefined by 1 FF>ing
iff 21y inJ,

x=< -1 iff <l inJ,
0 otherwise

for some neighborhood of the facet region . We often write Aw (f,xg) as
Aw/( f)(%) to emphasize that this quantity is a functionxgf

For later convenience, we introdutte left transition numbey_ = x _(f, Xo),
andthe right transition number. = y+(f,Xg) by

Cf+1 it f 20 in {x € J;x = X0},
T 21 i f <y in {x e dix < xol,

Cf+1 it f 21y in {x € J;x 2 X0},
BT o1 i f <l in X € 3ix = %)

By definition, x = 3(x+ + x-).

2.4. Definition. A function f € C2(£2) belongs to clas€2(0) if f is P-faceted
at xp in £ wheneverf’(xg) belongs toP. Let T be a positive number. For
Q=(0,T) x Q2 with T > 0 let Ap(Q) be the set of functions o@ of the form

fo)+g(t), feCiQ), geCYO,T).
An element ofAx(Q) is calledan admissible functian

2.5. Assumptions(FunctionF). Let F be a function from [0T) x R x R to R.
We often assume

(F1) F is continuous in [0T) x R x R with values inR,
(F2) F(t,p,X) £ F(t,p,Y) for X 2 Y,t € [0,T),p € R (degenerate elliptic-

ity),
(F3) For eachK > 0 and T’ < T, F is uniformly continuous in [0T'] x
[-K,K] x R.

We explicitly state these assumptions when needed.
We can now define our generalized solution in the viscosity sense.

2.6. Definition. A real-valued functioru on Q is a {viscosity subsolutionof
(E) U +F(t, U, Aw(u)) =0 inQ

if the upper-semicontinuous envelopé < co in [0, T) x Q and
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whenever ¢, (f, %)) € Ar(Q) x Q fulfills
(2.2) mQa>(u* — ) = (u* =), R).
Here

U*(t,X) = ”?SSUp{U(S, y)1 S— t| <g, ‘X - y| < 57(Svy) € Q}

for (t,x) € Q andu, = —(—u)*. A (viscosity supersolutionis defined by
replacingu*(< oo) by the lower-semicontinuous envelopg(> —oo), max by
min and the inequality in (2.1) by the opposite one.ulfis both a sub- and
supersolutiony is called aviscosity solutioror ageneralized solutionHereafter
we avoid using the word viscosity. Functiah satisfying (2.2) is calledh test
functionof u at , %).

The following propositions are easily derived.

2.7. Proposition (Addition by Affine Functions)Let 2 be an open interval. Let
u be a sub- or supersolution ¢E). Thenw(t, x) = u(t, x) — 1 (x) is respectively a
sub- or supersolution of

v+ F(t, o + A Aw,(v)) = 0,

where
[(x) = Ax+B for some real number A and,B

Wa(q) =W(g +A) forallg €R,
Pr={p—A peP}.

2.8. Proposition.If ¢ € Ap(Q) satisfieg(2.1) at each poin{f, %) € Q, theny is
a subsolution ofE) in Q provided that(F2) holds.

2.9. Example of Equationget a functionF be of the form
F(t,p,X) = —a(p)(X +C(t, p))

with a continuous nonnegative functiarand a continuous functio@ in [0, T) x
R. Then conditions (F1)—(F3) are fulfilled. Equation (E) becomes

(2.3) U — a(uyx)(Aw (u) + C(t, u)) = 0.

The termAw/(u) + C is calledthe weighted curvature with driving forand is
denoted byAw (u; C) as in [GMHGL1]. A more general form df is

F(t,p,X) =G(t,p, X +C(t,p)),

whereG : [0,T) x R x R — R. It is easy to see thd fulfills (F1) or (F3)
provided thatG respectively satisfies (F1) or (F3) whe@ is continuous in
[0,T) x R. Clearly if G satisfies (F2), so dods. Equation (E) how becomes

U + G(t, uy, Aw(u) + C(t,u)) = 0.
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Such an equation is important for describing evolutions of crystals of Helium
below the roughening temperature (wh&eis independent op). As pointed

out in [R] (see also [GMHG3]) whel depends on the spatial variableit is

not natural to definely (u, C) just as a sumy (u) +C.

2.10. RemarkEquation (2.3) has many representations for differéfis. For
example, if
(2.4) a(p)W”(p) = a(P)Wy'(P)

in the distributional sense with some nonnegative continuous funetjocand
convex functionWp, then (2.3) can be formally written as

(2.5) U — ag(Ux) Aw, (U) — a(uk)C(t, uy) =0,

which is also an example of (E). Fortunately, it is not difficult to see thist a
subsolution of (2.3) if and only ifi is a subsolution of (2.5). So our definition of
solutions is independent of the representation of the equation. By the way, there
are many choices odiyp and W satisfying (2.4). Indeed, for a givesy(p), we
haveW, satisfying (2.4) by defining\p by

P rq
Wo(p) = / / a(2)W (2)a0(z) " dz dg

2.11. Examples of Solutions WherW is Piecewise Linear.We next consider
several special solutions of (2.3) whan> 0 andW is piecewise linear. We say
a functionv on R is anadmissible crystaif v is P-faceted at any point dR and
the slopes of adjacent faceted regions should be adjacent irhis definition

is the same as in [GMHGZ2]. Lat be an admissible evolving crystal on a time
interval I, i.e., u(t,-) is an admissible crystal with € C(I’ x R), and jumps

of u, moves smoothly in time for € I’ and do not collide with each other. For
an admissible evolving crystal equation (2.3) has a meaning on each faceted
region ofu(t, -). This equation agrees with those derived by [T1] and [AG1] in
a slightly different setting and by [GirK1] in this setting (actually with= 0
and finite P but these restrictions are inessential). In [GMHG2] we prove that
an admissible evolving crystal u if®, T) x R satisfying(2.3) is a generalized
solution of(2.3) with Q = (0, T) x R if C = 0. The same assertion is still valid
under some reasonable assumptioraa@ven if C does not vanish identically. In
[GMHG2] P was assumed to be finite but the proof works for genBraEven

if uis a weakly admissible evolving crystal, i.e. lfis an admissible evolving
crystal on fi,tk+1),k = =1,0...,h, forsome 0 =t_; <tgp < -+ <tht1 =T
andu is continuous across=tx,k = 0...,h, thenu is a generalized solution
of (2.3) with Q = R provided thatu satisfies (2.3) onty, tx+1),k = —=1,0...,h
(under some assumptions anunlessC = 0). This is also proved in [GMHG2].

In the definition of weakly admissible evolving crystals of [GMHG2], the open
interval ¢,t+1) should be replaced by [t+1).

In many cases for a given initial functiam which is an admissible crystal,
we see there is a unique global-in-time weakly admissible evolving crystal
satisfying (2.3) on t{, t+1),k = —1,0...,h by solving a system of ordinary
differential equations. A typical situation is thag is periodic inx. Since a weak
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admissible evolving crystal solving (2.3) is our generalized solution of (2.3),
there are many nontrivial examples of solutions.

2.12. Examples of Solutions with Nonadmissible Initial D&#henW is piece-
wise linear, a solution with nonadmissible data for (1.1) has been studied in
[T3] and [EGS]. For piecewise linear but nonadmissible initial data a solution is
constructed in [T3] by solving ordinary differential equations. However, if initial
data are not piecewise linear, creation of new facets also may occur but such an
example is not well examined although there is a heuristic explanation in [T3].
We give here a simple example of a solution with such initial data for (1.1)
with W(p) = c|p| with ¢ > 0:

(2.6) U — ca(ux)(sgnuy)x =0,

wherea = 0 is continuous; we assume thaf0) > 0 since otherwise (2.6)
becomesay = 0 everywhere. We consider initial datig € C(R) of the form

AKX), X = ao,

(2.7) Uo(X) = ¢ ho, ap = X = fo,
B(X)a ﬂo § X
with
Qo é 507

Ae Cl(foo, ap) NC(—o0,ap], A <0,
B € C*(fo, 00) N C[fo, >0), B’ >0,

Aag) = B(6g) =hg so thatug is continuous.

We set ‘
D(K) = /h (B~1() — A~Y()}dn,

whereA=1, B~ € C%(hg, o0) N C[ho, o0) denote the inverse functions éfand
B. Note that

B ) >z a0>An), n>h

so thatD’(k) > O for k > hg. The valueD (k) is the area enclosed lyy=k and
y = Ug(X). The inverse functiorD ~! is well defined and~! € C(hg, 00) N
Clho, o). We then takeu € C(Q) (Q = (0, ) x R) of the form

AX), X = aft),
(2.8) ut,x) =q ht), o) = x= B(1),

B(x), B(t) =x
with
(2.9) h(t) = D ~1(2a(0)ct),
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a(t) =AM (1)), (0) =ao,
B(t) =B~*(h(t)), B(0)=/ro with ag = fo.
Sinceh(t) > hy fort > 0 and

B~1(n) > Bo = a0 > A1), n> h,

(2.10)

we see that(t) < g(t) for t > 0. Thus the functioru is well defined and
u € C(Q) sinceh € C[0, ) so thata, 5 € C[0, 00). The interval f(t), ()] is
a faceted region dafi(t,-),t > 0 anda/(t) < 0 < §'(t) for t > 0. To convince the
reader that (2.8) satisfies (2.6), we calculateon (a(t), 5(t)). By (2.9), (2.10)
and definition ofD we see that

(2.11) B(t) — at) = A~Y(h(t)) — B~(h(t)) = D’(h(t)), t > 0.

Since
w(t,x) =h'(t) for x € (aft), 3(t))
this yields
u(t, x) = h'(t) = (DY (2a(0)ct) - 2a(0)c
_ 2a(0) _ 2a(0)x
- D/(h(t)  B() —at)

= a(0)Aw(u(t, -),x),

whereW(p) = c|p|.

Lemma. The function ue C(Q) in (2.8)is a generalized solution ¢2.6) in Q.
Its initial function is  in (2.7). Moreover—u is a generalized solution ¢.6)
in Q with initial data —up.

This is true even ifag = [p. In this case a new faceted region(f), 5(t)]
is created instantaneously. The proof of the lemma is easy but we give it for
completeness.

Proof. Step 1. We show that the functianis a subsolution of (2.6) i1Q: Let
¥(t,x) be of the form

(2.12) (L, x) =f(x)+g(t) f e C3R), gec CHO,0)

and suppose that

max(u — ) = (u — P)(E.%),t > 0;

we do not takeu* sinceu is continuous. Iff’(X) = 0, thenf is faceted ak "and
by geometry we see that

Aw(u(, ), %) £ Aw(f, %), ') =h'(D).
By (2.11) we have
g'(t) — a0)Aw(f, %) < h'(f) — a0)Aw(u(, ),%) = 0.
If £/(R) £ 0 so thatx"< a(f) or X > 3(f), then
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Aw(f,X)=0
sinceW”(p) = 0 for p ¥ 0. Clearlyg'(t) = w(t,X) = 0, so we have
g'(®) —a(0)Aw(f,%) =0
in this case. Since € C((S), u is now a subsolution of (2.6) i@.

Step 2. We show that the functianis a supersolution of (2.6) iQ: Let v(t, X)
be as in (2.12) and suppose that

(2.13) min(u — ) = (- »)ER). >0

(1) If £/(X) = 0 andX'# o(f), % # 3(f), then
Aw(u(E, ), %) = Aw(f,%),  ¢'() =h'(D),
so that by (2.11) we have
g ) — a(@)Aw( f,X) = h'(f) — a(0)Aw(u(t, ), %) = 0.
(2) If £/(%) # 0 andx # a(f), X * A(F), then
Aw(f,%)=0, ¢'({)=0

as in Step 1. Thus
g () —a0)Aw(f,8)=0—-0=0

(3) It remains to study the case when eitier o(f) or X = 3(f). If f/(X) =0
and intR( f, ) intersects &(t), B(t)), then the situation is reduced to (1), so we
may always assume that

Aw(f,%) =0

including the case thdt'(X) ¥ 0 (which implies thatdw( f,X) = 0). We may
assume thax = o(f) since the cas@(t) can be treated in the same way. Since
u(a(®),t) = A(a(d)) for t <, (2.13) implies thay’(f) > 0. This now yields

g (®) —a()Aw(f, %) = 0.

Note thatg’(f) may not equah’(t) whenf’(X) £ 0. Since (2.6) is invariant if we
replaceu by —u, it follows that —u also satisfies (2.6). Clearly(0, x) = up(x)
so the proof is now complete.Ol

Remarks(i) In [EGS] a piecewiseC? initial function ug with finitely many P-
faceted regions was considered. Outside faceted regigngas essentially in

C! anduj ¢ P. The authors gave a local-in-time solution by solving ordinary
differential equations and proved that their solution is a solution in the sense of
[FG]. We remark that our lemma essentially implies that their solution is our
generalized solution. Note that the situation is localized near each facet so the
proof of our lemma applies. Our lemma also allows the situation that new facets
are created instantaneously.
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(i) Our solution (2.8) is not of clas€? in space for alt > 0 even if the initial
function ug is smooth. This shows that the solutiaft, -) may lose smoothness
instantaneously. Wheng = fo(= 0), the growth of the facet depends on the
behavior ofA and B nearag = 0. To see this, we for simplicity assume that
B(x) = mx,A(x) =B(—x) (m,r > 0) andhy = 0. A direct computation shows
that

2 [k
- < /r —m-1/r 1+1/r -
D= [ i =m Ve, o=
which yields
h(t) = mY®*){2da(0)ct} /),
A(t) = {2m~*d; "aO)et}/H (= —a(t).
We conclude this section by giving another example of a solution of the
equation
(2.14) U — ca(Uy)(sgn Ux — Po))x =0

for a given numbepy € R. We assume tha > 0 everywhere in this example.
We consider (2.14) with initial data

(2.15) Up(X) = psin(x), wp>0, v>0.

Assume that O< py < pv. As in the previous example we obtain an explicit
form of the solution with initial data. Letig be the unique number that satisfies

vo(ag) =0 with — /v < ag < 0,
where
vo(X) = Up(X) — PoX.
Let oy be the unique number that satisfies
vo(ar) =0 with —7/v £ a3 <0,
so thata; < agp. We set

k
D(K) = / (B~() — A~X()}dy

vo(cvo)
B (k)

- / {k— w000}dx, 02k 2 vg(a).
A—1(k)

whereA(x) = vg(x) for x, a1 £ x £ ap andB(x) = vo(x) for X, ap £ x £ 0. The
value D(K) is the area enclosed by= k andy = vo(x) with oy < X < 0. Let
T > 0 be the number defined by

_ DO _ 1 u oo
~ 2a(po)c  2a(po)c {y(l — cosfa)) — 21} ,
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We set
h(t) =D *(2a(po)ct) for0<t < T,

so thath(0) = vo(ap), h(T) = 0,h’(t) > 0 for 0 <t < T. We then set
al) =A'h(t)), 0St<T,
p)=B(h(t), OSt<T,

so that

a(0) =ao, a(T)=a1, B0)=ao, B(T)=0.
As in the proof of the Lemma one can prove that the/i2-periodic (in space)
continuous functioru defined by

Uo(X), —7/v < X < aft),
Uo(a(t)) + Po(x — af(t)), a(t) = x = B(t),
u(t, x) = < up(x), Bt) <x < —p(t), forOSt<ST,
Uo(—a(t)) + Po(x + ft)), —B(t) = x = —at),
Uo(X), —at) <x<n/v

u(t,x) = u(T,x) fort >T

is the generalized solution of (2.14) @ = (0, c0) x R with initial dataug(x) =

1 sin@x). Note thatu(t,x) becomes a stationary solution in a finite time. If
|po| = wv, the initial functionug(x) itself is the stationary solutions (Huv <

po < 0, then the solution is given by(t, —x + 7/v), whereu is the solution of
(2.14) with pg replaced by—pg.) If pg = 0, many quantities in the definition of
u are explicitly computable. For exampley = —7/(2v), @y = —7 /v so that

A~ () = —{arcsing/u) + 7} /v,
B~1(y) = arcsing/js)/v,

Uo(ao) = =M,

where arcsin is the principal value of the inverse of sin. We then calculate

k
D(K) = / (B1() — A~Y()}dy
—K

k
= }/ {2 arcsin(n> +7r} dn
v)_u 7]
1 . [k
= =<2 karcsin| — | ++/u2 — k2| + 7k
v %
for —p < k £ 0. In particular,D(0) = 2u/v, so that

_k 1
~va()’

In this caseu(T,x) = 0 sou(t,x) =0fort =2 T.
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3. Main Theorems

We state our comparison and existence results for the equation (E).

3.1. Comparison Theorem.Assume that condition$1) and (F2) hold. Assume
that (F3) holds if F depends on the time variable t. Let u angspectively be a
sub- and supersolution ¢E), where() is a bounded open interval. If'u< v, on
the parabolic boundary,Q(= [0, T) x 9QU {0} x ) of Q, then * < v, in Q.

3.2. Comparison Theorem for Periodic FunctionsAssume that conditior(&1)
and (F2) hold. Assume thgF3) holds if F depends on t. Let u andrespectively
be a sub- and supersolution (&) in (0, T) x R. Suppose that u andare periodic
in the spatial variable x with periods. If u* < v, on {0} x R, then u* < v, in
(0,T) xR.

3.3. Perron-Type Existence TheoremAssume that condition@=1) and (F2)
hold. Let u™ and u' respectively be a sub- and supersolutioff)fin Q = (0, T) x
Q, where is an open interval. Suppose that u< u* in Q and(u*)* < +oo
and(u™). > —c0 in [0, T) x Q. Then there exists a generalized solution WEf
satisfyingu <u <u*inQ.

3.4. Perron-Type Existence Theorem for Periodic FunctionsAssume that con-
ditions(F1)and(F2)hold. Let u~ and u* respectively be a sub- and supersolution
of (E) in (0, T) x R. Suppose thattu < u*in (0,T) x R and (u*)* < +co and
(u™), > —oc0 in [0, T) x R. Suppose that u and u* are periodic in the spatial
variable x with periodew. Then there exists a generalized solution UEf such
thatu™ Su<u*in(0,T) x R and that u is periodic in x with perioeb.

3.5. Existence Theorem for Periodic Initial Data.Assume that conditior(§1)
and (F2) hold. Assume thg#3) holds if F depends on t. Suppose thgtaiC(R)
is periodic with periodew. Then there exists a unique functioreuC ([0, T) x R)
that satisfies

0] u is a generalized solution ¢E) in (0, T) x R,

(ii) u(0,x) =up(x) forx e R,

(iii) u(t,x+w) =u(t,x) for(t,x) €[0,T) xR.

In particular, if T is arbitrary, then u can be extended globally in time.

3.6. Existence Theorem for the Dirichlet Problem Assume that conditior(§1)
and(F2) hold. Assume thg#3) holds if F depends on t. Lél be a bounded open
interval. Assume also that(F, p, X) = —F(t, p, —X). Suppose thatque C()
satisfies g = 0on 9f2. Then there is a unique generalized solutiog & ([0, T) x
Q) of (E) with u(0, x) = ug(x) and u= 0 on 9.

3.7. Remark on the Dirichlet Problerfitheorem 3.6 applies to
(3.1) U — a(u)Aw(u) =0

but it does not apply to
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(3-2) U — a(ux)(Aw(u) - C)=0

even ifC is a (nonzero) constant. This is not a technical restriction. In fact, even
for smoothW with W > 0 a local solution to (3.2) may break down at the
boundaryof? in the sense that the gradient 8f blows up in a finite time. This
phenomenon is sometimes called theundary-detachment phenomendsee,
e.g., [KK]). To solve this problem globally in time we interpret the Dirichlet
condition in the viscosity sense as in [KK]. We do not pursue this problem in
this paper. Our global solution in Theorem 3.6 actually attains zerd<orior
all time so it should not apply to (3.2).

Theorem 3.6 follows from Theorem 3.5. Indeed, we may assumeSthat
(0, —w/2). We extend initial datal in (—zw /2, 0] so thatup(x) = —ug(—x) for
X € (—w/2,0). We extendup in R so that it is periodic irx with period .
Sinceup = 0 on 012, our extendedy, is continuous. We apply Theorem 3.5 to
get a unique generalized solutione C([0, T) x R) of (E) with u(0, x) = up(x)
and u(t,x + @) = u(t,x). By the symmetry assumptions dn, we see that
u(t,x) = —u(t, —x) satisfies (E). By Theorem 3.2 we hawe= v, which implies
thatu is odd inx. In particular,u = 0 atx = 0. A similar argument shows that
u =0 atx = 3. We thus observe that satisfies the Dirichlet condition. Since
u satisfies (E) in (0T) x R it also satisfies (E) in (Or) x 2 (Proposition 6.19).
This property is not trivial and it will be proved iy 6. The proof of Theorem
3.6 is now complete.

3.8. Remark on Other Boundary-Value Probleifiseorem 3.5 also applies to the
homogeneous Neumann problenfifandW satisfy

F(tv p,X) = F(tv _pvx)a W( p) = W(_p)v

provided that we appropriately define the generalized solution of (E) with the
Neumann conditiom, = 0 on 9. This assertion applies to both (3.1) and (3.2)
provided thata( p) = a(—p) andW( p) = W(—p). We shall discuss the Neumann
problem in one of our forthcoming papers.

3.9. Regularity.We now examine whether or not a solution in our Existence
Theorem 3.5 is regular if the initial data are regular. As observegRjneven

if the initial data are smooth, the solution may not be of cl@ssin space.
However, it is Lipschitz continuous in space. A precise form is presented below.
A similar property is proved in [FG] for their solution to (1.1).

3.10. Theorem on the Preservation of Lipschitz ContinuityLet the hypotheses

of Theorem 3.5 on F andythold and let u be the solution with initial data.u

Lety; be either+lor —1fori = 1,2 and let L be a positive constant. If
v1Uo(X) = viUo(X + v2h) + LN

forall h > 0,x € R, then

ru(t, x) < nu(t, x +ph) + L|h|
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forallh > 0,x € R,0<t < T. In particular, if w is Lipschitz continuous with
constant L, i.e., if
[Uo(X) — Uo(y)| = LIx —y]
forall x,y € R, then
|U(t,X) - U(t,y)‘ é L‘X - y|
forallx,y e R,OSt <T.

Proof. This is an easy corollary of the Comparison Theorem 3.2 skds
independent ofi andx so thatu(x +,h) £+ L|h| is a solution of (E) (cf. [GGIS,
Corollary 2.11], [G, Theorem 3.6]). If; = 1, we compareu with v(t,x) =
u(t,x +»h) + L|h|. Since bothu and v are solutions of (E), by Theorem 3.2
we haveu(t, x) < o(t,x). Similarly, if v, = —1, we comparau with v(t,x) =
u(t,x +»xh) — L|h| to getu =2 v. O

In § 4 we prepare the key maximum principle. §r6 we introduce convo-
lutions with faceted functions. 1§ 6 we give several equivalent definitions of
solutions. In§ 7 we prove Theorems 3.1 and 3.2 based on the resufi$ 4~-6.

In § 8 we prove Theorems 3.3 and 3.4. In the last section we prove Theorem 3.5
based on Theorems 3.2 and 3.4.

We are forced to assume the uniform continuity (F3}J-off F depends ot
in the Comparison Theorems. We believe this restriction comes from the method.
(In the proof in§ 7 we have no estimates of the length of facets of test functions
from below when the parameter moves.)

4. Maximum Principle

In this section we derive various maximum principles for faceted functions,
which are the key tools for proving our Comparison Theorem.
A classical maximum is:

4.1. Proposition(Maximum Principle forC? Functions, I) LetQ2 be a domain in
R". If a function f € C2(12) takes a local maximum ovér at X, thenVf (X) = 0
and the Hessiamlessf (X) < 0.

As an easy application we get
4.2. Proposition (Maximum Principle forC? Functions, 1) Let Q2 be an open

interval. LetX,y be inQ. Suppose that functions, f, € C?(Q2) and# € C?(R)
satisfy

fi(x) +fo(y) £ 6(x —y) forallx andye Q,
f1(%) +f2(y) = 6(X - 9).
Then
f/(®) +15') < 0.

This type of maximum principle for semicontinuous functions is a key tool
to establish a comparison theorem for viscosity solutions of degenerate elliptic
and parabolic partial differential equations [CIL]; s&& in § 7.



Evolving Graphs by Singular Weighted Curvature 139

We extend this type of the maximum principle to faceted functions.

4.3. Theorem (Maximum Principle for Faceted Functiond)et Q2 be an open
interval. Let f, fo(€ C(Q)) be faceted ak, andy, respectively, with slop@in €.

Suppose thak,y € Q andx —y € |, where | is a closed interval containing
(I may be a singleton Suppose thay € C(R) satisfies

@o=0inl, 6y > 0 otherwise
If functions { and % satisfy

fi(x) + fa(y) < 6o(x —y) forallx andye €,
f1(X) + f2(y) = Oo(X — 9),
then . .
x( fl’)f) N x( fZaY) <o
L( fl7 X) L( f27 y) o

This is not difficult to prove directly. We give a maximum principle for faceted
functions depending on time, which generalizes Theorem 4.3; see Remark 4.10.
Its corollary will be applied in the proof of Comparison Theorem, where we need
to estimate time derivativesof functions although they are not differentiable.

4.4. Notation.We use following notational conventions in this section.
(i) For (1, %), (f2,%) € (0, T) x R, let y; : (0,T) x R — R be a uppersemicon-
tinuous function j( = 1, 2) such that

Ui (tj,-) € C(R) for eachtj € (0, T),
u (fj, ) is faceted at;"in R with slope 0
L(y (§,),R) <oo, forj=12
The faceted regiofR(y; (§, ), %) is denoted bydj, bj], j = 1,2.
(i) Let 0 : [0,0) — [0, o0) be a continuous function such that
6 =0 in [0,0] with someos >0, 6 >0 otherwise

(i) SeC((O0,T) x (0, T)).
(IV) @(tl,Xl,tz,Xg) = U]_('[]_,X]_) + Uz(tz,Xz) — 0(|X1 — Xo — 6”) — S(t]_,tz) with
g =% —%.
(v) Forj =1,2we seti’ € {1,2}\ {j}.
4.5. Theorem(Maximum Principle for Faceted Functions with Time Direction)
Suppose thaffy, %1, 1, %) € (0,T) x R x (0,T) x R is a maximizer o2 over
(0,T) x Rx(0,T) x R, with§ =% — %o.
0] . .

X(ul(tla ')a )?1) + X(UZ(tZa ')7 )?2) <

L(U]_(f]_, ')7 )’Zl) L(UZ(f27 ')7 )22) -
(i) Forj = 1,2, let(l;) denote the inequality

() U (t,%) — Ui, %) = S(te, L)y, =, — St ).
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Then
(I1) holds for all (0, T) x [az + G, b2 + 4],
(I2) holds for all (0, T) x [a1 — §,b; — 4].
Moreover, if§ = &, thenx_(yi(§,-),%) = —1 and there exist§ > 0 such that
(I;) holds for all(0, T) x [ — J, &),
and ifb; < by, thenx.(u (§,-), %) = —1 and there existg > 0 such that
(1) holds for all (0, T) x (bj, b; + 4],

where . B
[G1,01] = [ag,b1], [&o, ko] =[a2+ G, by +4q].

4.6. Corollary. Assume that the hypotheses of Theorem 4.5 hold{:Lie¢ an
open interval. Suppose thfd;, bi], [&2,b;] C Q, andX € [&,l4] forj = 1,2,
where

[84,b1] = [a1, 1] N[z +G, b2 + 6], [B2, b5] = [a4 — G, b1 — 4] N [az, by].

Then there exist uppersemicontinuous functionandv; : (0, T) x 2 — R such
that

vi(t,-) € C() foreacht € (0, T),
0 v (fj, ) is faceted a in © with slope0 in €,
Uj é Vj in (O,T) x €,
UJ(,t\Ja)zj):uJ(’t\Ja)zj) forjzlvza
@)  Realn).f)=[a,b], R, ).%) = &b,
L(Ul(flv ')a )’Zl) = L(UZ(f27 ')7 )’22)7
(”I) X(Ul(fla ')7 )’zl) + X(UZ(f27 ')7 SZZ) g 07

(iv) Let (f) denote the inequality

() v (t,%) — v (G, %) = St )|y, =¢, — S(ta, ).
Then
(4.1) (Ij’) holds for all (0, T) x [é,—,f)j] forj =12

Moreover, ifx_ (v (§, -), %) = —1, then there exist§ > 0 such that
4.2) (I/) holds for all(0,T) x [& — 4, &)
and if x+(v; (i, ), %) = —1, then there exist§ > 0 such that

(4.3) (I/) holds for all (0, T) x (B, by +4].
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We prove Theorem 4.5 and Corollary 4.6 in several steps:
4.7. Lemma.Assume that the hypotheses of Theorem 4.5 hold. Then
() (1) holds for all(t1,x;) € (0, T) x [az +§, by +§].
(i) (I2) holds for all(tz, %) € (0, T) x [ag — G, b1 — §].
Proof. By the assumptions of the theorem, we have
Up(t1, X1) + Uz(t2, X2) — O(|X1 — X2 — §|) — S(t1, t2)
(4.4) < ug(fs, %) + ua(fa, %) — S(fa, F2)

for (t1, 1), (t2,%2) € (0, T) x R.

We taket, = f, andx, = x; — ¢ for x; € [ap +§, by + §] in (4.4) to get
U(ty, Xa) + Ua(f2, X1 — @) — S(t1, 2) < ua(fr, %) + ua(f2, %) — S(t1. f2)
for (t1,x1) € (0, T) x [az + G, bz +q].

Sincex; — § € [ap, by], we haveuy(fr, x; — §) = ux(f>, %), which implies (i).
Similarly, we get (i) by substitutind; = f1, x; = X2 + § for xo € R(uy(ty, -), %)
—§. O

4.8. Lemma.Assume that the hypotheses of Theorem 4.5 hold.
(i) If & > &, theny_(u (fj, ), %) = —1 and there exist§ > 0 such that

(I;) holds for all(tj, %) € (0, T) x [& — 6, &).
(i) 1f by < By, theny.(u(§,-), %) = —1 and there exist§ > 0 such that

(1)) holds for all (tj, %) € (0, T) x (b, bj +4].
Proof. We only prove case (i), since the proof of (ii) is similar. By Lemma 4.7,

(I;) holds for all ¢,x) € (0,T) x [, — (—1)'4, b, — (—1)'q], forj =1,2.

since By — (~1)'4,by — (-1)'d] > [a/ — (-1)'4,8) = [a — 4,8) with
b=4 -4,

(I;) holds for all ¢,x) € (0, T) x [& — J,&).

It remains to prove that_(yj(§,-),%) = —1. Substituting; = { into (I;), we
have A A
Ui, %) S u(t,%) forallx €[a —d,).
SinceR(y; (fj, 1), %) = [, bj], there exists; > 0 such that
u(.x) <u(,%) forall x €[a —n,a),
which impliesy—(y (fj, ), %) =-1. O
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4.9. Lemma. Assume that the hypotheses of Theorem 4.5 holds Let0 be as
in §4.4(ii).
(i) Suppose thad; = &; then x_(y; (fj, ), %) = —1 holds and
(I;) holds for all(tj,x) € (O, T) x [& —o,q) forj =12
(i) Suppose thald; = by; then y.(u; (§, ), %) = —1 holds and

(I;) holds for all (t;,x) € (0,T) x (b, by +0] forj =1,2.

Proof. We only give the proof of (i) here, since the proof of (ii) is parallel. By
assumption of Theorem 4.5, we have inequality (4.4). Substituting §- and
X, =g in (4.4), we have

U (t,%) — 0% — &) — Sta, )y, =, = u({,%) — S(ta, )
for (t,%) € (0,T) x R,

sinced; = &. Forx € [a — 0,8 + o], we haved(|x, — g|) = 0, which implies
that
(I;) holds for all ¢,%) € (0, T) x [& — o, ).

Substitutingt; = {j in (I}), we have
u(G,%) < u(h, %) forall x €[a — o, q),
which implies thaty_(u; (tj,-), %) =—-1. O

Proof of Theorem 4.5.By Lemmas 4.8 and 4.9, there exjsandk € {1,2}
such that

X,(Uj (fja)ﬂzl) = _1a X+(uk(fk7')7)’zk) = _17
which implies that
X(ul(fla ')7 )21) + X(UZ(f27 ')7 )’22) é 0.

For (X(U]_(f]_, ')7 )21)7 X(UZ(f27 ')7 22)) = (_17 _1)7 (_17 0)7 (07 O) and (Q _1)7 the
validity of the inequality in (i) is trivial. We check (i) when

(X(ul(fla ')7 ),Zl)a X(Uz(fb ')a )?2)) = (_1’ 1)
Since Lemmas 4.8 and 4.9 imply that
R(ui(fz, ), %) € R(uz(tz, ), %) + 4,

we have
L(ul(f:h ')7 )’Zl) 2 L(UZ(fZa ')7 )’22)7

which implies (i). When {(uy(fy, -), %), x(u2(t2, ), %)) = (1, —1), we use a sim-
ilar proof.
The property (ii) is given by Lemmas 4.7, 4.8 and 4.90
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4.10. RemarkEven if o = 0 in Notation 4.4(ii), the assertions of Lemma 4.7 and
4.8 are still valid. Ifa; = &, then settingj =, X2 =x — § in (4.4) we have

x-( (G, ), %) =-1

forj =1 or 2. (However, the assertion forXiin Lemma 4.9 may not be true.)
We observe that the proof of Theorem 4.5(i) is still valid evern i 0. By
this remark, we note that Theorem 4.3 follows from Theorem 4.5(i) by setting

u(t,x) =fj(x), S(t1,t)=0, XH =X, K=y
with a choice off in Notation 4.4(ii) such that
0(|z—q|) = 6o(z), forzeR.
Proof of Corollary 4.6. We use the notation of Theorem 4.5. Define functions
fi + andf; _ € C(Q) for j = 1,2 satisfying (A) and (B).
(A)If g =&, thenfi _ =0=1,_inQ, and ifg, <&, then
fi_=0inQ, f,_>0in@E.&), fi,—-=0iInQ\& &)
(B) If b =By, thenf . = 0=, in Q, and if b < by, then
fi+=0inQ, fi.>0in®,b), fi.=0inQ\(@,b).
Setting
v (t,x) =y (t,x) +fj —(x) +fj +(x) for (t,x) € Q andi = 1,2,

we see that (i), (i) and (iii) hold. ’
Since B, ] C [g — (—1)'§, b, — (—1)'d], we get (4.1) by Theorem 4.5
(ii). By the definition ofv; andwvy,

éj" géi if X,(’Uj(fj,'),)’zj):—l,
b =k if xa(u (G, %) =1,
which imply (4.2) and (4.3). O

5. Convolutions

To regularize semicontinuous functions it is convenient to use sup- and inf-
convolutions of functions. A typical way to regularize is to considesugp-
convolution

f(x,A) = sup{ f(&) — |x — ]2/}
£eER

for an (upper-semicontinuous) functibnwhere) is a small positive parameter
[CIL]. However, this type of convolution is not convenient for our purpose. We
consider a sup-convolution with a faceted function replading- £|?/\. The
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goal of this section is to study such sup-convolutions. A new feature of our sup-
convolution is that iff assumes a local maximum st then its sup-convolution
is faceted neax.”

Let ¢ be a function fronR x (0, 1] to [0, o). We often assume the following
conditions ong.

(©0) For each\,0 < A < 1, ¢(-, A) is Lipschitz continuous on every bounded
set inR.

(®1) d(&, A) is even ing, i.e., ¢(&, A) = o(—=&, N).

(®2) @(&, N\) is nonincreasing i\ for all &.

(®3) §Iim ?(&,1) =oco and (&, A) is nondecreasing i6 = 0, for0< A < 1.

(94) IA% @€, \) = oo unlessé Z0 andp(0,\) =0,0 < A £ 1.

(®5)  Letoy = sup{|é]; ¢(&,A) = 0}. Then for 0< A < 1,0, > 0 (o) is
nondecreasing i and AIilnowcu =0 if we assume®2) and (04)).

Letf be a function orR with values in oo, o0). Then

(6.1) fA(x) = sup{ f (&) — ¢(¢ —x, N}

£€R

is calleda sup-convolutiorof f by ¢. Our assumptions in&0)—(®4) are rather
standard. For example,

$(x, ) = X[/
satisfies ¢0)-(®4). However it does not satisfydE), where¢(&,\) = 0 is
assumed to be faceted &t= 0 with slope zero. Instead of this choice ofwe
often use _
(5.2) (X, A) = AI(X/N),
with

(x — 1P forx>1,

I(x)={ 0 for |x] < 1,
(x+172 forx< —1

Clearly, @0)—(®5) are fulfilled for¢ = 1. We recall fundamental properties of
f* in (5.1) which are familiar wher = [x|2/\ [LL]. If ¢ =|x|2/),f* is often
used in functional analysis and is called the Yosida approximatidn Ahother
choice of ¢ (which does not satisfy®5)) was used in [IR] to study singular
Hamilton-Jacobi equations.

5.1. Lemma.Assume thaf®0)}(P4) hold. Let f(£ —oo) be a function orR with
values in[—oo, c0) and assume that f is bounded from above on every bounded
set inR and that

(5.3) ‘gl‘im max(f (£€),0)/¢(¢ — x,1) =0 for each xe R.

Let f* be a sup-convolution of f by. Then
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(i) f* is Lipschitz continuous on every bounded seRin
(i) fA>fr>fforA>p> OandIAirBfA(x) =f*(x) for each xe R.

(iii) Let B and B be bounded open sets®with B  B’. Then for each K> 0
there is\g(Ko) > 0 such that

supsupH (£, x, ) < =Ko for A\ < Ao(Ko)
XEB £¢B’

with H(, X, A) = f(§) — (€ — X, A).
(@) If infzf* > —o0, then forA < Ay = Ao(max(Q — infz f*)) we have

fA(x) = supH (&, x,A) for x € B.
£eB’

(b) If % is a maximizer of f over Bi.e., f(R) = max: f, then f(x) < f(X)
for x € B provided that

A < M= Ao(max(@ —f (R))).

Proof. The proof is standard. We give it for completeness.
We may assume thétis upper-semicontinuous by replacifdy f* in (5.1)
since the valudé *(x) in (5.1) is unchanged with this replacement.
By (®2) we havef*(x) > f#(x) for A\ > u. Since¢(0,\) = 0 by (@4), we
have
FAX) = f(x) — p(x —x, A) = f(x).

Let p > 0 be any number with
p>p=supo;f(x)=—oco for |x| <o}
Then there iy’ > p such that

(5.4)  fA(X)= sup H(&x,A) = sup{f(&) - —x N},

HES% HES%
X[ <p, 0<AS L

Indeed, by (5.3) there igy > p such that
f(€) < 30(€ —x,1) for €] = po, |x| < p,
so that if|x| < p, then
(55) (&) — &€ —x,N) = 36(€ —%,1) — ¢ — x,1) = —30(6 — X, 1)
by (®2). Since there ix’, |x'| < p such thaff (x") > —o0,
FAX) 2 F(x') = g(x" — %, A)
(5.6) > f(x') — supg(x’ —y, ) =M for |x| < p

lyl<p
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with some constari¥!l independent ok. By (®3) one can take' > pgy so large
that
_%¢(5_X71)<M for |£| 20,7 Pz |X|

By (5.5) and (5.6) this implies that
FA(x) > F(©) — o€ —x, ) for |¢[ =0 and p=[x|

We have thus proved (5.4).

Sincef is bounded from above dw| < p’, the supremum of (5.4) is finite, so
thatf *(x) is finite. For eachp > p we now prove that* is Lipschitz continuous
for |x| < p. By (5.4) for eacte > 0 there isp, |£o| £ p/, such that

fAX) < (o) — 6o — X, ) +e.
Fory, |y| £ p, we have
FA) = FA(Y) = F (o) — ¢(€o — X, A) +& — { F (o) — ¢(é0 — ¥, )}
= ¢ —Y,A) — (o — X, A) e
Since¢(¢, A) is Lipschitz continuous fof¢| < p + p’ by (©0), we have
fA) —fAY) SLIx —y[+e
with someL > 0. Sending: | 0 and interchanging the role af y we have
[F200 =AW S Lx —y| for x| < p, ly| < p.

We now show that
(5.7) IAirp)f’\(x) = f(x).

Sincef is upper-semicontinuous, for eaeh> 0 there isé such that

(5.8) fE)Sf(x)+e for |€—x| 6.

We takep = |x| andp’ as in (5.4). Then by the monotonicity ob8) we have
sup{ f(€) — @€ —x,A); [El <0, [€ —x| 2 0}

(5.9) S sup f(§) — o0, N).

l€1<p’

By (®4), for eachK > 0 there is a smally > 0 such that the right-hand side of
(5.9) is dominated by-K for |A| < A\o. Applying (5.8) and (5.9) to (5.4) yields

fA(x) = max( sup (f() — (& —x, ), —K)

|e—x|<6
< max(f(x)+¢e, —K)

if A < A\o. TakeK large such that-K < f(x) and fix \g. Thenf*(x) < f(x) +¢
for A < Xo. Sincef < f?, this implies (5.7).
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It remains to prove (jii). We take (> p) such that{x € R;|x| < p} contains
B. By the proof of (5.4) it suffices to prove that fpf > p,

(5.10) supsup{H (£, x, \); [§] = p",£ ¢ B'} = —Ko
xXEB

for sufficiently smallX, A < A\o(Ko) (£ 1). Letd > 0 be the distance frorB to
OB’. Then by (3) with (1) we have
H(EX,A) =F(8) = (6 —x, ) (&) — ¢(d,\) for £ ¢ B/, x € B.

Sincef is bounded from above oft € R; |¢| < p'}, from (@4) it now follows
(5.10) with A < Xo(Kg) provided that\o(Kp) is taken so that

sup f(£) + Ko < ¢(d, Ao(Ko)).

l€1<p!

If Ko = max(-infgf,0) , thenf>(x) = f(x) > —Ko for x € B. If A < Ap =
Ao(Kop) with this Ko, then (5.10) yields

fA(X) > sup{H (£, x, \), £ € B/, [¢] < p'} forx €B,

so that
fAMX) = sup{H (&, %, A); [¢] < o'} by (5.4)
=sup(H (&, x, A); [¢] = 0/, € € B}
= sup{H (£,x, \);€ € B} for x € B.

This completes the proof of (a). Ko = max(Q —f (X)), then forA € A = Ao(Ko)
we have, by (5.4) and (5.10), that

£ = max(supH (¢, x. A). sup(H (€, x, 1) € ¢ B',[¢] < 0'))
< max(f(R) — 0, —Ko) < f(X) for x € B.

The proof of (b) is now complete.

5.2. Remark(i) The assertion of Lemma 5.1 is still valid everRfis replaced by a
normed space which may have infinite dimensions provideddtgtis replaced

by #()¢]). The proof presented here does not depend on the local compactness
of R so it applies to this case with trivial modifications.

(ii) The symmetry assumptionb{l) is made just for convenience and it may be
removed if (¢3) is replaced by

lim ¢ —oo B, 1) = 00,
#(€,\) and ¢(—¢, \) are nondecreasing ifi> 0.

(iii) So far, the property®5) has not been invoked. It is essentially used to prove
the following Theorem, which is our main result in this section.
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5.3. Theorem (Convolution with Faceted Functionshssume tha{®0)}{d5)

hold for ¢. Assume that the hypotheses of Lemma 5.1 concerning f hold. Assume
that f has a local maximum &t and that f is not a constant function. Let be a
sup-convolution of f by defined by5.1). Then there is a small;,0 < A\; < 1,

such that forh < \q,

(i) f* is faceted ak in R with slope zero and¥(X) = f (%);

(ii) X is an interior point of the faceted region(R*, X).

We set
a=supx;f(y)=f(X) forallyel[X x]}
b=supx;f(y) Sf(X) forallyel[X,x]} (=a).

Note thatb > X if f assumes a local maximum atahd thata < oo sincef is
not a constant. The next lemma is a key step to prove Theorem 5.3.

5.4. Lemma. Assume that the hypotheses of Theorem 5.3 concerning fpand
hold.

(i) Assume that & b (> X). Then, for sufficiently smal\, say\ < X, f* is
nondecreasing ofX, b], and there is , X < x§{ = b — oy, such that

fA(x) = f(x) forallx € [%, x],
fA(x) > f(x) forall x € (x},b]

with o as in(®5).

(ii) Assume that b> a(= X). Assume that f is upper-semicontinuous. Then for
sufficiently small\, say\ < M3, there are § and y2 with y2 > y} > %, and

fA(x) = f(R) forallx €[, yil,
fAx) < f(R) forallx € (y3, y2).

Proof of Theorem 5.3 by Using Lemma 5.4We may assume thdtis upper-
semicontinuous. Lemma 5.4 gives the behaviof dffor x > X; the behavior
of f* for x < X is obtained by Lemma 5.4 by replacizgby —x. Sincef” is
continuous, the behavior df* so far obtained yields Theorem 5.3. We remark
that Lemma 5.4 determines the value of transition numbers. It asserts that

x+(fA %) =1ifa=bandy.(f*,%)=—-1lifa<b. O

The results in Lemma 5.4 are easy to imagine sifide faceted. However,
the proof is not trivial although it relies only on elementary facts. Especially,
the proof of part (ii) is complicated since we are forced to handle the case when
f oscillates so that it takes the valfigk) infinitely many times on the interval
[a, b].

Proof of Lemma 5.4. Sincef assumes its local maximum &t there isé > 0
such that
f() = f(X) for &, [ — K| = 0.
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Let xp be a point such that < xo < b. We apply Lemma 5.1(jii) with
B=(X.%), B'=(&-4Db), Ko=max(Q-f(&)

to get

(5.11) supH (¢,x,)\) < —Kg £ f(X) for all x € [X, Xg]
£¢B’

with H (f,X, >‘) =f(§) - ¢(£ — X, >\)| and
(5.12) fAx) < f(R) forall x € [X, Xo]

if A < A§ = Mo(Ko), which also depends oxy. We also apply Lemma 5.1(iii)
with
B=(,b), B'=(R—-6b+6), Ko=max(Q—infgf*)

to get

(5.13) fAX)=supH(, X, \);X -6 < ¢<b+6} forall x €[X, b]

provided that\ < A\ = Ag(Ko) which is well-defined ifKy < oco.

(i) Sincea = b, we seef (x) =f(X) for all x € [X, b). This implies that
inf{ f*(x); X< x<b}=fR) > —.

If X < Aj, then (5.13) is valid. Sinck(§) < f(X) forall £ € [x -4, bland¢ = 0
with ¢(0) = 0, we see that

H(E X, A) = F(6) — o€ —x, A) =f(X) — (X — X, A)
Sf(x)—0 forallge[x—4, X]
for all x € [X, b). Applying this to (5.13) we get
(5.13) fAX)=supH(, x,\); x <e<b+4} forallx [x, b]

for A < \j sincefA(x) = f(x) = H(&,x, \) for all € € [k — 6, X]. Sinceg(&, \)
is nondecreasing i = 0, we observe that

H(EX A =F(©) =o€ —x, ) =f@) - -y, A)

for X < x <y <hbandy < &. Since

SUPH (&, %, A x S € Sy} f(R) =f(y) = FA(W),

(5.13) now yieldsf*(x) < fA(y) for A < \j andxX < x <y < b. We have thus
proved the monotonicityf *(x) < fA(y), R S x <y < b for A < A},

Let xp be fixed withX < xg < b, and set\, = min(\y, Ay) so thath < A,
implies (5.12). Sincd < f* by Lemma 5.1(ii) anda = b, the estimate (5.12)
yields

(5.14) fAX)=fR) for R<x<x, A< )
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By definition of b there is a sequendg = b, & | b such thaff (&) > f(X).
By definition of f* we see that

FA) 2 £(§) — o(g —x, ).

Assume thab 2 x > b — o. Then for sufficiently largg the sequencg (] b)
satisfies§j — x < . We now invoke {5) to get

#(§ —x, X) =0 for sufficiently largg .

This is the only place that¥() is invoked in (i). We fix such & and observe
that
FAX) 2 £(g) — o(§ —x, ) =f(§) > ().
In other words,
(5.15) fA(x) > f(X) forall x € (b — oy, b].

Sincef* is continuous by Lemma 5.1 (i) arfd is nondecreasing inx[b],
the existence oX{ in (i) follows from (5.14) and (5.15). The proof of (i) is now
complete.

(i) We take xp with a < X < b and fix Aj in (5.11) and (5.12). Sincé is
upper-semicontinuous, the set

U = (a,x)\{x;f(x) = f (%)}

is an open set, i.el) is a disjoint union of countably many open intervals
{0 }j%. We set
Wi ={1;10[ > 205},

where|Q; | is the length ofQ;. This set is at most finite. Let, be taken so that

2 max|O;
O, < i>1 ‘ l|’

which implies thatW, is nonempty forh < A\;. We set
Xy =inf{x € 0;; j € Wy}.
SinceW, is finite, there is a uniquip € W, with x§ = inf Q;,. We then set
X5 = sup0;, (< o).
We now prove that i\ £ A3 with A3 = min(\4, Aj), then
(5.16) fAx)=f(®) forall x € [X,x} +a.,],
(5.17) fAX) < f(R) forall x € (X} +0x, X2 — ).

Note thatx} + o) < x2 — oy since|Q;,| > 20,.
By definition of Wy, for all x € [X,x} + 0,] there is&, with x — o\ < & <
X + o, such that

f (&) = (%),
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which yields

fA(x) = (%) — d(So — X, A)
=f(R)—0 by @5).

Property (5.16) now follows from (5.12).
It remains to prove (5.17). Assume thafuffills x} + o, < x < x? — 7, and
A = \3. By definition of O;, it follows that

(5.18)  H(Ex,N) =) — o€ —x,)) <f(R)—0 forall & e (x}, x2).
SinceX < A3 < A, (5.11) yields
(5.19) sup{H (&, X, A),ESR—6 oré>b} <f(R).
By definition of § andb, if £ € [X — 4, b], thenf (§) < f(X) so that
H(E X, A) = (%) — o(§ —x, ).
If ¢ is outside X}, x2), theng(¢ —x, A) > 0 so that
(5.20) H( X, ) < f(R) for & € [k — 6, b]\(X,, xD).
Sincef is upper-semicontinuous, (5.18) and (5.20) imply that
sup{H (&, x,A); X =5 £ €< b} < f(R).

This together with (5.19) yields

fA(x) = supH (&, x, \) < f(R)

¢eR

forxi+oy <x<x2—o0y\ O

In §7 we use a sup-convolution of a function Bydefined in (5.2). There is
an advantage in using this specitkince it fulfills the composition rule

(5.21) fAx)=9(x, A\—B) for 0< B < A with f(x) =9(x, \).

We conclude this section by proving a more general composition rule which
includes (5.21) as a special case. bor 0 and X > 0 let 9(x, p, \) be of the
form

(Xip)2/>\ﬂ X > p,
(X, p,A) =4 0, IX| = p,
(X+pP/A, X< —p.

5.5. Lemma(Composition). (fFor0< a < p, 0 < B < A,

19(X, p—a, A— 5) = Sup{ﬁ(fapa )‘) - 19(5 —X, a, /8)} for xeR.
£ER

(i) For0< i, 0< B (i =L2)withay+az < p, B+ 62 < \,
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IX =Y, p—(a1t+az), A—(B1+ )
= Sgpsumﬁ(g —-n, p, A) - 19(& — X, a1, ﬁl) - 19(77 - y7 Qg, ﬁ2)}
n
forx,y € R.

Proof. (i) By elementary calculus we can evaluate the maximum of the right-
hand side to get the desired identity. We give a noncomputational proof for
completeness.

We set

H(E x) =9, p, A) =9 —X, a, §), f(X)=§SéJFEH(£7 X)
by suppressing parameters.
(@) If [x| £ p — a, thenf(x) = 0. Indeed, from\ > 3, p = « it follows that
HE =X, a, B) 29 =X, a, A) 29(E, p, N,
which yieldsH (¢, x) < 0 for all £ € R. SinceH (£,x) = H(x,x) = 0, we now
obtainf(x) =0 =9(X, p—a, A=) for |x| < p—a.
(b) If X > p— «, then
(5.22) f(x) =sup{H (¢, x); £ =2 x+a}.
Indeed, for¢, || < x +a, we see that
H(E, x) =9, p, ) -0 9X+a, p, \)—dX+a—X, a,0) =HX+a, X).
For ¢ £ —(x + ) we see that
H(E x) = 9 p, A) —D0(x =&, a, B)
S U= p, )= I(=E—X, o, B)=H(=¢, X)

sincex — & 2 —¢ — x 2 a. We thus obtain (5.22). An elementary observation
shows that

(§—p)2_(£—><—a)2}: {(f—p)Z_(g—x—a)Z}
aup 528 - 2o qp {5

sincex +a > p, A > 3. Since

€= o (E—x—a)
) 3

it now follows from (5.22) that

H(¢ x) =

for £ 2 x +a,

_ @@2_@xay}

00 = supl €52 -6
_ 7 (n—2)? (oo
'if{x 5 }’Z'X (o~ a).
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Since < A, the last supremum is attained onlymt= Az/(A — () so that

_ 2)2 B Z2

B A=p

This shows thaf (x) = J9(X, p — a, A — ) for x > p — «. The proof for
x £ —(p — «) is the same and so is omitted.

(i) Using (i) twice we obtain the desired identity.

f(x)=%‘2’— (o

6. Equivalent Definitions of Solutions

To prove a comparison theorem (and an existence theorem) it is convenient
to introduce other versions of definitions of solutions. In our original definition
our test functiony is admissible orall of Q = (0, T) x Q2. However, it turns out
that we only need some admissibility ¢f near the point §,%) € Q such that

man(u* — 1) = (u— ), x).

To be precise we introduce several notions of admissible functions. In this section
Q is assumed to be a (possibly unbounded) open interval.

6.1. Definition. Let (f,%) be a point inQ. A function ¢ € C(Q) is locally

admissiblenear §,%) in Q if there is a rectangular neighborhodd C Q of

(f,%) such that the restrictionmo of ¢ on Q belongs toA,(Q). SinceQ is
rectangular, it is of form . A
Q=Jx0Q

with open intervals) and Q. .

By definition, if p = ¢ (t, R) € P, theny(f, ) is faceted ak in Q with slope

p. . .

Our assumption thap|s € Ap(Q) implies thaty(, )|g, € C3(2). In partic-

ular, the faceted regioR(x(f, -), X) should be contained if.

6.2. SemijetsWe recall the definition of parabolic semijets in [CIL]. Lgtbe a
function onQ and €, %) € Q. The set of parabolic semijets is of the form

5 o %) = { (r,p,X) ERX RxR;
p(t,x) — o, %) < 7(t — 1) +p(x — %) + 3X(x — %)
+o(t —f|+|x — %) as ¢,x) — %)}
The setz% ~¢(f, %) is defined by
75,8 = ~(A5 " (—)(E R).

We often write’* instead of/g ™.
If (t,-) is faceted ak,then the use of* does not enable us to discuss the
behavior ofy near the faceted regidR(o(t, -), X). We are interested in defining
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an upper time derivative on the faceted region. For this purpose we introduce
semineighborhoods of a faceted region depending on the local behavifr, of

6.3. Semineighborhood&et f € C(£2) be faceted aky with slopepy. Let 6.
andd_ be (small) positive numbers. L&( f, Xy) denote the faceted region bf
containingxy. We set

N+ (f, Xo; d+) = {X € Q; SupR(f,xo) < X =< SupR(f,xo)+d+},
N_(f, Xo; 6_) ={x € Q; infR(f, xo) —d_ < x <infR(f, xo)}.
Our semineighborhood depends gn( f, Xo).
@) If x«(f, ) =x_(f, x)=-1, we set
N=Y(f, %0, 6+,0_) = R(f, %) UN:+(f,x0; 0+) UN_(F; Xo; 6_).
(i) If x+(f,x0) =1 andy_(f, x)=—1, we set
N=Y(f, %o &, 6_) =R(f, xo) UN_(f, Xo; 6_).
(i) f x+(f, X0) =—1 andy_(f, %) =1, we set
N~(x0; 6, 6-) =R(f,%0) UN«(F, X0 65).
(iv) If x+(f, x0) =x—(f, %) =1, we set
N7Y(f, %o dr, 0-) = R(F,X0).
The setN*Y(f, xo; 4+, 6_) is defined by
N*L(F, Xo; 0r, 6-) = N"Y—F, xo; 0s, 6_).

In other words,N*! is defined in the same way by interchanging 1 antlin
()—(iv). We often suppres§, andé_ of N*1 and simply writeN*( f, xo).

6.4. Upper Time Derivative#\ functionw : [0, co) — [0, c0) is called amodulus
if w is a hondecreasing continuous function witf0) = 0. For a functiony on
Q we define

Z o, %) = {1 € R; there are a modulus and three positive numbers
0, 0+, 0_ such that
o(t,x) — o, %) = 7(t — ) +p(x — R) +w(|t — TPt -
for (t,x) € € — 6, £+6) x N7, ), %, 6+, 6-)}
provided thaty(f, -) is P-faceted atx”c Q with slopep in Q. If ¢(f,-) is not
P-faceted a; we set7 *o(f, %) = 0. The set%*¢(t,X) is defined by
oo, %) = —( Ty (o), %)

The setZ™* is roughly the set of upper time derivatives which are uniform near
the faceted region since the error tew(it — t|)|t — {| is independent ok at
least on the faceted region.
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6.5. Definition. Let ¢ : Q = (0,T) x 2 — R be an upper-semicontinuous
function. Let €, X) be a point inQ. Assume thatp(t, ) € C(Q) for t nearf. We
say thaty is an (infinitesimally)admissible superfunctioat @, X) in Q if one of
following conditions holds.

(A) The functiony(t, -) is P-faceted ak’in  andx € int R(¢(f, 1), %), i.e., X is
an interior point of the faceted region of, -) containingx’ The set% *¢(f, X)

is nonempty.

(B) There is ¢, p, X) € #*¢(f, %) with p € P.

(C) The functiony(t, -) is P-faceted ak’in Q butX € R(,(t, -), X). The function
¢ is locally admissiblenear (t, %) in Q.

We sayy is anadmissible subfunctioat {,X) in Q if — is an admissible

superfunction withP replaced by—P. If ¢ is locally admissible nearf(X) in
Q, it is easy to check (A), (B) or (C) so thatis an admissible superfunction at
%) in Q.
6.6. Definition. A real-valued functioru on Q is asubsolution in the infinitesimal
senseof (E) if u* < oo in [0, T) x £ and the following conditions are fulfilled.
For each{, %) let v be an admissible superfunction &t &) in Q such that (2.2)
holds. Then

(i) T+F(@, o, R), Aw(e(, ), %) <0forallrc .%*@(f,)?) if (A) in §6.5
holds;

(i) T7+F(, p, W' (p)X) L0 forall (r,p,X) € 2*p(, R) if (B) in §6.5 holds

(i) (2.2) is valid with ¢ = ¢ if (C) in §6.5 holds.

The definition ofsupersolutionis given by replacingu* (< o) by u, (>
—00), max by min, superfunction by subfunctiogz™ by .75 ~, &°" by &~
and the inequalities in (i),(ii) and (2.2) by the opposite ones. We note tlat if
is continuous andV” is continuous neap, then=~"* may be replaced by/’ff’*,

the closure of** = .’«]éz’+ in the sense of semijets [CIL]:

%’;2’+<p(f,)?) = {(r,p, X); there are sequences — X, t, — {,
Th — T, Xn — X satisfyingo(tn, %) — o(f, %),
(s Pn, Xn) € 4%27+80(tnyxn)7 (th,Xn) € Q}.

6.7. Definition. A real-valued functioru on Q is asubsolution in the local sense
of (E) if u* < oo in [0,T) x Q and (2.1) holds for allf(X) € Q and for all
¥ (€ C(Q)) that are locally admissible neat,g) in Q and fulfill (2.2). The
definition of supersolutionis given by replacingy* by u,, max by min and the
inequality (2.1) by the opposite one as before.

Our main goal in this section is to show that Definitions 6.6, 6.7 are equivalent
to Definition 2.6.

6.8. Theorem(Local Version vs. Original Global Versionh real-valued function
on Q is a subsolution or supersolution () if and only if it is resepectively a
subsolution or supersolution in the local sens€©y
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6.9. Theorem(Local Version vs. Infinitesimal Versionpssume thafF1) holds.

A real-valued function on Q is a subsolution or supersolution in the local sense of
(E) if and only if it is respectively a subsolution or supersolution in the infinitesi-
mal sense ofE).

6.10. RemarkAt first glance, our definition of an admissible superfunction is
rather strange. In the definition ofz* we are tempted to replac@fl by
R(e(t, ), X). However, if we do so, then a subsolution might not be a subsolution
in the infinitesimal sense. We are also tempted to repfécé by N*1 U N1,

a neighborhood oR((t, ), X). This modification is good for proving Theorem
6.9. However, test functions constructed in the proof of the Comparison Theo-
rem (§7) might not be admissible under this modification. Note thiatis the

only place the infinitesimal version of the definition is invoked§there is no
situation in whichx"is a boundary point oR(¢(f, -), X) so the definition of the
local version at such ar i5 inherited in Definitions 6.5 and 6.6.

A. Preliminary Lemmas. To prove Theorems 6.8 and 6.9 we prepare several
lemmas.

6.11. Extension Lemmalet | be an open interval if0, T) and J be a bounded
open interval inQ2. Assume thap € C(Q)(Q = (0, T) x ) fulfills

<,0|I %3 € Ap(l xJ).

Let I, and J be open intervals such thah_i c | and J_l C J. Then there is a
functiony € Ap(Q) such that

¢<v InQ, p=tv inlixd.

Proof. Step 1. We prove thaf I and J (with k = 2, 3) are open intervals such

that — _
IkC|k+l (k:172)7 |3 CI7

‘I(C‘Jk+l(k:172)7 ‘]—3C'J7
then there are nonnegative functionssf C(€2) and g, € C(0, T) such that
szOing, ngOin I7,

o(t,x) = fa(x) + g2(t), (t,x) € Z=Q\(I3 x Jg).

Indeed, we takel € C1(12) that satisfies
(@dd=0inJ;

(b) d’ > 0 in the right ofJ;; d’ < 0 in the left ofJs,
(c) d(x) — +oo asx tends to the boundary d?.

We set
Jr)={xeqQ; dx) <r}
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so thatJ(0) = J3 and Uz J(r) = Q. Similarly, we taked € C(0,T) that
satisfies (a), (b), (c) witll; and Q2 replaced bylz and (QT), respectively. We
also set B
1(r)={t€(0,T); d(x) <r},
h(r) = max{max(a(t,x), 0), (t,x) € Z, (t,x) € [(r) x I()}.
Sincel (r) x J(r) is compact ang is continuous, it follows thalh is continuous
in [0, c0). There are nonnegative functiofise C(2) andg, € C(0, T) such that

h(d(x)) for x € Q\Js,
() =90 for x € Jo,

ooll) = { h(d()) fort e (0, T)\Is,

0 fort € ls.

By definition _
¢(t,x) = h(max@(x), d(t)))

< max(fa(x), g2(t))

= fa(x) + g2(t)  for (t,x) € Z

since bothf, and g, are nonnegative. This completes the proof of Step 1.
Step 2. Sincep|; x5 € Ap(l x J), there isf; € C3(J) andgy € C*(I) such that

P(t,x) =fi(X) + gr(t) in 1 xJ.
Let 8 € C(Q2) andp € C(0O, T) satisfy

0560=<1 0=1ind;, 6=0inaneighborhood of2\J,
0<p<1 p=1linls, p=0inaneighborhood of (O)\I.

Then, it is easy to see theg =0 fy +f, € C(Q2) andgs =p g1 + g2 € C(0, T)
fulfills
fa=f1ind2, gz=g1inly,

o(t,x) = fa(x) + g3(t), (t,x) € Q,
wheref; andg; are extended by zero outsideand| respectively.

Step 3. To complete the proof it suffices to fipdc C1(0,T) andf € C2(Q)
such thatg = g3 on (0, T) with g = g3 in |1 and thatf = f; on Q with f = f3

in J;. Sincegs € C(0,T) fulfills g3 = g1 in Iz, so thatgs is of classC! in a
neighborhood of, it is easy to find such a function If J,\J; is contained in
one faceted region df, we take a nonnegativ@? functiono supported inl,\J;
such that f; + o)’ does not belong t® at the boundary of some neighborhood
J’ of J; in J; and such thaf; + o, € CF‘?-(Jz). Replacingfs by f3 + 0 we may
assume that; € C(92) fulfills

f3 € C3(J), f4(x) € P forallx € dJ'.
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The proof is now complete, if we admit the next lemma, which yields a desired
f.

6.12. C3 Extension Lemma. Let J', J, and Q be possibly unbounded open
intervals such thad’ ¢ Jo, J2 c Q. Assume thatyfe C(2) satisfies

fols, € C3(J2), fg(x) € P forallx € 9J'.

Then there is a function £ C3((2) such that f> fo in © and such that = fq in
J/ 1ff§’ 2 0in Jp, f can be taken so that'f= 0in Q.

Proof. For a sufficiently small open neighborhodd of J’ in J, there isfy €
C2(Q) such thatfy = f, in 3”7 andfy < fo in Q and thatfy|,» € C2Z(J") since
f§(x) € P neardd’. So we may assume thé € C?(2) by replacingJ; with

J”. We then apply the next elementary but important lemma on intef¥gl$ =

(b, a’)U(a, b) and obtain a functioh on \J’ with f ¥(a’) = f{(a’), f®(a) =

fM@) (k =0,1,2), f € CAO\J’) andf > f on Q\J'. If we setf =f; on J’,

so thatf € C,E(Q) thenf > fo in Q andf =fo in J. If f§’ = 0 on J,, our f

satisfies” = 0 in 2 as noted in the next lemma. Thus the proof of Lemma 6.12

is complete if we admit the next lemma.

6.13. Lemma.Assume that a< b < oo. For fy € C?[a, b) assume thatj{a) ¢ P.
Then there is fe C?[a,b) N C3(a,b) such that f= fy at x = a up to second
derivatives, i.e., ¥(a) = f{¥(a) (k =0,1,2) and § < f in [a,b). If f{P(a) > 0,
then f can be taken so that'f= 0 on [a,b). The same assertion holds if we
replace[a, b) by (b,a] when—oco < b < a.

Proof. Since the proof is the same for> a, we may assume that < b. We
may assume that = 0 by a translation. We may assume thg0) = 0 by adding
—fg(0)x to f and replacing® by P — f;(0).

We may also assume that therexjs=> 0 such thaf(x) ¢ P for 0 < x < x¢
and thatfy’ = 0 on [xi,b) with fj(x;) = 0. Indeed, iff;’(0) = 0, we take
o € C[0,b) such thatr = fy’ in [0,b), ¢(0) =f;’(0) ando = 0. We then set

_ X y
o(x) = fo(0) + /0 dy /0 dz 0(2).

so thatfy > fo, f§/ = 0 on [0, b) with f)(0) = f(0) (k = 1,2). In this caseq
is chosen to be equal to zero affi= 0 on [Q,b). If f§’(0) < O, for eachs > 0
we takeo € CJ[0,b) such thate = fj’ in [0,b), ¢(0) =f;/(0) (< 0), 0 =20
in [e,b), ¢ < 0in [0,¢) and thato is increasing inx. Let fy be defined as
in the preceding formula fofy but with this newo. It turns out that ife > 0
is sufficiently small, then fop = inf{fj(x); 0 < x =< b} (= f5()) we have
[p,0] N P = 0. Moreover, there ix; > ¢ such thatfy(x;) = 0. Sincefj’ =c = 0
on [, b), thisfy (2 fo) has the required property d in this paragraph with
1§9(0) =1{(0) (k= 1,2).
It is easy to construdh € C'[xy, b) such that

h 2 fO/(Z O)a h’ 2 0on [Xla b)>
h =f§ nearx = x; with x = x;
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and that{x € (x3,b); h’(x) = p} is either the empty set or a nontrivial closed
interval for eachp € P sincefy is nondecreasing orx{, b). We then set

o) = fo(a) + [ h(z)dz for all x € [x,b],
() = fo(X) for all x € [0, x].

By the choice ofh this f is in C2(0,b) andf > f, in [0,b). Sincef = f, near
x =0 (even ifx, = 0), the conditions on derivatives are clearly satisfied.

B. Proof of Theorem 6.8.Sincey € Ap(Q) implies thaty is locally admissible
near any {,%X) in Q, the ‘if part is trivial. We then prove the ‘only if’ part.
Since the proof for a supersolution parallels that for a subsolution, we present
the proof for a subsolution.

Let u be a subsolution of (E). Forf,k) € Q let ¢ € C(Q) be locally
admissible nearf(X) in Q with

max(u” — ¢) = (u” — ©)(E %)

Case 1(t, ) is P-faceted ak. By definition there are bounded open intervals
I and J such thatt € I < (0,T), R(p(,), X) € J C Q and such that
©lixs € Ap(l x J). Letl, andJ; be open intervals such thét C |, J; C J,

t € 1, andR(p(f, ), %) C J;. By Extension Lemma 6.11 there is € Ap(Q)
such thatp <+ in Q andy =1 in |1 x J,. We thus observe that

maxq(u* — ) = (u* — ¥)({, %).
Sinceu is a subsolution, we see that
de+F (L dy, Aw(w(@, ), 8) <0

with ¢ = (€, %), Ux = (€, R). Sincey =+ in 13 x J; andJ; contains the
faceted regiorR(¢ (t, ), X), this inequality is still valid if we replace) by .
We thus obtain (2.1) fop, which we wanted to prove.

Case 2.¢x(f,%) ¢ P. The proof parallels that for Case 1 if we replace
R(¢(f, ), X) with a single point{X}.

C. Proof of Theorem 6.9.1f ¢ is locally admissible neart(X) in Q, theny
is an admissible superfunction dt%) in Q, so the ‘if’ part is trivial. We then
prove the ‘only if' part. Since the proof for a supersolution parallels that for a
subsolution, we present the proof for a subsolution.

Let u be a subsolution of (E) in the local sense. FOR] € Q let ¢ be an
admissible superfunction at, &) in Q with

max(u” — ¢) = (u” — ©)(E %)

We shall construct a good locally admissible functignsuch thatw)(f, X) =
e(t, %), ¥ =2 ¢ in Q.
Case 1. o(t, ) is P-faceted atk in Q andX € int R((f, "), X).
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Step 1. By (A) of§6.5 there ist € %" ¢(f,%). By definition there are a
modulusw and three positive numbebsd., §_ such that

p(t,x) — o, %) = 7(t — ) +p(x — %) +w(t — It —

for all (t,x) € Q(4,6+,6_) = (f — 8, T+08) x N-Xp(f,-), %, 0:,6_), where
p = ox(t,R) € P. As is well known, there i € C1(R) such tha#(0) =6'(0) =0
and
w(lt — Eplt — | < ot —T)).
Although it is elementary, we present a general form of this fact.
6.14. Lemma.Letw be a modulus. Let k be a nonnegative integer. Then there
is § € CK[0, o0) such that#?)(0) = 0and#W)(x) > 0forx > Owith0<j <k

andw(|p))|p|* < 6(|p|) for all p € R. In particular, for a given ¥ € R™, G(x) =
9(]x — xo|) is C¥ as a function of xc R™.

Proof of Lemma 6.14.This is a simple extension of [CEL, Lemma |.4]. We set
2t
9;(t)=/ 0,_1(s)ds, j 21, p=w fort =0,
t

so thatd;, € C[0, o) with Hj(i)(O) =0for 0< i £j. Sinced; is hondecreasing,
we have
gty =t 6j_1(t) fort=0

so thatf; (t) = t!w(t). We thus observe that= 0y has all desired properties; the
CX property of G at x = Xo follows from§9)(0) =0 for 0<j <k. O

By our choice off we have
(6.1) o(t,x) — ¢(f,R) < p(x = R) +g(t) with g(t) =7(t — ) +0(|t —])
for all (t,x) € Q(d, 4+, ).
Step 2. We provefor sufficiently small 1> 0 there is¢ € C(J_) with J =
{x; dist(x, R(x(f,-),X)) <1} such that
(i) & is faceted atk in J with R&,%) D R(e(,),x) and & = o, ) in

Rle(t, ), X);

(i) x+(€,%) = x(p(E, ), %), x-(6,%) = x- (e, ), X);
(i) o(t,x) < &(x)+g(t) for (t,x) € | x J for some neighborhood | df

This is the essential part of the proof, which shows that our choidédfin
the definition of.7, is suitable. Let f_, b,] denoteR(¢(t, ), X). On (b_,b.)
we set§ = o(t, -). We extends) on [b_ — I, b, +1] in the following way. Since

the extension ont_ — |, b_] parallels that onlj,, b, +1] we only show how
to extendg on [bs +1]. If x+(o(f, ), X) = 1, we take

& (X) = SUp{(p(t,X) - g(t), |t - f‘ < %6} for b, = x = by +1
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wherel < 4. Sincep(t, ) is continuous, is lower-semicontinuous. Singe
is upper-semicontinuous, the supremum is attained. Thus we se§ teatow
continuous inP;, b, +]. Since (6.1) holds fort(x) € [f— 35, £+36] x[b_, by],

p(t, bs) = g(t) < p(bs — %) +(f, %) = o(f, bs)
for t € [f — %5, T+ 36]. This implies thaté (b,) < o(f, bs). Since& (bs) =
o(t, by) is trivial, we have
§I (b+) = QO(f, b+)7

which yields the continuity of; atx = b,. By definition, & (x) = ¢(t,x), so that
& is a restriction onfj_, b, +1] of some faceted functiog with y.(§, X) = 1.
SinceX+(§, X) is independent of we safely writey. (&, X), which is consistent
with our original x. (if & is faceted ak}. By definition it is clear that

p(t,x) S &) +gt) on [— 36 T+36] x[b_, by +1].
Assume now thag.(o(f, ), X) = —1. For sufficiently small > 0 we have
o(t, be+1) < o(f,R) +p(x - R).

Sincey is upper-semicontinuous, there isa smalk 0 (| +o < s, 0 < I, 0 <
30) such that

p(t,x) < o, %) +p(x — X)
for x — (b +1)| < o, |t —f| < 0. We take a continuous functiof)(x) for
Ix — (bs +1)| < o such that

p(t,x) < &(X) < @, %) +px =), [x — (b +1)| < 0,

)=, R)+p(x —R) atx=bs+| +o.

If we set
)=, ) +px =% forb, <x<bi+l —o0,

then¢ is continuous in ., by +1] with x.+(&, X) = —1. Note that (6.1) holds
for
x€[b_, by+68y), [t -1 <8 sincex:(e(, ), %) =—1

This yields
et X) S LX) +g(t) forby Ex <bhi+l -0, [t -] <4
For x satisfyingh; +1 — o < x < by +1, by the choice of; we have
ot,x) < &(x) for |t -] <o

Thus (iii) holds for|t — | < o, x € [b_, b, +1]. Extending& on [b_, b_ —1]
in the same way we obtaify satisfying (i), (i), (iii) of this step.

Step 3. We proveThere is f € C3(J) N C(J_) such that
(i) fi isfaceted ak in J with R fj,X) C R(§,X);
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(i) fi=&onRf,X)andf > ¢ onJ_\R(ﬁ,)‘();

(i) x+(fi, %) = x+(8, %), x-(fi,%) = x-(&,%);
(iv) dist (R(f,,%), IR, %)) < 1.

It is not difficult to choose such ap if C3(J) is replaced byC?(J). Indeed,
we have the next approximation lemma.

6.15. Lemma.Let¢ € C(J) be faceted ak in J whereJ is an open interval.
For each I > O there is f € C?(J) such that

(i) fisfaceted ak inJ with R(f, %) C R(¢, X);

(i) f=¢onRf,X)andf>¢ onj\R(f,f();

(i) x+(f,%)=x£(£X);

(iv) dist(R(f,X), OR(,x)) = I;

(v) f<e+1"inJd;

(Vi) R(f,X)=R(,X)if x(&,%X)=—1

To prove Step 3 we apply this lemma with=1, £ = &, where¢ is continuously
extended in some neighborhoddof J and we denoté by f,. Sincef, € C2(J)
is faceted a there is a neighborhoad, of R( fi, X) such thatfi|;, € C3(J,)
with f/(x) € P for x € BL\R(fi, X). We take a neighborhood' of R( fi,X) in
J, and apply Lemma 6.12 withy = fi and obtainf e CF?(J), which we denote
by f,. Sincef, =f, in J’ andf, > f, in J, ourf, satisfies all properties (i)—(iv) of
this step.

Step 4. By Step 2 we observe that

o(t,X) S i) +g(t), (t,x) el xJ.

We extendi (t, x) = fi(x) + g(t) outsidel x J so thatyy € C(Q) andp <

in Q. This is possible since is upper-semicontinuous (cf. Lemma 6.18). Since
fi € CPZ(J), we havey | x3 € Ap(l x J), so thatyy is locally admissible near
(f,%) in Q. Sinceyy (f,R) = (t, %) andp < ¢ and sincep is a test function of

u at {, %), we have

max(u” — ) = (U” — ), %).
Sinceu is a subsolution of (E) in the local sense,
(6.2) g @O +F(@E '), Aw(fi, X)) = 0.
Note that by Steps 2 and ¥( fi,X) = x(¢(, ), X) and

|L( f|7)z) - L(Qp(ﬂ ')7 )z)|
< JLCRLR) = L&, R)| + L&, R) — Lo, ), R)|
<21+2 =4l.

This implies that
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asl — 0 sincef/(X) = p. By the continuity (F1) o we send — 0 in (6.2) to
get
T+ F(fv P, AW(SD(fv ')7 )’i)) g 0

sinceg’(f) = 7. We have thus proved (i) i§6.6 for Case 1.

Case 2There is(r, p, X) € 77" p(t, %) with p ¢ P. By definition of °* there is
a modulusw such that

p(t,x) — (f, %) < 7(t — 1) +p(x — %) + 3X(x — X)?
+w(t =+ x =x[3)(t = E|+[x = %) inQ.
The last term is dominated by

20t — Tt =] if |t -] = |x — &2,
20(2x — XP)x — &2 if [t —F] < [x — K2

so that
w(t =+ x = KA)(t = +[x —x[?)
< w[t = It — [ +wallx — XP)Ix — %[>

with another modulusu1(p) = 2w(2p), wa(p) = 2w(2p?). By Lemma 6.14 there
arefy € C10,00), 62 € C?[0,00) such thatd;(0) = 05(0) = 0, 62(0) = 64(0) =
65(0) = 0 and that

wi((t =)t — ] = 6a(t ),
wa(]x = R|x = K[ < Ox(|x — R|).
We have thus observed that
o(t,x) — o, %) < 7(t — ) + p(x — X) + X (x — X)?
+01()t — ) +02(x — X|) in Q.
We then set
f(x) = o, %) + p(x — R) + IX(x — X)? + (% — X|),
g(t) =7t =D+ 0t 1)), ¥(t,x) =1 (x) +g(t)
so thatf € C?(R), ¢ € CY(R) and
e, %) =y(.%), ¢<v InQ.

This yields
mQa><(U* ) = U =P, R),

sincey is a test function ofi at (f,X). By definition off andg, we have

T=g®, p=t'®)¢P, X=1"(X).



164 M.-H. Giga & Y. Giga

Sincep ¢ P, f € C%[R) andg € C(R), it follows thatv is locally admissible
near {,X) in Q. Sinceu is a subsolution of (E) in the local sense, we have

T+F( p, W/ (p)X) <0,

which proves (ii) in§6.6 for Case 2.

Case 3.¢(f,-) is P-faceted atk in Q but X € OR(¢(f,-), X). In this casey is
locally admissible neart(X) in Q by (C) of §6.5. Sinceu is a subsolution of
(E) in the local sense, it is clear that (iii) 6.6 holds. The proof of Theorem
6.9 is now complete. O

6.16. RemarkWe do not use degenerate ellipticity (F2) and (F3) in proving
Theorems 6.8 and 6.9. We are forced to use an approximation argument, so the
continuity (F1) is invoked. In Theorem 6.8 we do not need even (F1); all we
need is that be a function from [0T) x R x R to R.

6.17. RemarkDefinition of Solutions). In Definition 6.7 for the local version,
our test functiorw) at (,X) is assumed to be i€ (Q). It turns out that we may
weaken this requirement so thatc C(Q’) is locally admissible atf(X) in Q’,
whereQ’ is some rectangular neighborhood ©f%) in Q and that

max(u” —y) = (U — ¥)(E ).

To see this, leQ be a rectangular neighborhood %) in Q” with 1|4 € Ae(Q).
It suffices to prove that there ig € C(Q) that satisfies

() ¢=vinQ,
(i) v=4¢inQ’, _
(iii) mgx(u* —) = mQa>(u* — ).

We may assume that mgxu* — ¢) = 0 andu* < ¢ near9Q’. We may also
assume that) € C(Q’) by taking Q' a little bit smaller. Our desired) is
constructed by using the next lemma.

6.18. Lemma.Let w be an upper-semicontinuous function in @ with values
in [—o0, 00). Lety € C(9Q’) satisfyw < ¢ ondQ’. Then there ig) € C(Q\Q’)
that satisfieav < ¢ in Q\Q’ and« = ¢ on 9Q’.

Proof. As in the proof of Lemma 6.11, we takkandd and definel” = J(r)

andl" = 1(r) so thatl® x J° = Q" and thatU, ol " = (0, T), U;»od" = Q. We
set

h(r) = max{w(t, x), (t,x) € Q\Q’, (t,x) 1" xJ'}.

Sincel " x J" is compact andv is upper-semicontinuous withh < oo on Q, we
see that is upper-semicontinuous in [60). Sinceh is nondecreasing, there is
a continuous functiom = h with h(0) = h(0). We then set

Yo(t,x) = h(max@(x), d(t)) for (t,x) € Q\Q',
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so thatw = 1 in Q\Q'. Since supy, w < 1, we modify)o neardQ’ to obtain
1 satisfyingy 2 w in Q\Q’ andy = on9Q’. O

From Remark 6.17 (with Theorem 6.8) it easily follows that a restriction of
a subsolution is a subsolution.

6.19. Proposition(Restrictions)Let u be a subsolutiofsupersolutioh of (E) in
Q. Let Q) = lp x Jp be an open rectangular set ingQThen ug, is a subsolution
(supersolutioh of (E) in Qo.

6.20. Proposition.Let {Q; }2; be a sequence of rectangular domains exhaust-
ing Q, i.e., Q C Qr+1 and U2, Qr = Q. For a function u on Q, assume that
u is a subsolution(supersolutioh of (E) on each Q. Then u is a subsolution
(supersolutiohin Q provided that ti < co(u, > —oc0) on [0, T) x Q.

The last statement trivially follows from the definition of a subsolutio§an

7. Proof of Comparison Theorems

The basic strategy is in finding suitable test functionsuand v to obtain
a contradiction by assuming that the conclusioh < v, were false. We use
the method developed in [CGG] and [Go]. However, for exampley &nd v
are faceted at the points in which we are interested, the standard maximum
principle [CIL] does not apply. We apply our maximum principle to overcome
this difficulty. Unfortunatelyu andv are not necessarily faceted, so we need to
use sup-convolution to regularize these functions. Such a regularization is used in
proving the standard maximum principle; however, the convolution is different
from the usual one.

Forz =(t,x),z' =(s,y) € Q =(0,T) x Q we set

w(z,z) =u(z) — v(Z).
We consider “barrier functions”

WC(Za Zl; 6707’}/’7/) = BE(X - y - C) + S(t7S! Ua’Y;’}/)a
B.(x) =X, S(t,50,7,7) =B, (t —5) + =L + 2L

for positive parameters,o,v,7’ and a real parametegl. The termS is very

large neat =T ors =T while B.(x —y — () is very large away frorx —y = (

if ¢ is sufficiently small, andB,(t — s) is very large away front = s if ¢ is
sufficiently small. We often write?.(z,z’) and S(t, s) instead of showing the
dependence on all positive parameters. As usual we shall analyze maximizers of

D:(2,2') =w(z,2') — ¥e(z,2').

In proving the Comparison Theorem we may assume uhand —v are upper-
semicontinuous i1Q with values inRU{—oco} by consideringy* andv, instead
of u andw. For this reason, in this section we always assume that this property
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holds foru andv. SinceQ is compact, there is a maximizez(z/) in Q x Q
of - overQ x Q, i.e.,

supd; = sup{¢(z,2);(2,2) € Q x Q} = B¢ (%, Z)).

Before going into the detail we summarize our method. We may assume that
F is continuous up to = T, andu* < v, on9,Q(= 9pQ = [0, T] x 92 x {0} x £2)
by taking T smaller than the original .

We first show thatb. takes on a positive maximum only @ x Q by taking
all parameters sufficiently small. This follows from the ordemcndv on the
parabolic boundary. The argument is standard{fer0. We state a quantitative
version for later use (cKA. Choice of Parameters).

We then classify the situations depending on the derivativé odit a maxi-
mizer of &, (cf. §B). To simplify the explanation we consider the c&se {0}.

If there is a sequencg — O such that the (spatial) derivative @f, at some
maximizer of @ does not equal zero, then the standard maximum principle
[CIL] does apply to get a contradiction. (¢fG). We must analyze the remaining
case (Case I), i.e., the derivative ¥f always equals zero at any maximizer
(te, R, &, Y¢) for small¢, which yieldsB.(%: — Y. —¢) = 0 (cf. §C). This implies
that g(¢) = sup®. is constant for smal{ (by the Constancy Lemma 7.5). From
this property we see that(fy, -) and —v(%, -) assume their local maxima & "
andyp respectively (Proposition 7.7).

In general P is not a singleton an8.(X; — Y — ¢) is not constant ag — O.
Fortunately we find soméy (close to zero) such th&/(X. — ¥, — ¢) is some
constantpy € P for ¢ close to(p, (Lemma 7.4). The local behavior af and v
should be modified as in Proposition 7.7 so extra effort is necessaryGxf.

We continue to discuss the caBe= {0}. The constancy of implies that

u(t,x) — v(s,y) — S(t,s) = u(fo, %) — v(%, Yo) — S(fo, %)

for t,s € (0,T) andx close toy, say |x —y| < 6. If u(fo, ) and v(%,-) are
faceted with slope zero with facet length %6 at Xp andyp, respectively, this
inequality witht = fy, s = & implies thaty, < 0,y, = 0, so that

Xu Xv<
A<
L, L, =

with
Xu = X(u(f()? ')a )?0)7 LU = L(U(f(), ')7 )?O)a
Xo = X(v(%,),¥0); Lv =L(v(%,), o)

Applying the infinitesimal version of the definition of solutions, we get from the
above inequality fou, v and S that

S0.8) +F (0.1 <0
u

S8 - F (%.0.124) <o

U
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where A = W/(+0) — W'(-0). Adding the last two inequalities and using the
inequality x, /Ly — x»/L, < 0 and (F2), we have

v y S AT AN
Tt Toap " (t°’°’ L, A) F <S°’°’ L, A) =0

yielding

(v +7)/T? < w(fo — %))

wherew is a modulus of continuity df (t, 0, X) in t and where uniform continuity
(F3) is invoked ifF depends ori. We fix v and+’ and lettingec — 0 so that
fo — % — 0 (Proposition 7.1). By the continuity df (up tot = T) we end up
with (v ++)/T? < 0, a contradiction (cf§F).

Unfortunately,u andv are not necessarily faceted, so we need to take sup-
convolutions with faceted functions (D). If u(to, -) assumes a local maximum
atXo, the sup-convolution®(fy, -) is faceted irR atXo, as we observed i§6. The
length of the facet may be very large. We should apply our maximum principle
in §4 to getyu/Lu — x»/Ly < 0 (cf. §E). Moreover, we should be careful about
the definition of solutions in the infinitesimal version ass

The proof whenu and v are spatially periodic is easier. We shall note the
necessary alterations at the end of this section§(dj.

A. Choice of Parameters

7.1. Proposition. Assume that u and-v are upper-semicontinuous i@ with
values inR U {—o0}. Assume that

my = supg{u(z) — v(z);z € Q} > 0.
(i) For each n§(0 < mj < my) there arevo, v; > 0 such that
supp. >my foralle >0,0 >0,7%>v>0,v%>7 >0

and|[¢| < ko(e) = 5(e(mo — my))Y/2. -
(ii) Let(z, z!) = (tc, X, &, Y¢) be a maximizer of; overQ x Q. Then,

te —s¢| S Mo)2 [xc —ye — ¢ £ Me)?
with L
M =sup{w(z,Z),(z,2') € Q x Q}

foralle > 0,0 >0, v >7v >0, v >+ > 0and( with |{| £ ko). In
particular,

im e — s/ =0, lim [x —yc| =0.
(iii) Assume that (£ v on 3,Q (= 9,Q) and that( is a bounded open interval.

Then there aresg, o9 such that(zozé) is an (interior) point of Qx Q for all
0<e<en0<0<00,0<y <, 0<y <~yand|(] £ kole).
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7.2. RemarkSincew is upper-semicontinuous, we may assume in (iii) that for
each¢ >0 _ _
w(z,Z') ¢, ze€edpQorz' €9pQ

for all [x —y| < (Meg)Y2+ko(eo), [t —S| < (Moo)¥? with z = (t,x), 2’ = (s,Y).
In what follows we assume thay > 0 with £ = 2mg, mj = mp — 3¢ and fix
€0, 00, 70,74 SO that all properties (i)—(iii) and those in Remark 7.2 hold.

Proof of Proposition 7.1. The proof is standard especially fgr= 0 cf., e.g.,
[GGIS], but we give it for completeness.

(i) For eachm, my < m < mg there is a pointg = (to, Xo) € Q satisfying
Mo 2 U(2Zo) — v(z0) = m.
By definition we see that
supde = D¢(20,20) = M — ¢2/e — Slto, to; 7,7, 7).

Take o, 75 so small that

/ o
“Jo + Yo < m mo.
-t T—-1 2

S(t07 tOn g, 70, ’V(/)) = T
If mis close tomy, saymp —m < m —my, thenkg(e)? < %dm — my). For this
choice ofm, we end up with

supde = m— 3(m—mj) — 1(m—m}) >y

for v < 70,7 < 4 provided that¢| < ko(e).

(i) Since supp; = my = 0, we see that = ¥ at (z, ). Sincew is upper-
semicontinuousy is bounded o) x Q, sayw < M. The inequalityw = ¥,
at (z,z/) yields

£ - o -
or
X = Y| S M)Y2+[¢|,  Jte —s¢| £ Mo)Y2.

SinceM is independent of all parameterso, v, and¢, this yields (ii).

(iii) We argue by contradiction. Suppose that for each § < 40,0 < 7' < 7
there were a sequencfsj, 0j)}<; with & | 0,07 | O such that there is a
maximizer

7.2) € (Q x Q\(Q x Q)

of & (-, ¢,05,7,7) over Q x Q with somegj, |G| = ko(gj). SinceQ x Q
is compact, we may assume ttmt— z_,z]-’ — Z' for some pointz,Z’ € Q by
taking a subsequence if necessary. By (ii) we observeztat’.

The condition §, Z) ¢ Q x Q implies that eitheg; € 9,Q orz’ € 9,Q since
the time component of and z]-’ cannot beT because of the presence of terms
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~v/(T —1),4' /(T — s) in the definition of,. Sincea_pQ is closed,z belongs to
0pQ. Since §,2') = (4,%,5,Y;) is a maximizer of®., (i) implies that
0 < %nb < w(tj7xj7%7yJ) - st(xj _yj - CJ) - S(tJ7§10-17’77’7/)

By the monotonic dependence on the parametars we see that the right-hand
side is dominated from above by

w(tjaxja§7yj) - BEJ‘O(Xj - y] - C]) - BO’jO(tj - %)
if j = jo. Sincew is upper-semicontinuous, sendipg- oo yields
0 < 3my < w(Z,2) = u(2) — v(2).

Sincez € 8_pQ, this contradictss < v on 8_pQ.

B. Classification

We classify the situations depending on the value of derivativé.obt a
maximizer of®,. Let g denote the maximum value g, i.e.,

9(¢) = supd; = sup(P¢(z,2); (z,7') € Q x Q}.

Let. #4(¢) denote the set of maximizers & overQ x Q, i.e.,

Q) ={(z,7)) € Q x Q;9(¢) = B¢ (z,Z')}.

Let .2 (¢) denote the set of values of derivativBs(x — y — () at a point of
(), i.e.,

Q) = {2~y — O/ei(t.%,8,Y) € 4O}

Of course, both - and.” depend ore, g,~,~" with 0 < € < &g, 0 < ¢ < 0y,
0 <y <7, 0<4 <~y ; however, we do not indicate its dependence since we
shall fix these numbers ig§B—E. We recall basic properties o and.7:

7.3. Proposition on Maximizers.(i) The set#(() is a nonempty subset of QQ

for ¢, |¢| = Fo(e).
(i) The graph of # (as a set-valued function) is compact, i.e.,

graph. ¢ ={(¢,2,2');(z,2') € . 2(C), [¢] = ro(e)}

is compact i —xo(e), xo(e)] x Q x Q.
(iii) The graph of % is compact if—xo(e), ko(€)] x R.

Proof. (i) Sincew is an upper-semicontinuous function a@ds compact, 4(¢)

is nonempty. The assertion that(¢) is contained iQ x Q has been proved in
Proposition 7.1(iv).

(if) We note thatd, is continuous ir¢. Since a supremum of a set of continuous
functions is lower-semicontinuous,is lower-semicontinuous so thét — g is
upper-semicontinuous. The set of maximizer®@et-g in X' = [—ro(e), ko(€)] x
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Q x Q equals graph-2. Sinced, — g is upper-semicontinuous of, graph. %
is compact.

(iii) Since graph #7 is interpreted as the image of graph of a linear mapping,
graph.#? should be compact.

The situation is divided into two cases.

Case |. There is; < ko(e) such that#?({) is contained irP for all ¢, || < &;.
Case Il. This is the negation of Case |, that is, there is a sequgnee0 such
that.2({j) is not contained irP.

We shall study Case | igsC—F. Our maximum principle for faceted functions
will be invoked in§E.

C. Local Behavior of u and

The next lemma is trivial ifP is a singleton.

7.4. Lemma.Consider Case |. FoB < k < k; there are(p with |(p| < k, 0 >0
with 6 + |{o] < k and p € P such that 2(¢) contains p for all ¢ such that

¢ = ol = 6,[¢] = k.
Proof. SinceP is discrete and since grapi is closed, for eaclp € P the set
Yo ={G ¢l = rp €2}
is closed in F«, k]. We know that 7(¢) is a nonempty subset &, that is,
[—r, k] = U{Yp; p € P}

SinceP is at most countable, the Baire category theorem [Y, Chapter 0] says
that Yp, contains an interior poinfp for somepg € P. O

We claim thatg(¢) — po(¢ — (o) is constant on{p — 4, (o +6). The next lemma
is general and it does not need the assumptions made so far.

7.5. Constancy Lemma.Let K be a compact set iRN and let h be a real-
valued upper-semicontinuous function on K. bete a C? function onRY with
1<d < N. Let G be a bounded domain Rf. For each¢ € G assume that
there is a maximizefr., p¢) € K of

He(r,p) =h(r, p) — o(r — Q).
over K such thaW¢(r, — ¢) = 0. Then,
hs(C) = sup{H¢(r, p); (r, p) € K}
is constant on G.

Proof. Clearly, H¢(r,, p,) < hg(C) for n € G. By definition we have

H((rna Pn) = Hn(rna pn) + ¢(rn —n) - ¢(rn -q),

which yields
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hy () = hy(C) + é(ry — ¢) — é(ry — n).
SinceV(r,, — n) = 0, this yields

1 1
o) < halQ)+ 5 [ F20(0, — 0= (¢ = m)dr(C — 1)+ (¢~ )
0
SinceG is bounded, it follows that

hs(m) — hs(¢) < Cln — ¢
with C independent of), ( € G. Changing the role of), { we end up with

Ihs(n) — (O] < Cln — (%

This implies thathy is differentiable onG, whose derivative is always zero.
SinceG is connected, this means thaj is a constant function oG. O

Remarkln Lemma 7.5 it suffices to assume thais in C? instead ofC2. Indeed,
since V¢ is uniformly continuous on every compact s&f there is a modulus
wz that satisfies

[p(X) — P(y) — VoY) - (X = Y)| = wz(Ix —y])[x — Y]

for x,y € Z. Sincer,, —n andr,, — { move in some compact set, s@y we see
that

lo(ry — Q) — oty — )| = wz(In — CNIn —Cl;
hereV¢(r, —n) = 0 is invoked. This yields, as in the proof of Lemma 7.5,

lhs () — hs(Q)] < wz(In — ¢ —¢|

which implies thath, is differentiable withVh, = 0, so thathy is constant on
G. O

We always use the same (o, pop andd as in Lemma 7.4. We apply Lemma
7.5 with
¢(r) =Bc(r) —por, G=(0—0,(+d), d=1,
h(r7p) = w(tar +y,S,y) - po(r - CO) - S(ta S)v
p=(tsy), N=4
K={(rp) (t,5) €[0,TIx [0,T], r=x-y,(xy)€QxQ}
to get the constancy df;(¢) = g(¢) — po(¢ — <o)-
7.6. Proposition. The functiong(¢) = ¢(¢) — po(¢ — (o) is constant on G=
(Co — 9, G0 +9).
This gives information on the local behavior of near a maximizer of,.
7.7. Proposition. Let (2,2') = (f,X,8,9) be a maximizer ofp,, i.e., (2,2') €
.4((o) with the property that p=2(X — § — (o)/e. Let b and vy denote

Uo(t, X) = U(t, X) — PoX, vo(S,Y) = v(S,Y) = Poly + Co)-
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Then y(t, -) and —vo(3, -) take their local maxima at andy respectively. More
precisely,
Uo(f,x) S wp(t,%) forall x, |x—K| <d,xe€Q,

vo(8,y) = vo(8,9) forally, |y—9|<dyecqQ.

Proof. Step 1. We proveFor wq(z,z’) = ug(t, X) — vo(Y, S), let E denote
E(z,Z") = wo(z,2') — S(t, s),
where S is the same as in the definitionZpf Let E be
B =supE(2); z=(tX)€Q, Z=(Yy)eQ, (xy)e s}

with X5 = {(X,y) € Q@ x Q; [Xx —y — (o — Go| < 8} with gp =X — § — (o. Then
E1=9(2,2') — af/e (FE(2,2").

We first observe that
P(2,2") =wo(z,2) = B-(X =y — ) +po(X =y — (o) — St 5)-
For ¢, |¢ — Co| < ¢ recalling thatpy = B.(tp) = 2(X — Y — ¢)/e (independent of
¢) with some {¢, X¢, S¢, Y¢) € -4(C) we rearrange
eB:(X —y — () — epo(X — Yy — (o)
= (X =y —)?—epo(x — Y — ) — ePo(¢ — Co)
=(X—y—C¢— (=Y — Q)
—(% = Y¢ = €)% = 20 — Y¢ — Q)¢ — o)
= (X —y — ¢ —a)° — 95 — 200(¢ — <o)
to obtain
D¢(z,2') = wo(z,2') — B.(x —y — ¢ — qo) — S(t,S) + 5/ +po(¢ — Co)-
Since Proposition 7.6 implies tha{() = g(¢)—po({—<o) is constant for¢ —(o| <
9,
P¢o(2,2") = §(Co) = sup{g(<); ¢ — Co| < 0}
= sup{®¢(2,2) — po(¢ — Co); (2,2) € Q x Q,[¢ — Go| < 6}
= . scu‘p 6sup{¢<(t,x,s, y) — Po(¢ — Co);
—Gol< _ _
X_y_qOZCa (t,X,S,y)EQXQ}.
If X —y —qo=¢, then

D (z,2') — po(¢ — Co) = wo(z,2') — B-(0) — S(t,s) +0f/e
=E(z,2') + g3 /e.

We thus obtain
B,(2,2') Z E1 +qf/e.
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SincexX — ¥ — dp = (o, we see as above that
b,(2,2') =E(2,2) + df/e,
which proves the last equality in Step 1. Singe{()" € X5, the converse inequal-
ity
D (2,2') SE1+0f/e
holds. The proof of Step 1 is now complete.
Step 2. From Step 1 it follows that
wo(f, x,8,y) — S({,8) = wo(f, %,8,9) — S(,8) =E(2,2)

for (x,y) € Xs. Settingy =y or x = X respectively yields

uo(t,x) < wp(t, %) for |x — k| <6,

vo(8,y) Z wo(8,9) for |y —y| <6
7.8. RemarklIf P consists of only the zero point, Lemma 7.4 is trivial with
(o=0, 6 =x andpy = 0. In this casey = %epo =0,Up = u, andvg = v so that

the proof of Proposition 7.7 is simplified. To understand the main idea of the
proof of the Comparison Theorem it is a good idea to consider this special case.

7.9. Corollary to Proposition 7.7.
Uo(t, X) — vo(S,y) — S(t, ) = Uo(f, X) — vo(8,9) — S(t. 9)
for all (x,y) € X5,t,s € [0, T], where
T ={y) €QxQ x—y - & -9 <6},

v v (t—9)?
S(t.s) = + + .
(t.s) T-t T-s o

This follows immediately from Step 1 of the proof of Proposition 7.7.

7.10. Proposition on the Behavior Away from a Local Maximum.Let(Z,2’) =
(f,%,8,9), up andvg be the same as in Proposition 7.7. K&t (a, b). Then, there
is X € (X,by) ory; € (¥, by) such that

UO(fv Xl) < UO(fv )?) or UO(ga yl) > UO(éa 9)

withnp = X — ¥, by = min(, b +n), b, = min(b, b — n). The same assertion
is valid if (X, by) and (¥, b,) are replaced bya;, X) and (az, ¥), respectively, with
a1 = max@, a+n), a = max@, a —n).

Proof. Here Remark 7.2 is explicitly invoked. We may assume that X.
Suppose that the first assertion were false. Then

Uo(t,x) = up(t,%) forall x with X < x < b+,
v0(8,y) < w(R,9) forally withy <y <b.
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Sinceup and —vg are upper-semicontinuous @1
Uo(f, b — 1) = Uo(f, %),  vo(8,b) < o8, ).
Sincedo =X — ¥ — Co,
Uo(t, b — 1) — vo(8,b) = u(t, b —n) — po(b — 1) — v(5,b) + po(b + ¢o)
=u(f,b — ) — v(8,b) + po(y — & + (o)
=u(,b —n) — v(&,b) — dd/e.
By Remark 7.2 and Proposition 7.1(ii) this yields
Uo(E, %) — v0(8,9) < Uo(f, b — 1) — vo(8,b) < € — 0 /e = mo/4 — g5 /e.

Since &, (f, %,8,9) = mp — %m) by Proposition 7.1(i), Step 1 of the proof of
Proposition 7.7 yields
T %

Mo

Uo(f, %) — vo(8,9) > E(£.%,8,9) 2 3 .

We thus obtain a contradiction:

Mo
4
The proof of the second assertion is the same, and so is omitted.

2 2
=~ > o, 8) - 06 9) > Lo P,
5 8 5

D. Preparation for Applying the Maximum Principle

We fix k in Lemma 7.4, say: = ;. Key properties oflp andvg are summa-
rized in Proposition 7.7, Corollary 7.9 and Proposition 7.10.

7.11. Applications of sup-convolutionSinceup andvg in Proposition 7.7 may
not be continuous, we regularize them by taking sup-convolutions introduced in
§5. Forp = 0 andX > 0, let9(x, p, \) denote

(X - p)z/)‘v X>p,
19(X7p7)\): 0? |X|§p7

(xX+p)?/\, X< —p.
If p=X (> 0), we simply write it ag)(x, p). We consider sup-convolutions of
and —vg by 9. Fora > 0 letug* by the sup-convolution afip in the x-direction,
ie.,

Ug'(t, %) = (Uo(t, -))* = sup{Uo(t,n) — ¥(n — X, a);n € R},

where we use the convention thgt= —oo if 7 is outsidef2. The inf-convolution

of v is defined byuvgg = —(—wo)? for 3 > 0. Both functionsug', vos are defined
on [0, T] x R.

7.12. Proposition.Let (t, %, §,¥), ug and v be as in Proposition 7.7. Then there
is ag > 0 such that for0 < o < ag
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(i) ug(t, ) and v, (3, -) are respectively faceted &tandy in R with slope zero,
and (5 (t, X) = Uo(t, X), voa(5,Y) = vo(8.Y),
(i) the pointsk andy respectively belong to the interior of the faceted region
R(U(?(t; ')a )2) and F{’an(é, ')7 9)!
iy o e

y e {R(Ug(t, ')7 X) - 77} N R(UOQ(Sv )7y) C Qa

% € RUg(®,),¥) N {Rwoa(8,),9) +n} € Q withn =% —§.

Proof. By Lemma 5.1, convolutioru§ is locally Lipschitz continuous in the
space variable. Sincay(f,-) assumes its local maximum &t By Theorem 5.3
on convolution with faceted functions (, -) is faceted ak in R for small «
and ug(f, ) is constantug(f,X) aroundx from a fundamental property of our
sup-convolutions; note that and —vg are bounded from above. This proves (i)
and (ii) for ug’. The proof forug, is the same by takingo smaller if necessary.

It remains to prove (iii). Here we use Proposition 7.10. We again recall a
fundamental property for sup-convolution; if there isane (X,b;) such that
Uo(t, x1) < uo(t, X), then

supR(ug (t, ), %) < by

for sufficiently smalla: (provided thatug(f, -) is upper-semicontinuous which is
fulfilled in our setting). Thus Proposition 7.10 implies the desired inclusion by
taking smallerqy if necessary. O

In Corollary 7.9 we have
U()(t, X) - UO(Sa y) - S(t7 S) § UO(fv )’z) - UO(év y) - S(f7 §)

for all (x,y) € X5, t,s € [0, T]. We shall derive a similar inequality farg and
voo- We introduce a barrier fojx —y — (X — §)| > J so that the region where
the inequality is valid contains a¥,y € R.

7.13. Proposition.Let 9 be as in§7.11. Let({, X, 8,¥), up and v be as in Propo-
sition 7.7.

() uo(t,x) = vo(s,y) = S(t,s) = d(x —y — 7, A) = to(t, X) — vo(8,9) — S(, §)
for all (t,s), (s,y) € Q x Q provided that\ > 0 is sufficiently small, i.e) < Ag
for some\g > 0, wheren =X — .

(ii) Let ag be as in Proposition 7.12. Then
Ug'(t, X) — v0a (S, Y) = U (£, %) — v0u(3,9) + (X —y — 1, 3A0)
+3(t,s) — S(t, 9)
for all (t,x),(s,y) € [0,T] x R provided that0 < a < «; = min(ao, Ao).
Proof. (i) Let
Er=supE(t,x,s,Y); (£,X) €Q, (5,Y) €Q, (x,¥) € Ts},
B> =sup{E(t,x,s,y); (1,X) €Q, (s,¥) €Q, (X,y) ¢ =5}
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with E = Ug(t, X) —vo(S, Y) — S(t, s) and X5 = {(X,y) € QxQ; [x—y — (X —9)| <
§}. Step 1 of Proposition 7.7 yieldS;, = ug(t, R) — v0(8, ¥) — S(, 8). If Ex < Ey,
the inequality in (i) is trivial since} = 0. If E; > E;, we take) satisfying

19((5, /\0) =E, — E;.

Sinced(x —y —n, Ag) = ¥(d, Ao) for (x,y) € X5 and sinced is monatone in),
the proof of (i) is complete.

(i) From (i) it follows that

Uo(t, X) — (X — X, a) — (vo(s, §) + Iy — ¥, )
< uo(f, %) — vo(8,9)

+I(X —§ —n, ) — X =K, a) =y —¥,0)

+3(t,s) — S(t, 9).
Sinceuy = —vg = +oo outsidel?, taking the supremum of both sides farf e R
we get

Ug'(t, X) — voa (S, Y) = Uo(f, %) — v0(5,9)
+9(X —y — 1, Ao — 2a) + S(t,s) — S(i, 8)

for all (t,x),(s,y) € [0, T] x R. Here we have invoked the composition rule for
sup-convolution (Lemma 5.5 (ii)):

Sup{ 19()(—y—ﬁy)\O)—ﬁ(X—iya)—ﬁ(y—%a);x»y € R}
=9(X —y —n, Ao — 20).

Sinceug (t, R) = uo(f, X) andvo, (8, ¥) = vo(8,¥) by Proposition 7.12(i) and since
Ao — 2a < 3o for o < ay, the proof of (ii) is now complete.

E. Application of the Maximum Principle

The functionug® + pox is essentially an admissible superfunction (of the in-
finitesimal version defined if§ 6.5) at €, %) € Q except that the faceted region
R(us(t, ), %) may contain the boundary point ¢t. We apply the Maximum
Principle of Time Direction 4.5 and its Corollary 4.6 to Proposition 7.13 to get
useful admissible superfunctions.

Here we use the notatidN ~* for a semineighborhood defined §6.3.

7.14. Proposition.Let (t, %, §,¥), up andvg be as in Proposition 7.7. There are a
(real-valued upper-semicontinuous functianand a lower-semicontinuous func-
tion v defined in Q such that
(i) u(t,-) € C(),v(s,-) € C() for each ts € (0,T); u(f,-) andwv(8, ) are
faceted atk andy, respectively, with slope zero &y u§ < u andwvg, = v
in Q; u(t, %) = ug(t, %) andv(8,9) = vou (5, 9).
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(i) R(U(, ), %) = Rug(, ), %) N {R(voa (8, ), 9) +n},
R, ). 9) = {Rug(E, ), %) — n} NR@oa(5, ). 9),

so that (u(f, -),8) = L8, ), V), wheren =X — §.
(i) x((t, ), %)+ x(-v(5,-),9) = 0.
(iv) For someN ~1(u(f, -), %) the inequality

u(t,x) — u(t,x) < S(t,8) — S(t, 9)

holds for all (t,x) € (0,T) x N-(u(f,-),R); for someN~1((-2)(8,),¥) the
inequality

u(s,y) —v(5,9) = S(t,8) - S(t.s)

holds for all(s,y) € (0, T) x N=1(—v(8, -), ). Here« is chosen so that < aj,
whereq; is as in Proposition 7.13.

Proof. We apply Corollary 4.6 of the Maximum Principle to Propositions 7.12
and 7.13 so that we find the desirecandv. Hereug', and —ug, correspond to
u;, andu, of Corollary 4.6, respectively. Note that Proposition 7.12(iii) plays an
important role in applying Corollary 4.6.

7.15. Proposition.Let

u (t,X) = J(t,X) + PoX, V(S7 y) = ’Q(Sa y) + pO(y + CO) for (t,X), (Sa y) € Q

Then U is an admissible superfunction @tX) in Q, and V is an admissible
subfunction atf, %) in Q. Moreover, Uf, -) is faceted ak < int R(U (f, -), k) and
FHU(E,%) 5 S(E,8); V (3, ) is faceted ag € intR(V (8, -),§) and. 7~V (5,9) >
—S(t, 8), where.z* and.75 ~ are as in§6.4.

Proof. We only prove that) is an admissible superfunction since the statement
for V can be proved similarly. By Proposition 7.14()is upper-semicontinuous
in Q andU (t,-) € C(f) for eacht < (0, T). Moreover,U (i, -) is P-faceted a”
in © with slopepy. Sincex andy’ are respectively interior points &(ug'(t, -), R)
andR(vo. (8, -), ¥) by Proposition 7.12(ii), we see, by Proposition 7.14(ii) tkat ~
andy are resepectively interior points &U (£, -), %) andR(V (8, ), ¥).

It remains to prove thatg *U (t, X) containsS (i, §) as an element. Since

S(t,8) — S(t,8) = S(E,9)(t — 1) +w(|t — It
for all t € R with some modulusy, Proposition 7.14(iv) yields
U(t,x) — U (%) = pox — %) + S, 8)(t — ) +w(t — TPt

for (t,x) € (0,T) x N~1(U (£, ), %). This implies thats (f, ) € . Z*U (f, %).
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F. Completion of the Proof for Case |

By definition of sub- and supersolution$ and—wv, are upper-semicontinuous
in [0, T) x Q with values inR U {—oc}. To prove our Comparison Theorem, it
suffices to prove that the restrictions of and v, to [0,T’) x Q (denoted by
u’ andv’ respectively) satisfy’ < o' on [0, T’) x Q for eachT’ > 0. Clearly
) — (@)« S u* —wv, 0n[0T] x €, so thatu* < v, on d,Q implies that
(u)* = (v'). on

Q' = 8,Q" =[0,T'] x 92U {0} x Q.

By replacingT’ by T, u’ by u, andv’ by v, we may assume that < v on a_pQ
and thatu and —v are upper-semicontinuous @ with values inR U {—oc}. If
F depends ort, by replacingT’ by T we may assume that

(F3) F is uniformly continuous on [0T] x [-K,K] x R for eachK > 0.

Suppose that the conclusion of the theorem were false. We may assume that
my satisfies the assumption of Proposition 7.1. Wesfixoo, Y0, 74 as in Remark
7.2 and assume that@ ¢ < g9, 0 < 0 < gg, 0 < v <, 0 <~ <.
SinceQ is compact andi and —v are upper-semicontinuous, there is always a
maximizer €, x¢, ¢, y¢) of @ overQ x Q in Proposition 7.1.

If we assume Case |, we end up with Propositions 7.12—7.15d&hd(, be
as in Lemma 7.4. Lei(%, §,¥) be a maximizer ofb;, with pp = 2(Xx —§ — (o) /e.
Let U be as in Proposition 7.15. Then

maxu — U) = maxug — u) < maxug — us
Q><( ) Q>‘(0 u) < Q>(o o)

sinceu$ < U by Proposition 7.14(j). Note that$'(t, X) = uo(t, X) by Proposition
7.12(i) and thaty < u§' by the definition of sup-convolution. We thus observe
that

mQa>(u —-uU)=0.

Similarly, one can prove
ng?in(v -V)=0.

SinceU is an admissible superfunction dt ) in Q and sinceu is a sub-
solution we have, by the definition of the infinitesimal version 6.6, and Theorems
6.8 and 6.9, A A

S(t,8) +F(t,po, Axu/Lu) =0
with xy = x(U({,).X),Luy = L(U({,-),%) and A = W'(po + 0) — W’(po — 0).
Similarly,
—S(t,8) +F (8, po, Axv/Lv) 2 0.
with xyv = x(V(5,:),9),Lv = L(V(5,-),¥). Subtracting the second inequality
from the first yields

/

Tt e tF P A /L) - FE.po A /Ly) S0
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By Proposition 7.14(ii), (iii) we see that

Xu = X(J(f7 ')7 )2) § —X(—p(§, ')a y) = X(y(§7 )79) =XV,
Ly = L(u(, ), %) =L@, ), 9) = Ly,

which yield
XU < XV
Ly = Ly’
By the monotonicity (F2) o we now obtain

gl v . Xu s Xu
7.1 ~ + +F A= | —-F A=) <0.
D) Tt T ez (Lm,LU> (&m7lﬂ>_0
This yields
+~/ A .

T2 St - 8o,
wherew(t; ¢) is @ modulus of continuity oF (t, p, X) for |p| £ K andX € R
with K = 2M1/2/£1/2 provided thatp| < K;; the existence of such a modulus
is guaranteed by (FB Indeed, since Proposition 7.1(ii) implies that

BL(x — Y — Q)| = [20¢ — Ve — ¢)/e] £ 2MY2/eM2 =K for ¢, [¢] £ kole),

we have|py| £ K. Note thatK depends only orz and is independent of pa-
rameterso, v,~'. Thusw; depends only om and is independent of parameters
o,v,~'. By Proposition 7.1(ii) we have

v+ c A :
=5 S wi(f - 8fe) S wi((Mo)V% )
for all e,0,7,7 with 0 < ¢ < €0,0 < 0 < 00,0 < v < 70,0 < v < 7}
provided that Case | holds. As shown in Section G, a similar inequality (7.3)
holds for Case Il with moduluss,(-, €) independent of, ~,~’. In both cases if
o is taken so small that

y+y

T2 7’
then we get a contradiction. K is independent of, (7.1) immediately yields a
contradiction: ¢ +~’)/T? < 0 without using (F3.

wi(Mo)Y?) < i=12,

G. Case ll

We use the same choice of parameterg, v’ ando as in§F. The proof for
Case Il is standard so we just outline it. By the assumption of Case Il there is
¢ — 0 such thatly = 25 —y; —¢j)/e does not belong t& for some maximizer
t,%,s,Y;) of &;. We apply the maximum principle for semicontinuous func-
tions [CIL] and observe that for eagh> 0 there are X 2 symmetric matrices
X andY such that
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(B, Uy, X) € I3 u(t, ),

(s, By, —Y) € " (). W),

1 X 0 2
<+A>I§ S A+ pA
n 0 -Y

with A = D&, (t,%,5,Y;) i.e., the Hessian o, where|A| is the operator
norm of A as a self-adjoint operator ardis a 4x 4 matrix; ¥ and¥, are the
derivatives of¥; with respect tad andy at (j, %, 5,Y;), respectively. Here!é"+
denotes the set of second-order superjets.%l*d is the ‘closure’ in the sense
of semijets; see [CIL] for definitions. It is not difficult [OKS] to derive from the
first two inclusions that

+

(@h@XaXZZ) € ’ u(tj7xj)7

7
s 2 p—
(_!p&_![’yyYZZ) S 'J/()g U(%?yj)
where 7"* denotes the parabolic version 8§~; 2" is defined in§6.6.
Here Xy, andY,, denote the (2, 2)-components ¥fandY respectively. By a
standard argument, our matrix inequality yiels < Yao.

Since ¥, = —V¥, does not belong td® and sinceu and v are sub- and
supersolutions (by Definition 6.6 and Theorems 6.8 and 6.9), we have

By + F (4, U, W (F)X22) < 0,
_@S + F(% ) _@Ya W”(_@y)YZZ) 2 07

whereX;, andY,; are the (22)-components oK andY . Subtracting the second
from the first of these inequalities yields
B ’Y, 7 1"\
+ + F (1, Uy, W ()X

— F(s, ¥, W (@) X22) £ 0

if we useXz < Yoo, (F2) andy, = —f/y. Since Proposition 7.1(ii) yields that
|| is bounded byK in §F, as in§ F this inequality yields

/

7.3 1L < ally — i) € calMo) V%)

with some modulusy; for all €,0,v,7" with 0 < e < g9, 0 < 0 < 09, 0 <

v < 7, 0 <" < 4, provided that Case Il holds. This is what we would like
to prove. (We did not sen¢g — O; the existence of ong is enough to get a
contradiction.) Note that (7.2) immediately yields a contradictiphy’)/T? < 0

if F is independent of; we do not invoke (F3. We have thus proved our
Comparison Theorem.
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H. Periodic Case, Proof of Theorem 3.2

The method of the proof is essentially the same. Sincend v are w-
periodic in space, we observe that any maximizerx;, s¢,y.) of @, satisfies
IXc — Ye| £ w; we may always assume its existence and that &, < w,
0 =y < w. The conclusion of Proposition 7.1 and Remark 7.2 are still valid
for such maximizers wherg is replaced byR. To define. 4(¢) we replace)
by R. Although graph- is only closed, graph? is still compact as claimed in
Proposition 7.3 since & x.,y. < w. The argument ir§§7.4-7.9 is still valid
if Q is replaced byR. Propositions 7.10 and 7.12(iii) should be altered because
there is no boundary dR. If P does not contain zero so thg + 0, then the
faceted regionR(us (f, -), X) and R(vo.(8, -),¥) have length less thaw since
ug + pox andwg, + Po(y + (o) are periodic in the space variable. We apply the
maximum principle as in Proposition 7.14. Actually, we have Proposition 7.14
with Q replaced by

V=R-@K+m)U({ - =,§+w),

since Proposition 7.13 does not apply to our setting With R; the rest of the
proof is the same as igRE-G.

It remains to discuss the case tiRcontains zero. I1fjo 0 in Lemma 7.4,
then we argue in the same way. g§ = 0, then eitheiL(u$'(f,),X) < @ or
R(ug'(t, -),%) = R and the same holds far, (3, -). Unless both

R(us(E, ), %) =R andR(v, (§,°),¥) =R

hold, Proposition 7.14 still applies witf replaced by)’. We thus assume that
both us(f, -) and v, (8, ) are constant functions. For each ladgee consider
a nonnegative continuous functidnsuch thatf (x) = 0 if and only if |x| <
%I. We setu(t,x) = ug(t,x) +f(x — X),v(s,y) = vou(s,y) — f(y — ¥) and
observe that properties (i), (iv) of Proposition 7.14 (with= R) hold; note that
sincex(u(f, -),%) > 0 andx(—v(8,-),¥) > 0, it follows that (iii) is violated but
N-1(u(, ), %) = R(@(, -), %) andN ~L(—v(8, ), 9) = R@(3, -),¥) so (iv) trivially
follows from Proposition 7.13. We also note tHau(f, -), ) = L©(8,-),¥) = I.
We may apply Proposition 7.15 witd = u andV =v. As in §F we end up with

/

g g I ~
— + +F(t,0, Ayy/Ly) —F Axv/Ly) £
(T_t)z (T—é)z ( aoa XU/ U) (5307 XV/ V)fo
which yields
Y < a2/l +[T—8) for large
T2 =Wws g
sinceLy =Ly =1. Herews is a modulus of continuity oF (t, 0, X) on [0, T] x

[—1, 1]; here we do not invoke (FB Sendingl — oo yields

Ty s
7 = wa([t — §)),

which again leads to a contradiction asgin.
Our argument shows at least formally that the weighted curvature

Aw(ug(, ), %) =0 if L@, ), R) = oc.
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8. Perron-Type Existence Theorem

We give the proof of the Perron-type Existence Theorem 3.3 and Theorem
3.4 for periodic functions. Lef2 be an open (possibly unbounded) interval and
Q=(0,T) x Q.

8.1. Lemma. Assume that condition@1) and (F2) hold. Let S be a nonempty
family of subsolutions dfE). Let u be a function defined on Q by

u(t,x) = sup{v(t,x);v € S} for (t,x) € Q.
Suppose thatu< oo in [0, T) x Q. Then u is a subsolution ¢E).

8.17. Lemma. Assume that conditiond1) and (F2) hold. Let S be a nonempty
family of supersolutions dE). Let u be a function defined on Q by

u(t,x) =inf{o(t,x);v € S} for (t,x) € Q.
Suppose that,u> —oco in [0, T) x Q.Thenuis a supersolution ).

8.2. Lemma. Assume that conditiond1) and (F2) hold. Let h: Q — R be a
supersolution ofE). Let S be the collection of all subsolutionsf (E) withv < h
in Q. If v € S is not a supersolution of (E) and > —oco in [0, T) x ©, then
there are a functionv € S and a poin{s, y) € Q such that(s,y) < w(s,y).

Theorem 3.3 follows from these two lemmas as in [I]. We give its proof for
completeness.

Proof of Perron-Type Existence Theorems 3.3 and 3.4 under the Assumption
That Lemmas 8.1 and 8.2 HoldLet S be {v; v is a subsolution of (E) and <
u*in Q}. Sinceu™ € S, we see thaS £ (). Letu : Q — R be defined by

u(t,x) = sup{v(t,x); v € S}  for (t,x) € Q.

By definition,u* < (U*)* < 00 in [0, T) x Q. By Lemma 8.1y is a subsolution
of (E), so thatu € S. Sinceu™ € S, we haveu™ < u £ u" in Q and
—00< (U ) Zu in[0,T) x Q.

Suppose thati were not a supersolution of (E). By Lemma 8.2 there would
existw € S and §,y) € Q such thatu(s,y) < w(s,y). This contradicts the
definition ofu. Thereforeu is a generalized solution of (E).

Suppose thati were notw -periodic inX. Then there would exist a point
(to,X%0) € (0,T) x R andv € {—1,1} that satisfy

U(to, Xo) < U(to, Xo + ve).
We observe that
v(t,x) = u(t,X + vw)
belongs taS. Indeed, since (E) is invariant under translatiorxjr is a subsolu-
tion of (E) in (0, T) x R. The functionu® is @ -periodic, sov < u*in (0, T) x R,

which yieldsv € S. By the definition ofu, the propertyv € S implies that
u = v. This contradicts
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U(to, X0) < v(to, Xo) = U(to, Xo + ).
We thus conclude is w-periodic inx. O

To prove Lemmas 8.1 and 8.2, we extend the method found in [I] to faceted
functions. The basic strategy is to utilize the advantage of our definitig®Zof
functions. We have arranged that the weighted curvature 6§ dunction at
the boundary of a faceted regi@guals that at an interior point of the faceted
region. Moreover, we have arranged that the weighted curvatur€gffanction
at pointyx outside the faceted region tends to zero, if the pgintends to a
point y of the boundary of the faceted region las— +oo, since the function
is C2. These properties will be invoked to estimate the weighted curvature of
a modification of a test function, which we call an upper or a lower canonical
modification as defined below.

8.3. Notation of An Upper and a Lower Canonical Modificatikvet 2; be an
open interval withQ; C Q. Letf € C(Q) satisfyf|o, € C2(21) andf’(R) =0
with X € Q1. Letags = sup{p € PU{—o0}; p < 0} andq, = inf{p € PU{+o0};
p > 0}.

Case(i) (0 P). Set
¥ x) =f(x)+ (x —X)* for x € Q.
There exists an open interv@, C Q; containingX such that

(8.1) Top < (f%)(x) < 3qp for all x € Q.

Case(ii) (Oc P). We see that is P-faceted a’in ;. We denote = (a_, a.)
andR( f,X) = [c_,c,]. There exists an open interv&l, = (b_,b,) such that
R(f,X) c Q, Cc Q7 and
f/(x) € (301,0)N (0, 3p) for all x € Q\R(f,R),
by S cu+ (f5)Y3 b Zc — (—fsq)¥>

If x+(f,X) =1, then we set

o [f® for x € [&, 4],
f (X) - {f(X) + (X — C+)4 for x € (C+’ a+)

If x_(f,X)=1, then we set

00 = {:(f() ) for x € [c_, %),
X)+(x—c_)* forxe(a_,c).

If x+(f,X)=—1, then fore € (0, o) we set
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f(X) for x € [X,Cs +£],
fhex) =4 f(x —¢) for x € (c+ +¢,b;),
fx)+{f(by —e) —f(bs)} for x € (bs,as).

If x_(f,X)=-1, then fore € (0, 0) we set

f(X) for x € [c_ —¢,%),
fhex) =< f(x +¢) forx € (b_,c_ — &),
fx)+{f(b_+e) —f(b_)} forxe(a_,b_].

whereeg = 3 dist(92, R( f, X)). Here we note that (8.1) holds.

We often suppress thedependence df*<, even if it depends on. We call
f# an upper canonical modification of f &t with canonical neighborhoo,.
Let —f; be an upper canonical modification eff at X with canonical neigh-
borhood,; we call fy a lower canonical modification of f & with canonical
neighborhood,.

8.4. Proposition. Let 2 and 2; be open intervals witlf2; C Q. Let f € C(1)
satisfy flo, € C2(Q1) and f/(X) = 0 with & € ;. Suppose that is an upper
canonical modificationf (= f#<) or a lower canonical modification:f(= f. .) at
X with canonical neighborhoof?, C ;. Set

1 if fisan upper canonical modification,
s= ~
—1 if f is a lower canonical modification,

©2) M o {%} if 0P,
' R(f,%x) if 0eP.
() Then B B
fec@, flo,eCi(®),
M) =fM(K) forx e M andn=0,1,2,
sf >sf inQ\M,
AwE, %) = Aw(f, %) if sx(f,%) =0,
sAw(f,%) > sAw(f,%) if sy(f,%)=—L1
(i) WhenO € P,

f is P-faceted ak in 2, with slope0,
X+(F7 )’Z) = X+( f ) >’2)7 X*(fa )’z) = X*( f ) >’2)7
L(F,%) = L(f,%) +{1—sx(f,%)le.
(i) For anye; > 0 ande; > 0, there exists an open intervél; such that

MCQ3C92,
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IFY(x)| <e1 forx e Qs,

|Aw(F,x) — Aw(f,R)| < e, forx € Qs.

Proof of Lemma 8.1.Step 1. Let{,X) € Q. Let p € C(2) be locally admissible
at €, %) in Q. Suppose that

max(u” — ) = (u” — P)(E, R).
Our goal is to prove that

(cf. Theorem 6.8). Without loss of generality we may assume that (0)(f, X) =
0, sincey(t,x) can be replaced by(t, x) + (U* — ©)(T,X). We may assume that
ox(t, %) = 0 by Proposition 2.7 withA = ¢ (t, X) andB = —p({, X)X.

Sincey is locally admissible atf(X) in Q, there exists a rectangular neigh-
borhoodQ; =1 x 3 at { %) in Q such thaty|o, € Ap(Q1). So there exist
f € C3(Q4) andg € C(I) such that

o(t,x) =f(x) +g(t) for (t,x) € Q1.
The inequality (8.3) becomes
(8.4) g'@®+F(0,4w(f,%) =0,

which we should prove.
Let ¢ be a function orQ satisfying

(eC@Q), ¢{x=0 ¢z20inQ,
{(t,x) € Q;¢(t,x) =0} N 9,Q =1,

wherea_pQ =[0,T] x 922N {0} x Q. The function¢ is to be determined later.
Settingy = ¢+ in Q, we see that

man(u* — 1) = (u* — ), %),

(8.5)

so that

(U™ =)t x) + (LX) = (U* = P)(t,x) < (U* — ), %) =0 for (t,x) € Q,

which implies that
(U —¢)=-C InQ.

By the definition of the upper-semicontinuous envelope, there exists a se-
quence{(t, X) }£2; C Q such that §,x) — (f,X) ask — oo and

Jim (= 9)(0%) = (U~ ¥)(ER) =0.
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By the definition ofu, there is a sequendeu}2; C S such thatuy(tc, X«) >
u(tc, X«) — 1/k. So there is a sequendés,, i) }2; C Q such that

mé’»(v[f — 1)) = (g — V(S Yk)-
These yield

U™ (te, X)) — 1/k — (e, %) < (vg — ¥)(t, X«)
= (v — XS Yk) = (U = 9)(Sc, Yk) = —C(Sk Vi),

so that limk_ - {(S, Yx) = 0 since the first term of the last inequality converges
to 0 ask tends to to. So we get lim_..(U* — ¥)(s,¥k) = 0 and 6,Yy) €
{(t,x) € Q; ¢(t,x) = 0}, where §,y) = limy_,.. (S, Yk) by taking a subsequence.
Since the zero set af does not interseclQ, for sufficiently largek > 0 we
have &, Yy«) € Q and

max(ui; — ) = (v = ¥)(% Y-
Sincewy is a subsolution of (E), we have

(86) wt(aﬁ YK) + F(Sﬁ ’(/}X(Ska yk)7 AW(w(S(a ')7 YK)) g 0
provided thaty is locally admissible neais(, y«) (Proposition 6.8).

Step 2. Lef# € C(£) be an upper canonical modificationfoéit X with canonical
neighborhood?, C €4, so thatf #|o, € C3(2,) by Proposition 8.4 (i). We choose
C(t,x) = n(t) + {f#(x) — f(x)} for (t,x) € Q with n(t) = (t — {)?, so that (8.5)
holds since the zero set ¢fis {f} x M from Proposition 8.4(i). Then we observe
thats =1 and

B(t,x) = g(t) +n(t) +T7(x) for (t,x) € Q=1 x Oy,
which belongs toA:(Q). Inequality (8.6) becomes

(8.7) 9'(8) +1'(8) + F (s, (F7) (W), Aw(F¥, %)) < 0.

Case (i) (f is not P-faceted atx"in ). By Proposition 8.4(ii), we seg = X
and (fH)M(R) = fM(R) for n = 0,1, 2. Sendingk to +oo in inequality (8.7), we
conclude that (8.4) holds since we assumed continuity (F1)/aisccontinuously
differentiable with respect t¢, and is twice continuously differentiable with
respect tox.
Case (ii) (f is P-faceted a’in © andx( f,X) = 0). Letl’ be an open interval
containingf with 1’ C |. We see tha{(t,x) € Q; ((t,x) = 0} = {f} x R(f,X).
(A) Suppose that there exists a sequefikg <, such that §,yk) € 1" x
R(f,R), so thaf # is P-faceted ayy in Q> with slope 0. Owing to the definition of
weighted curvature at the boundary of a faceted regigp( f#, i) = Aw(f,X)
by Proposition 8.4(i). So (8.7) becomes

9'(s¢) +1'(8¢) + F(sq., 0, Aw(¥,%)) £ 0.

Sendingj to +oo, we have (8.4) by the continuity assumption (F1).
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(B) Consider the negation of (A): For ak > 0, (s,y) € {I\I’} x
{22\R(f,%)}. We observe thay € OR( f,X). Setting
ACY) =W/ ((FHY (y)(F9)"(y) fory e Qp,

we have Aw(f# i) = M(yk) sincef# is not P-faceted aty, in Q,. We see
that lim_+oo (F%)'(Yk) = 0 = lim_+oo (%) (k) sincef? € C2(Qy), so that
limg_+00 A(Yk) = 0 sinceW” is bounded on every bounded setR\P. Since
inequality (8.7) becomes

9'(8) + /() + F (s, (F7) (¥i), A(Y)) £ 0,
we have
J@)+F({,00=0

by sendingk to infinity. Since assumptiog(f,X) = 0 yields Aw(f,X) = 0, we
now get (8.4) by the degenerate ellipticity assumption (F2).

Case (iii) (f is P-faceted atx”in ©Q and x(f,X) = —1). Fix e € (0, e0), where
g0 is defined in 8.3. Sinces(y) € {f} x R(f,X) andR(f,&) C int R(f#, R),
there existsky > 0 such that §,yx) € | x R( f%¢,R) for all k > ko. For
(sc,Yk) €1 x R(f#¢.R), (8.7) becomes

9'(s) +1'(s) +F(s,0,—A/(L+22)) = 0,
where A = W/(+0) — W/(-0) andL = L( f, X). Sendingk to +oc, we get
g +F({,0 -A/L+2)) Z0.
Since the last inequality holds for alle (0, ¢p), we get (8.4). O

Lemma 81’ is proved as is Lemma 8.1.

Proof of Lemma 8.2. Step 1. Let {,X) € Q and lety € C(f2) be locally
admissible atf( ) in Q. Suppose that

min(v” — ) = (v" — @), %).

Without loss of generality we may assume that € ¢)(f,%) = 0 and we may
also assume that,(f, %) = 0 by Proposition 2.7.
Let ¢ be a function orQ satisfying

(€C@Q), ¢tx=0 ¢20 inQ,

8.8
(8.8) 1 is a locally admissible function at,&) in Q,

wherey = ¢ — ( in Q. Function( is to be determined later. So we see that
min(v® — ) = (v* — P)(E. %),

(8.9) (Sv.—1 inQ.
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Suppose that by choosingsuitably there exists a rectangular neighborhdid
at {,%) in Q satisfying

(8.10) o (t,x) +F(t, ux(t,x), Aw((t,-),x)) < 0 forall (t,x) € Ny,

(8.11) YN, € Ap(Ny),
(8.12) No € N;  with Np = {(t, x) € Q; ¢(t,x) = 0}.

Let N, be a rectangular (open) neighborhood fa&) satisfyingNg C N, and
N> C N;. There existsr; > 0 such that

(8.13) Y+op <hy inN.

In fact, from (8.9) and the definition &, we obtaim) < v, < h, in Q. If there
exists €1,x1) € N2 such thaty(ty, x;) = h.(t1,X;), then the locally admissible
function v is a test function oh at (1, %) in Q, which contradicts (8.10). So
we havey < h, in Np, or there existgr; > 0 such that (8.13).

Sinceo, = inf {{(x); x € N;\Nz} > 0 by the definition ofN,, we have

(814) P+ o, § Ve iN N]_\Nz,
which yields
(8.15) Y+o<h, inNg

with ¢ = min(oy, 02). By Propositions 2.7 and 2.8 we conclude thiat o is a
subsolution of (E) inN;.
We definew(t, x) by
max{y(t, x) + o, v(t,X)},  (t,X) € N,
U(t,X), (t,X) € Q\NZ

Inequality (8.14) yields

w(t,Xx) =

w(t,X) = maxy(t,x) +o,v(t,x)} for (t,x) € Ny.

Sow is a subsolution of (E) ifN; by Lemma 81'.
To show thatw is a subsolution of (E) iQ, suppose thap; € Ap(Q) satisfies

mQa><w — 1) = (w — ¢1)(to, X0) = 0.
We may assume that

(to, %0) € N2, t1(to, X0) > v(to, Xo)
since otherwise); is a test function ob at (to, Xo) so that

(2.1) (Y1) (to, Xo) + F (to, (01)x (to, Xo), Aw (11 (to, -), X0)) = O.

We may assume that; (to, -) is faceted akg with slope /1)« (to, -) € P and that
R = R(¢1(to, -), Xo) is not included in an interval; with N; = J; x ;. Indeed, if
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not, (21') holds by Proposition 6.19 sinee is a subsolution of (E) ilN;. We
may also assume that

1(to, X) > v(to,X) forx € RN Jy.

Indeed, if not, there ix; € RN J; with 11(tg, X1) < v(to, X1). Sincev < w <
in Q, we now observe that

man(v — 1) = (v — ¥1)(to, X1)

which yields (21") with xg replaced byx;. Sincev is a subsolution of (E) ifQ
and since € R implies @)1)x(to, Xo) = (1)x(to, X1), we now have (') without
replacingxp by x;. We may now assume that

P1(t,xX) > v(t,x) onNz, X € RNJy,
by takingl; smaller sincev is upper-semicontinuous. We now modify (to, -)
in RN (J1\J2) with N, = J, x I, to gety, € Ap(N;) satisfying
”,L?KW —12) = (w — ¢2)(to, Xo),
int R(y2(to, -), Xo) C Ny,
Aw (2(to, -), %) = Aw(¢(to, ), Xo),
1 =12 in Ny

Sincew is a subsolution irN; (even for the new choice dfi by Proposition
6.19) this yields (21') with v, replaced byy,. By (F2) we now have (2'). By
(8.15) we now conclude that is a subsolution of (E) ifQ and thatw € S.

On the other hand, we have

0= (. — )% = i inf {(v — ¥)(t,%); (t.X) € No, [t - f<d,|x—% <d},

which implies that there exists,(y) € N, such thatu(s,y) — ¥(s,y) < o. We
now obtainu(s,y) < w(s,y).

Step 2. We prove that there exigfssatisfying (8.8) and\; satisfying (8.10)—

(8.12). Sincey is locally admissible atf(X) in Q, there exists a rectangular
neighborhood); =1 x Q; at {, X) in Q such thatp|o, € Ar(Q1). So there exists

f € C3(4) andg € C(I) such that

o(t,x) =f(x) +g(t) for (t,x) € Q;.

Let f, € C(2) be a lower canonical modification &éf at X with canonical
neighborhood?, C Q1. We chose(t, x) = n(t)+{f(x)—fs} (= 0) for (t,x) € Q
with n(t) = (t — f)?, so that

Y(t,X) = g(t) — n(t) +fx(x) for (t,x) € N3 =1 x .
Proposition 8.4(i) yields (8.8) anhlp = {t} x M, whereM is the same as (8.2).
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Sincew is not a supersolution of (E) and > —oco in [0, T) x Q, we have
1/% (fv )’z) + F(fv wx(fa )2)7 AW(w(fa ')a 2)) < 0;

or
g'®) — ')+ F(t,0, Aw( s, %)) <O

by Definition 6.7 of the local version of a supersolution and by Theorem 6.8.
Clearly, there existd > 0 such that

g'® =@ +F(E 0 Aw(fs,R)) < —0.
For (t,x) € N3 we have
g'(t) + F(t, (1) (x), Aw( fs, X))
<{gO-g®O+n®)}
+{F(t, () (), Aw( s, x)) — F(£,0, Aw( f, X))}
+{F(,0, Aw(f,R)) — F(f,0, Aw( fs X))} — 0.

Let T1, T, and T3 denote the first, second and third term of the right-hand side
of the last inequality. We shall show that there exists an opeMNseasuch that
No € N; € N3 and for all ¢,x) € N;, T;+To+T3— 4§ < 0 holds. This now yields

g'(t) + F(t, () (x), Aw(fs,x)) <O for (t,x) € Ny,

which equals (8.10).
By Proposition 8.4(i), we see thaty ( f, X) < Aw(f,X), so that

(8.16) T:<0

holds by the degenerate ellipticity condition (F2). Sigce € C(1), there exists
p1 € (0,dist {, 01)) such that

(8.17) Ti=g'(t)— g ® +n') < 36 forallteB({,p),

whereB(t, p1) denotes an open ball iR with centerf and radiusp;. From the
continuity condition (F1), there exisis > 0 such that

(8.18) |F(t,p,X) - F(f,0,0) < %6 for all t,p andX € B(0, p2).
From Proposition 8.4(iii), there exists an open inter2glsuch that
M C Qg C Qz,

I(fe) (X)| < p2 for x € Qa,
[Aw (f4,X) — Aw(f,X)| < p2 for x € Q.

We choseN; = B(f, min(p1, p2)) x Q3, so that (8.11) and (8.12) hold. Then we
getT, < 14 for (t,x) € Ni. We now have

T1+To+T3—-6<0 fOI’(’[,X)GNl7
so that we conclude that (8.10) holds foyx) € N;. O
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9. Existence Theorem for Periodic Initial Data

We give the proof of Existence Theorem 3.5 for periodic initial data. Through-
out this section, leT > 0,S € (0, T) andQs = (0,S) x R. We often use the
condition

(F1) F is continuous in [0S] x R x R with valuesR.

The key tools to prove the Existence Theorem are Comparison Theorem 3.1
and the Perron-type Existence Theorem 3.4 together with the following lemma:

9.1. Lemma(Existence of Super- and Subsolutions$sume that conditior(&1)
and (F2) hold. Suppose thatyus bounded and uniformly continuous 8n Then
for each Se (0,T) there exists an upper-semicontinuous functidif=uu*-S)
and a lower-semicontinuous functior (F u—5) on Qs such that d and u~ are
respectively a super- and subsolution(&) in Qs, and

u*(0,x) =up(x) forx eR,

(9.2) _
u*(t,x) = up(x) for (t,x) € Qs.

u=(0,x) =up(x) forx e R,

(©-2) u=(t,x) < up(x) for (t,x) € Qs.

9.2. Remarklf ug is periodic with periodeo, the lemma holds with the extra
property

(9.3) ut(t,x +w) = u*(t,x) for (t,x) € Qs.
or
(9.3) u=(t,x+w)=u(t,x) for (t,x) € Qs.

To prove Lemma 9.1, we extend the method developed in [CGG] and [IS] to
C2 functions. We carry out the proof in several steps.

9.3. Proposition.Let M be a positive number. For arythere exists (= fM) €
C2(R) such that

f5(0)=0, fs5,f;’ 20inR, fs(x)=M forx,|x| > 4.

Proof. We set
(x+1)* forx < —1,

Vo(x)=<¢ 0 for —1<x <1,
(x —1)* forl<x.

By Lemma 6.12, there existé, € C2(R) such that
Vi(0)=0 and V{ =0, Vi >V, inR.

Clearly there existk = k(4) € (0, %) with kVp(6/k) = M. Setting fs(x) =
kVi(x/k) for x € R, we see thaf; € C3(R) sincef{(x) = V/(x/k) and V; is
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P-faceted ak 7k in R if and only if f5 is P-faceted akin R. The other properties
are easy to prove. O

9.4. Lemma (Modification of C2 Functions).Let Q1 = (a1,a]),2 = (a2, a})
and Q3 be (honempty open intervals with23 C 2, andQ, C Q1. Suppose that
f € C3(2y) satisfies f = 0in ,. Then there exists ¥ C2(£2;) such that

V”>00on;, V=fonQs,

V() = q, forxe (a,a],
q’, forx e [aa)

with some g and ‘g¢ P. In particular, the number of faceted regions of V is
finite.
Proof. We denoteQ); = (as, a3). If there exists an open intervhl= (by, by) with

I C(ag,ag), f/(x)¢Pforallxel,

then we sefy = f'(b;). Otherwise we havey = f'(x) € P for all x € (a, ag).
In the latter case we choose an open intedvatith | C (az,az) and choose

g € (sup{dz € P N{—oo}; 02 < tu},0n).
Likewise, if there exists an open intervdl= (b5, b;) with

I/ C (ag,ap), f'(x) ¢ P forallxel’,

then we sety’ = f'(b;). Otherwise we have; = f'(x) € P for all x € (&, a&)).
In the latter case we choose an open intetvalith |/ C (a},a}) and choose

q’ € (qg,inf{q; € P U {+o0};0; > q;}).
Let hy € CY(€1) with

q forx e (as,by),
mx)=4 .,
q" forx e (b, &).

We connecf’ andh; in the following way. Letpy, p» € C1(Q4) satisfy

pr+p2=10nQ;, 0= p1,p2 10Ny,

1 forxely, ) >0 forx e (by,by),
p1(x) = pr(x) = ! b
0 forx e Qi\ly, <0 forx e (b, by),

0 forxely, ) <0 forx € (by, by),
pa(X) = pa(X) = ! by
1 forx e Qi\ly, =0 forx e (b by),

where we denoté; = (b, b}) andl, = (b2, bj), so thatl, C 15
We set
hy=pi ' +phy in
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to get
hy = po(hy =) +p1 f7 20 inQy,

since
hy < f'in (by,bz), hy = £ in (bg,by).

Thus we get the desired functiah € C2(Q4) by setting

X
V(x)=f(a) +/ ho(y) dy for x € g
a
with somea € Q3. O
9.5. Lemma.Let M be a positive number.
(i) For anyé € (O, %) there exists ¥ (= VM) € C3(R) such that
Vs(0)=0, V;,Vy=0inR, Vs=M forx,|x| >,

V, _ q57 forléxa
500 = g5, forx < -1

with some g (=g}) and ¢ (= q}M) ¢ P.

(i) Assume that conditiofi1’) holds. For each S (0, T) there exists glarge) Bs
(= B!;V' S) > 0 such that V' € Ap(Qs) is a supersolution ofE) in Qs = (0, S) xR
of the form

Vit X)(= Vs ™M S|q,) = Bt +Vs(x) for (t,x) € Qs and B > B;.
Here the dependence of M and S ojy &d B is suppressed.

Proof. It is clear that Lemmas 9.3 and 9.4 with = R, Q, = (—1,1) and{3 =
—1 1y yield (). Now we give the proof of (ii). We see thitt™"°|o, € Ap(Qs)
by the definition.

Since the number of faceted regions\f is finite, we have

c1 = sup{|Aw(Vs,X)|; X € R,V4(X) € P} < cc.
We also have
c2 = sup{|Aw(Vs,X)|; x € R,V{(X) € P} < oo,

since
sup{|Vy'(¥)I; x| = 1} < oo,

sup{|W’(p)l; s =p=d; p¢P}<oco
by the assumption oiV. Thus we observe that
sup{|Aw(Vs, X)

with ¢z = max(y, Cz).

s XER} <3< @
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Since condition (F) yields
cs = inf{F(t,p,X); t€l0,S], p€[as,gsl, [X] = cs} > —o0,

we have _
F(t, V5 (x), Aw(Vs,%)) = ¢4 for all (t,x) € Qs.

We takeB; so thatB; = max (—c4, 0). FunctionV," is a supersolution of (E) in

Qs. In fact, if ((, %), 1) € Qs x Ap(Qs) satisfies
rgisn(V5+ — ) = (V5 —¥)(E, %),
then

wt(fv )2) + F(fa wx(fa )2)), AW(w(fa ')7 )2) =B+ F(fav(;—()z)v AW(V6+7 )2))
2B-B;20

sinceVs € C3(R). It is clear that Ys|os)« = 0= —o0o in[0,S) xR. O

9.6. Lemma. Suppose thatgis bounded and uniformly continuousi) so that
for eache € (0, 1) there exist® = d(¢) € (O, %) satisfying

(9.4) [ug(X) — Up(§)| < e for|x —¢&| < 4.

Let Vso) € C3(R) be as in Lemma 9.5(i) with M= maxcr Uo(X) — Minyer Uo(X).
Then we have

Uo(X) = INf{Vse)(x — &) +Uo(§) +e; € €(0,1), { €R}.
Proof. Since (9.4) implies
Uo(X) < Up(§) +e  for [x — & = 6(e)
and since the definition d¥1 implies
Uo(X) < Uo(€) +M = Uo(€) + Vi) (X — &) for [x — &[] > 4(e),
we have
Uo(X) < V5e)(Xx —&) +up(§) +e forx,§ € R, € €(0,1).
For eachx € R ande’ > 0, we have
Vi(e) (X — €) + Uo(§) + & < &' + Uo(X)
with ¢ = x ande = 3¢’, which yields the results. O

Proof of Lemma 9.1.Firstly, for eache € (0,1) let Vs) € C2(R) be the same
as in Lemma 9.6. Secondly, for eacte (0,1) and¢ € R we set

UBS(t,X; €) = Voo (t, X — &) +Uo(§) +&  for (t,X) € Qs

with B = Bj(). Thenu®™=(t,x; &) belongs toAs(Qs) and is a supersolution of
(E) in Qs by Lemma 9.5(ii). Lastly, we take
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ut(t,x) = inf{u™=(t,x, &);e € (0,1),£ e R} for (t,x) € Qs;
thenu* is upper-semicontinuous i@s and
(U |ge)s = rgweig Up(€) > —cc  for [0,S) x R.
So, Lemma 8Ayields thatu® is a supersolution of (E) ifQs. Now we have
(9.2). In fact, Lemma 9.6 implies that
u*(0,x) = up(x) for x € R,
ut(t,x) = up(x) for (t,x) € Qs,
sinceBs() = 0 and
Vit x =€) Z Vix — &) for (t,x) € Qs, £ € R.

We can likewise get the lower-semicontinuous function satisfying the
desired property. O

Proof of Remark 9.2.1f ug is periodic with periodw, the functionu* constructed
in the proof of Lemma 9.1 satisfies (9.3), since

UmE(t X + @3 €) = Vi (t, X + @ — €) + UW(€) +¢
= V(;is)(tax - (g - w)) + U0(§ - ZU) te
=ut(t,x, & —w). O

Proof of Theorem 3.5.Step 1 (Existence 0Rs). Since (F1) implies (F) for
eachS € (0, T), Lemma 9.1 is applicable. For eaghe (0,T), letu* andu~ be
an upper-, and a lower-semicontinuous functiorQg obtained in Lemma 9.1.
By Theorem 3.4, there exists a generalized solutiarf {E) in Qs such that

u” < <u" inQs,

G(t,x +w) = G(t,x) for (t,x) € Qs.

Sinceu* andu~ are respectively upper- and lower-semicontinuoui
we have B
—co<U S0, 20" Zut<oo inQs.

Sinceu—(0,x) = u*(0, x) = ug(x) in R, we have
0,(0,x) =3G*(0,x) =up(x) InR.
Theorem 3.2 yields
g* <0, inQs, thatis,inQs,

which implies tha* is continuous inQs. We setuS = G* in [0, S). Thenus is
a generalized solution of (E) i@s, andu® € C([0, S) x R) satisfies
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uS(0, x) = ug(x) for x € R,

-9 uS(t,x + @) =uS(t,x) for (t,x) € [0,S) x R.

Step 2 (Uniqueness dRs). LetvS € C([0, S) x R) satisfy (9.5) withuS replaced
by v5, such that® is a generalized solution of (E) i@s. Theorem 3.2 yields
thatuS = +5 in [0, S) x R, which implies the uniqueness af in [0,S) x R.

Step 3 (Unique Existence on,[D) x R). If 0 < S < S’ < T, Proposition
6.19 implies thatuS |o, is a generalized solution of (E) iQs. By Step 2 for
t € (0,T), it is possible to definel from {uS;0 < S < T} uniquely by

u(t,x) =uS(t,x) with S e (t, T).

From Proposition 6.20 we see thats a generalized solution of (E) in(0) x R.
It is easy to see that other properties holdx
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