
Chapter 16

Use and Abuse of the Method of Virtual Power

in Generalized Continuum Mechanics and

Thermodynamics

Samuel Forest

Abstract The method of virtual power, put forward by Paul Germain and celebrated
by Gérard A. Maugin, is used (and abused) in the present work in combination with
continuum thermodynamics concepts in order to develop generalized continuum,
phase field, higher order temperature and diffusion theories. The systematic and ef-
fective character of the method is illustrated in the case of gradient and micromorphic
plasticity models. It is then tentatively applied to the introduction of temperature and
concentration gradient effects in diffusion theories leading to generalized heat and
mass diffusion equations.

16.1 Introduction

There are essentially two equivalent ways to mathematically represent forces acting
on continuum mechanical media: the introduction of forces and couples in the balance
of moment and moment of momentum equations, on the one hand, and the method
of virtual power, on the other hand, which is a variational statement of the dynamics
of bodies (Germain, 1973a). The axiomatic and systematic character of the latter has
been put forward by P. Germain and illustrated in the case of first and second gradient
continuum theories. It has the merit of clearly separating universal balance laws
from peculiar constitutive laws in contrast to Lagrangian/Hamiltonian mechanics
which was used by Mindlin to first propose a consistent strain gradient elasticity
theory with suitable boundary conditions (Mindlin, 1965). The derivation of complex
boundary conditions as they arise in strain gradient and also plate theories probably
is the most striking example where the method of virtual power is undoubtedly more
effective than the usual procedure. This is due to the fact that the complex form of
contact forces, in contrast to internal forces, can hardly be anticipated in that case,
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as discussed in dell’Isola and Seppecher (1995); dell’Isola et al (2012). Following
Germain, Maugin has promoted the method of virtual power and extended it to
non–mechanical fields in order to construct complex and coupled continuum theories
(Maugin, 1980). The latter contribution deals with the coupling of mechanics with
electromagnetism. Maugin also introduced the consideration of singular surfaces and
interfaces for mechanical and thermodynamic field variables (Daher and Maugin,
1986). Maugin’s passion for the method of virtual power in continuum physics
led him recently to write a review paper on the merits of the approach and the
many fields of application, namely mechanics of one, two and three–dimensional
continuum mechanics, including beam, plate and shell theories, and the coupling
with electromagnetic fields (Maugin, 2013).

The mechanics of generalized continua is undoubtedly the privileged domain
of application of the principle of virtual power because it enables the systematic
introduction of enriched kinematics of the material point with the conjugate forces.
This is illustrated by the application of this method to the theory of micromorphic
media by Germain (1973b). As claimed by Germain, the derived balance laws
and boundary conditions were not new but the level of generality was increased
by the systematic nature of the method and the definition by Germain of general
micromorphic continua with additional degrees of freedom represented by tensors
of increasing order. The method is illustrated in several recent books edited by
G.A. Maugin and collecting various generalized continuum theories (Maugin and
Metrikine, 2010; Altenbach et al, 2011).

The combination of the method of virtual power and the concepts of continuum
thermodynamics, again following Germain’s incentive (Germain et al, 1983), leads
to a complete framework for the development of continuum theories including con-
sistent constitutive equations. Within this framework, Maugin himself significantly
developed the thermomechanics of continua (Maugin, 1992, 1999). He recently also
applied the method to coupled diffusion theory (Maugin, 2006).

The objective of the present work is first to extend generalized continuum ap-
proaches like strain gradient and micromorphic models to plasticity and damage
by means of the method of virtual power and continuum thermodynamics. This
shows the systematic use and the merits of the method. The second part deals with
the coupling of the mechanics with thermodynamic fields like temperature, phase
field and concentration. The attention is drawn on the introduction of the gradient
of these variables into thermodynamic potentials. For that purpose, the method of
virtual power is used again in non-conventional situations, which may represent an
abuse of the method in the sense that its application may be regarded as formal. It
however delivers new types of balance and evolution equations that can be compared
to more standard formulations. In particular, the two last sections deal with the
application of the method of virtual power to the construction of phase field and
higher order diffusion models. These formulations differ from the classical ones
based on variational derivatives that do not take enough care of boundary conditions.
The seminal contribution by Gurtin (1996) proposes a construction of the phase
field continuum theory using additional balance laws for so–called microstress and
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microforce tensors. In the present work, the method of virtual power is used instead
and applied to various situations.

An intrinsic notation system is used in this chapter whereby tensors of order 1, 2
and 4 are respectively denoted by a ,A∼ and A∼∼

. Simple and double contractions read:

f · v = fivi, A∼ : B∼ = Ai jBi j (16.1)

The gradient and divergence operators are written as

∇u = ui, j e i ⊗ e j, σ∼ ·∇ = σi j, je i (16.2)

in a Cartesian orthonormal basis (e 1,e 2,e 3).
All theories are presented within the small deformation framework for the sake of

brevity. The readers are referred to Forest (2016) for the finite deformation formula-
tions of some of them.

16.2 Micromorphic and Gradient Plasticity

The method of virtual power certainly is an powerful tool to construct generalized
continuum mechanics theories ranging from strain gradient to micromorphic continua.
Higher order or generalized stresses are introduced via the power density of internal
forces and lead to additional boundary conditions for the partial differential equations
to be solved. More recently, reduced models have been developed that concentrate
the gradient effects on plastic or damage variables instead of the full kinematics
(Aifantis, 1984; Frémond and Nedjar, 1996; Gurtin, 2003; Forest, 2009). A generic
example is provided in this section dealing with micromorphic and strain gradient
plasticity. It can be readily extended to microdamage and gradient damage models
(Aslan et al, 2011). The present theory is limited to the quasi-static problem but
dynamic contributions of the micromorphic variables can be included as proposed in
Saanouni and Hamed (2013).

16.2.1 The Micromorphic Approach to Gradient Plasticity

Within the framework of thermomechanics with additional degrees of freedom
(Maugin, 1990), the displacement degrees of freedom, u , of the material point are
complemented by a micromorphic degree of freedom, called here plastic micros-
train, pχ . Within a first gradient theory, the model variables are the strain tensor, ε∼,
temperature T , internal variables α , the plastic microstrain and its gradient, pχ ,∇pχ .

The virtual power of internal forces in a subdomain D of the body B is a linear
form with respect to the degrees of freedom ant their gradients:
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P(i)(v �, ṗ�χ) =−
∫
D

p(i)(v �, ṗ�χ)dV

p(i)(v �, ṗ�χ) = σ∼ : ∇v �+aφ̇ �
χ +b ·∇ṗ�χ (16.3)

where v �, ṗ�χ are virtual velocity and plastic microstrain rate variables. The dual
quantities are generalized stresses. The Cauchy stress is σ∼ and a and b are generalized
stresses associated with the micromorphic variable and its first gradient. Similarly,
the power of contact forces must be extended as follows:

P(c)(v �, ṗ�χ) =
∫
D

p(c)(v �, ṗ�χ)dV, p(c)(v �, ṗ�χ) = t · v �+ac ṗ�χ (16.4)

where t is the traction vector and ac a generalized traction. For conciseness, we do
not extend the power of forces acting at a distance and keep the classical form:

P(e)(v �, ṗ�χ) =
∫
D

p(e)(v �, ṗ�χ)dV, p(e)(v �, ṗ�χ) = ρ f · v � (16.5)

where ρ f accounts for given simple body forces. Following Germain (1973a), given
body couples and double forces working with the gradient of the velocity field could
also be introduced in the theory. The generalized principle of virtual power with
respect to the velocity and micromorphic variable fields, is presented here in the
static case only:

P(i)(v �, ṗ�χ)+P(e)(v �, ṗ�χ)+P(c)(v �, ṗ�χ) = 0, ∀D ⊂ B, ∀v �, ṗ�χ (16.6)

The method of virtual power according to Maugin (1980) is used then to derive the
standard local balance of momentum equation:

divσ∼ +ρ f = 0, ∀x ∈ B (16.7)

and the generalized balance of micromorphic momentum equation:

divb −a = 0, ∀x ∈ B (16.8)

The method also delivers the associated boundary conditions for the simple and
generalized tractions:

t = σ∼ ·n , ac = b ·n , ∀x ∈ ∂D (16.9)

The local balance of energy is also enhanced by the generalized micromorphic power
already included in the power of internal forces (16.3):

ρ ε̇ = p(i)−divq (16.10)
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where ε is the specific internal energy and q the heat flux vector. The entropy
principle takes the usual local form:

−ρ(ψ̇+η Ṫ )+ p(i)− q
T
.∇T ≥ 0 (16.11)

where it is assumed that the entropy production vector is still equal to the heat vector
divided by temperature, as in classical thermomechanics according to Coleman and
Noll (1963). Again, the enhancement of the theory goes through the enriched power
density of internal forces (16.3). The entropy principle is exploited according to clas-
sical continuum thermodynamics to derive the state laws. At this stage it is necessary
to be more specific on the dependence of the state functions ψ,η ,σ∼ ,a,b on state
variables and to distinguish between dissipative and non–dissipative mechanisms.
The introduction of dissipative mechanisms may require an increase in the number
of state variables. The presentation is limited here to non–dissipative contributions of
generalized stresses (see Forest, 2009; Aslan and Forest, 2011) for more sophisticated
cases including dissipative contributions). Dissipative events are assumed here to
enter the model only via the classical mechanical part. Total strain is split into elastic
and plastic parts:

ε∼ = ε∼
e + ε∼

p (16.12)

The constitutive functional are assumed to depend on the following set of state
variables:

(ε∼
e,T,α, pχ ,∇pχ)

The entropy inequality (16.11) can be expanded as:

(σ∼ −ρ
∂ψ
∂ε∼e ) : ε̇∼

e +ρ(η+
∂ψ
∂T

)Ṫ +(a−ρ
∂ψ
∂ pχ

)ṗχ +(b −ρ
∂ψ
∂∇pχ

) ·∇ṗχ

+σ∼ : ε̇∼
p −ρ

∂ψ
∂α

α̇− q
T
·∇T ≥ 0 (16.13)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found

σ∼ = ρ
∂ψ
∂ε∼e , η =−∂ψ

∂T
, R =−ρ ∂ψ

∂α
a = ρ

∂ψ
∂ pχ

, b = ρ
∂ψ
∂∇pχ

(16.14)

and the residual dissipation is

Dres = σ∼ : ε̇∼
p +Rα̇− q

T
.∇T ≥ 0 (16.15)

where R is the thermodynamic force associated with the internal variable α . The
existence of a convex dissipation potential,Ω(σ∼ ,R) depending on the thermodynamic
forces can then be assumed from which the evolution rules for internal variables
are derived, that identically fulfil the entropy inequality, as usually done in classical
continuum thermomechanics (Germain et al, 1983):



316 Samuel Forest

ε̇∼
p =

∂Ω
∂σ∼

, α̇ =
∂Ω
∂R

(16.16)

After presenting the general approach, we readily give the most simple example
which provides a direct connection to several existing generalized continuum models.
The free energy density function ψ is chosen as a function of the generalized relative
strain variable e defined as:

e = p− pχ (16.17)

where p is the cumulative plastic strain, thus introducing a coupling between macro
and micromorphic plastic variables. Assuming isotropic material behaviour for
brevity, the additional contributions to the free energy are taken as quadratic functions
of e and ∇pχ :

ψ(ε∼
e,T,α, pχ ,∇pχ) = ψ(1)(ε∼

e,T,α)+
1
2

Hχ(p− pχ)2 +
1
2

A∇pχ ·∇pχ (16.18)

where Hχ and A are the additional moduli introduced by the micrmorphic model. The
function ψ(1)(ε∼

e,T,α) refers to any constitutive function in a classical continuum
thermomechanical model with internal variables. After inserting the state laws (16.14)

a = ρ
∂ψ
∂ pχ

=−Hχ(p− pχ), b = ρ
∂ψ
∂∇pχ

= A∇pχ (16.19)

into the additional balance equation (16.8), the following partial differential equation
for pχ is obtained, at least for a homogeneous material under isothermal conditions:

p = pχ − A
Hχ

Δ pχ (16.20)

where Δ is the Laplace operator. It involves a characteristic length scale defined by:

l2
c =

A
Hχ

(16.21)

The additional material parameters Hχ and A are assumed to be positive in this work.
This does not exclude a softening material behaviour that can be induced by the
proper evolution of the internal variables.

Let us now choose a yield function in the form

f (σ∼ ,R) = σeq −σY −R (16.22)

where σeq is an equivalent stress measure, σY the initial yield stress and R(p) is here
the hardening (or softening) function. It follows from the state law (16.14) and from
the balance equation (16.20) that

R =
∂ψ
∂ p

= R(p)+Hχ(p− pχ) = R(p)−AΔ pχ (16.23)



16 The Method of Virtual Power in Continuum Mechanics and Thermodynamics 317

which shows the enhanced hardening due to the plastic microstrain. Under plastic
loading condition,

σeq = σY +R(p)−AΔ pχ (16.24)

which is reminiscent of Aifantis celebrated strain gradient plasticity model (Aifantis,
1984). The equivalence with Aifantis model is obtained for Hχ = ∞ which enforces
the internal constraint: pχ � p.

16.2.2 Direct Construction of Gradient Plasticity Theory

The method of virtual power can also be used directly to construct the strain gradient
plasticity model without resorting to the micromorphic model (Forest and Bertram,
2011). The enriched power density of internal forces and of contact forces are
introduced as

p(i) = σ∼ : ε̇∼+aṗ+b ·∇ṗ, p(c) = t · u̇̇u̇u +ac ṗ (16.25)

where a and b are generalized stresses acting on the virtual plastic field ṗ and its
gradient, respectively. The usual traction vector is t and ac denotes the generalized
traction. Such generalized stresses are called micro–forces by Gurtin (2003). A
generalized principle of virtual power is stated with respect to the virtual fields of
displacements and the p–variable. The application of this principle results in the
same balance equations and boundary conditions as in Eq. (16.7) to (16.9).

The constitutive functions now depend on cumulative plastic strain and its gradient.
The Clausius–Duhem inequality then becomes:

(σ∼ −ρ
∂ψ
∂ε∼e ) : ε̇∼

e +(a−ρ
∂ψ
∂ p

)ṗ+(b −ρ
∂ψ
∂∇p

) ·∇ṗ+σ∼ : ε̇∼
p ≥ 0 (16.26)

At this stage, the following state laws are adopted

σ∼ = ρ
∂ψ
∂ε∼e , a = ρ

∂ψ
∂ p

+R, b = ρ
∂ψ
∂∇p

(16.27)

thus assuming that no dissipation is associated with the generalized stress b . This is
the most simple assumption that is sufficient for deriving Aifantis model, in particular.
The residual dissipation is then

σ∼ : ε̇∼
p +Rṗ ≥ 0 (16.28)

A simple quadratic free energy potential is chosen

ρψ(ε∼
e, p,∇p) =

1
2
ε∼

e : C∼∼
: ε∼

e +
1
2

H p2 +
1
2

A∇p ·∇p (16.29)

from which the state laws are derived:
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σ∼ =C∼∼
: ε∼

e, R =−H p+a, b = A∇p (16.30)

where C∼∼
is the four–rank tensor of the elastic moduli, H is the usual hardening

modulus and A is an additional material parameter (unit MPa·mm2). The yield
function is taken as

f (σ∼ ,R) = σeq −σY +R (16.31)

Under plastic loading, this gives

σeq = σY −R = σY +H p−a = σY +H p−divb = σY +H p−A∇2 p (16.32)

which is Aifantis celebrated equation, to be compared with Eq. (16.24). The plasticity
flow and evolution rules are

ε̇∼
p = λ

∂ f
∂σ∼

, ṗ = λ
∂ f
∂R

= λ (16.33)

in the rate–independent case, λ being the plastic multiplier.
The enhanced power of internal forces has been used also by Gurtin and Anand

(2009) for gradient plasticity and by Frémond and Nedjar (1996) for gradient damage.
However, there exist alternative formulations avoiding the modification of p(i), see
Nguyen (2010b, 2016).

16.3 Gradient of Entropy or Temperature Models

It was shown in the previous section that the free energy function can depend on
the gradient of strain or on any internal variable like plastic strain and damage. This
requires an amendment of the principle of virtual power with the introduction of
generalized stress tensors. A similar question arises in the case of heat transfer:
can the free energy function depend on the temperature gradient? In the standard
continuum thermodynamics framework, the answer is no (Coleman and Mizel,
1963). However, this impossibility can be overcome by suitable enhancement of the
theoretical framework. Several tracks have been proposed in the literature for that
purpose which are reviewed in Liu et al (2017) with special consideration of the
consequences on the heat equations.

In this part, the mechanical contributions are omitted for the sake of conciseness.

16.3.1 A Principle of Virtual Power for Entropy

One track is presented here based on the formulation of a principle of virtual power
for entropy (or temperature) and its gradient following (Forest and Amestoy, 2008).
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It is postulated that the entropy rate and its gradient contribute to the power of
internal and external forces, in the form:

P(i)(η̇�) =−
∫
D

(aη η̇�+b η ·∇η̇�)dV (16.34)

P(e)(η̇�) =
∫
D

(ap
η η̇�+b p

η ·∇η̇�)dV +
∫
∂D

ac
η η̇

� dS (16.35)

in addition to the purely mechanical parts not recalled here, where η̇� is a field of
virtual rate of change of entropy density. These power densities involve internal scalar
and vector generalized stresses aη , b η , on the one hand, and prescribed external
scalar and vector volume microforces ap

η , b p
η and a generalized surface traction ac

η ,
on the other hand.

The exploitation of the principle of virtual power with respect to the virtual field
η̇� results in the following independent variational equation:

P(i)(η̇�)+P(e)(η̇�) = 0, ∀D ⊂ B, ∀η̇� (16.36)

provided that no “microinertia" effects are attached to variable η (Svendsen, 1999).
Such terms involving the second derivative of temperature or entropy can be intro-
duced following (Liu et al, 2017). It is used to derive a balance equation associated
with variable η and the associated boundary condition:

div(b η −b p
η)−aη +ap

η = 0, ∀x ∈ D , ac
η = (b η −b p

η) ·n , ∀x ∈ ∂D
(16.37)

It is essential that the power of external forces (16.35)2 contributes to the global
balance of energy:

Ė =
∫
D

ρ ε̇ dV = P(e)(η̇)−
∫
∂D

q ·n dS (16.38)

An alternative form is obtained after taking the generalized principle of virtual power
into account:

Ė =−P(i)(η̇)−
∫
∂D

q ·n dS (16.39)

The local form of energy balance follows:

ρ ε̇ = aη η̇+b η ·∇η̇−divq (16.40)

The entropy principle is assumed to keep its classical global form, for any material
subdomain D ⊂ B:

d
dt

∫
D

ρη dV ≥−
∫
∂D

q
T

dS (16.41)

The additional contributions appear in the generalized Clausius–Duhem inequality:
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ρ(T η̇− ε̇)+aη η̇+b η ·∇η̇− q
T
·∇T ≥ 0 (16.42)

The constitutive functions of solids of this kind depend on the set of state variables
(η ,∇η). After inserting these dependencies, the Clausius–Duhem inequality (16.42)
becomes:

ρ(T − ∂ ε
∂η

+
aη
ρ
)η̇+(b η −ρ

∂ ε
∂∇η

) ·∇η̇− q
T
·∇T ≥ 0 (16.43)

from which the state laws are derived,

T =
∂ ε
∂η

− aη
ρ
, b η = ρ

∂ ε
∂∇η

(16.44)

Accordingly, the temperature is found to be equal to the partial derivative of the
internal energy function with respect to entropy complemented by a contribution of
the internal scalar microstress aη . The internal generalized stress vector b η is nothing
but the partial derivative of internal energy with respect to the entropy gradient. It
is called the hypertemperature vector (Forest and Amestoy, 2008). The residual
dissipation reduces to:

−q
T
·∇T ≥ 0 (16.45)

First consequences of the additional or modified state laws established previously
are investigated in the simplest case, namely that of the rigid heat conductor. After
inserting the state laws (16.44) into the local energy balance (16.40), the following
usual form of the heat equation is recovered:

ρT η̇ =−divq (16.46)

In the sequel, a specific constitutive function for internal energy is chosen for the illus-
tration of the modifications brought in the governing equations of thermal conduction
by the introduction of entropy gradient effects. A specific constitutive relation will
also be needed for the heat flux vector in order to obtain an explicit partial differential
equation for entropy. In the present theory, there is no need for departing from the
classical Fourier law of heat conduction:

q =−κ∇T (16.47)

written here for isotropic materials for simplicity. So in the present theory, heat still
flows from hot to cold and there is no up–hill heat diffusion.

The explicit heat equation associated with the gradient of entropy theory is now
derived for isotropic materials. We take ap

η = 0 and b p
η = 0 for the sake of brevity.

Material homogeneity is also assumed for simplicity. The mass density ρ is constant
and homogeneous.

The expression of the internal energy density function in a rigid heat conducting
body is linearised around the reference entropy value η0. According to the gradient
of entropy model, it contains quadratic terms in the entropy and entropy gradient:
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ρε(η ,∇η) = ρηT0 +
ρ2(η−η0)

2

4β
+

1
2

Aη∇η ·∇η (16.48)

where β and Aη are (strictly positive) material parameters. The expression of the
generalized stresses are derived from the additional state and balance laws:

b η = ρ
∂ ε
∂∇η

= Aη∇η , aη = divb η = AηΔη (16.49)

where Δ is the Laplace operator. Compared to classical linearised thermal diffusion,
the temperature function is modified as follows:

T =
∂ ε
∂η

− aη
ρ

= T0 +
ρ(η−η0)

2β
− Aη

ρ
Δη (16.50)

Keeping the usual form (16.47) of Fourier heat conduction law, the heat equation can
now be derived as

ρT0η̇ =
ρκ
2β

(Δη− l2
ηΔ

2η), with l2
η =

2βAη

ρ2 (16.51)

This enhanced heat equation has the structure of the Cahn–Hilliard equation in mass
transport theory as derived in Cahn and Hilliard (1958); Gurtin (1996). It involves a
characteristic (positive) length lη related to material parameters. The classical heat
equation is retrieved for a vanishing intrinsic length scale lη = 0, or equivalently
Aη = 0, in the absence of prescribed external microforces.

16.3.2 Gradient of Entropy or Gradient of Temperature?

The initial question raised in this part was the introduction of the temperature gradient
in the free energy density function. The previous theory was developed for the
entropy gradient instead. This is due to the fact that the first function of state in
thermodynamics is the internal energy density which is a function of entropy and
strain in general. The question of the introduction of a gradient term must therefore
be asked first at this stage. A similar construction as before is possible for a gradient
of temperature theory. It was shown in Forest and Amestoy (2008) to deliver a distinct
theory from the gradient of entropy one. The gradient of temperature and gradient of
entropy models are not dual contrary to the usual case where the entropy based and
temperature based theories are dual in the absence of gradients. The same situation is
encountered in mechanics where the strain gradient theory and the recently proposed
stress gradient model are no dual theories (Forest and Sab, 2012, 2017).

Alternative formulations of the gradient of temperature models were proposed in
Ireman and Nguyen (2004); Nguyen (2010a,b) without resorting to additional power
contributions but, instead, by modifying the definition of the free energy function
and extending the concept of standard generalized materials to the gradient case.
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They lead to heat equations that differ from Eq. (16.51) and that possibly include the
possibility of heat wave propagation.

The method of virtual power can be used to propose new theories of heat con-
ductors including microtemperature or microentropy concepts (Forest and Aifantis,
2010). The predicted effects are similar to those deduced from double temperature
models where each material point is characterized by two distinct temperatures,
similarly to mixture theory for fluids.

16.4 The Method of Virtual Power Applied to Phase Field

Modelling

The phase field variable φ usually is an order parameter with continuous values
ranging from 0 to 1. It very often serves as a phase indicator in combination with a
concentration field, c, of some solute species in solid body (Finel et al, 2010). Virtual
fields of order parameter φ � are considered with suitable regularity1. The virtual
power of internal generalized forces is defined by the integral over the volume D
⊂ B of a power density, which is assumed a priori to be a linear form represented
by the generalized stress measures a and b (Ammar et al, 2009):

P(i)(φ �,D) = −
∫
D

(aφ �+b ·∇φ �)dV

= −
∫
D

(a−∇ ·b )φ � dV −
∫
∂D

(b ·n )φ �dS (16.52)

The next step is to introduce the virtual power of external forces applied to the
considered body. It can be split into a virtual power density of long range volume
forces, which can include, in general, a volume density of scalar external generalized
forces γ and vector external generalized force γ :

P(e)(φ �,D) =
∫
D

(γφ �+ γ ·∇φ �)dV

=
∫
D

(γ−∇ · γ )φ � dV +
∫
∂D

(γ ·n )φ � dS (16.53)

and a virtual power density of generalized contact forces, represented by a surface
density ac of generalized traction:

P(c)(φ �,D) =
∫
∂D

acφ � dS (16.54)

1 In fact, as in distribution theory, it is sufficient to take them as differentiable at any order with
compact support.
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A possible power of inertial microforces is not envisaged here. According to the
principle of virtual power, the total virtual power of all forces vanishes on any
subdomain D ⊂ B and for any virtual order parameter field φ �:

P(i)(φ �,D)+P(c)(φ �,D)+P(e)(φ �,D) = 0, ∀φ �,∀D ⊂ B (16.55)

∫
D

(−a+∇ ·b + γ−∇ · γ )φ � dV +
∫
∂D

(ac −b ·n + γ ·n )φ � dS = 0 (16.56)

This identity can be satisfied for any field φ � and ∀D if and only if:

a−∇ · (b − γ )− γ = 0 in B, ac = (b − γ ) ·n on ∂B (16.57)

Equation (16.57)1 expresses the general form of balance of generalized stresses. It is
identical with Gurtin’s balance of microforces (Gurtin, 1996), except the external
microforce contribution γ that may exist in general. In the sequel, however, it is
assumed that γ = 0 and γ = 0 for the sake of brevity. The equation (16.57)2 represents
the boundary condition for the generalized traction vector.

State Laws and Dissipation Potential

According to the first principle of thermodynamics, the time variation of the total
energy in a material subdomain is equal to the power of external forces acting on it.
In the absence of inertial forces, the total energy is reduced to the internal energy
with density e. Then, the energy balance is stated as:∫

D

ε̇ dV = P(e) +P(c) =−P(i) =
∫
D

aφ̇ +b ·∇φ̇ dV (16.58)

This identity is valid for any subdomain D ⊂B. The local form of the energy balance
is obtained:

ε̇ = aφ̇ +b ·∇φ̇ = ∇ · (φ̇ b ) (16.59)

The entropy principle is formulated as follows:∫
D

η̇ dV ≥−
∫
∂D

Φ ·n dS and Φ =−μ J
T

(16.60)

where η is the entropy density, Φ the entropy flux, J the diffusion flux and μ the
diffusion potential (Villani et al, 2014). Using the equation of local conservation of
mass:

ċ =−∇ · J (16.61)



324 Samuel Forest

the following local form of the entropy inequality is obtained:

T η̇−∇ · (μJ )≥ 0 (16.62)

Combining the equation of the free energy density ψ̇ = ε̇ −T η̇ in the isothermal
case with Eqs. (16.59)–(16.62), leads to the Clausius-Duhem inequality:

−ψ̇+aφ̇ +b ·∇φ̇ − J ·∇μ−μ∇ · J ≥ 0 (16.63)

The free energy density is assumed to be a function of concentration c, order parame-
ter φ , as well as its gradient ∇φ . The Clausius-Duhem inequality can then be written
as follows:(

μ− ∂ψ
∂c

)
ċ+

(
a− ∂ψ

∂φ

)
φ̇ +

(
b − ∂ψ

∂∇φ

)
·∇φ̇ − J ·∇μ ≥ 0 (16.64)

For every admissible process and for any given (c, φ ,∇φ ), the inequality (16.64)
must hold for arbitrary values of ċ, φ̇ and ∇φ̇ . The microstress b (c,φ ,∇φ) and the
diffusion potential μ(c,φ ,∇φ) are assumed independent of ∇φ̇ and ċ. The following
state laws are deduced:

μ =
∂ψ
∂c

, b =
∂ f
∂∇φ

= A∇φ (16.65)

the latter equation being valid in the case of a quadratic potential w.r.t. ∇φ . The
Clausius-Duhem inequality then reduces to the residual dissipation:

D =−J ·∇μ+adisφ̇ ≥ 0 with adis = a− ∂ψ
∂φ

(16.66)

where adis is the chemical force associated with the dissipative processes, as intro-
duced in Gurtin (1996).

In order to define the complementary laws related to the dissipative processes, the
existence of a dissipation potential function Ω(∇μ,πdis) is assumed. The retained
specific form is the following:

Ω(∇μ,adis) =
1
2

L(φ)∇μ ·∇μ+
1

2β
adis2 (16.67)

where L(φ) and β are material parameters or functions.
The complementary evolution laws derive from the dissipation potential:

φ̇ =
∂Ω
∂adis =

1
β

adis, J =− ∂Ω
∂∇μ

=−L(φ)∇μ (16.68)

The convexity of the dissipation potential ensures the positivity of dissipation.
Combining Eqs. (16.66) and (16.68), one gets:
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a = β φ̇ +
∂ψ
∂φ

(16.69)

The substitution of the two state laws and the complementary laws, into the balance
equations for mass concentration and generalized stresses respectively leads to the
evolution equations for concentration and order parameter:

ċ =−∇ · (−L(φ)∇μ) =−∇ ·
(
−L(φ)∇

∂ψ
∂c

)
(16.70)

a−∇ ·b = β φ̇ −αΔφ +
∂ψ
∂φ

= 0 (16.71)

The usual diffusion and Cahn–Allen / Ginzburg–Landau equations are thus retrieved
(Finel et al, 2010).

In the previous theory, the free energy density depends on the gradient of the order
parameter but not on the concentration gradient. This possibility is investigated in
the next section.

16.5 On the Construction of the Cahn–Hilliard Diffusion Theory

The partial differential equation for the concentration field according to Cahn and
Hilliard (1958) is the following

ċ = κΔ(
∂ψ
∂c

−AΔc) (16.72)

with the special case: ċ = β∇2c−χ∇4c when the free energy potential is quadratic
w.r.t. c and ∇c. We present in this section three distinct derivations of these field
equations from first principles. The first one was initially proposed by Cahn and
Hilliard. The second one is based on the principle of virtual power with an additional
generalized balance equation, following Gurtin (1996). In the last subsection, a
variational formulation is proposed considering a second gradient theory of diffusion.

16.5.1 Usual Presentation Based on the Variational Derivative

A homogeneous material system is considered with composition c of a given so-
lute element. The free energy density ψ(c,∇c) is assumed to depend not only on
concentration but also on its gradient, as initially proposed by Cahn and Hilliard
(1958):
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F =
∫
B

ψ dV =
∫
B

(
ψ0(c)+κ1∇2c+κ2(∇c) · (∇c)

)
dV

=
∫
B

(
ψ0(c)+

1
2

A(∇c) · (∇c)
)

dV (16.73)

in the isotropic case. The second expression holds assuming (∇c) · n = 0 on ∂B.
The potential ψ0(c) is the usual potential depending on concentration in classical
diffusion theory. The variational derivative of the total free energy of the body is
defined as

δF =
∫
B

δψ dV =
∫
B

(
∂ψ
∂c

δc+
∂ψ
∂∇c

δ∇c
)

dV (16.74)

Note that ∇ · (δc∇c) = ∇c ·δ∇c+δcΔc so that∫
B

∇ · (δc∇c)dV =
∫
∂B

δc∇c ·n dS = 0, if ∇c ·n = 0 on ∂B

=
∫
B

∇c ·δ∇cdV +
∫
B

δcΔcdV (16.75)

Hence

δF =
∫
B

(
∂ψ0

∂c
−AΔc

)
δcdV (16.76)

The variational derivative of the free energy function then is

δψ
δc

:=
∂ψ0

∂c
−AΔc (16.77)

which makes sense only in the absence diffusion flux ∇c ·n on the boundary of the
body or in periodic systems. The balance of mass and Fick’s law for the mass flux
write

ċ =−∇ · J , J =−κ∇μ (16.78)

The diffusion potential μ is defined as the variational derivative of the free energy
density function:

μ :=
δψ
δc

(16.79)

The combination of mass balance, Fick’s law and constitutive potential ψ leads to
the Cahn-Hilliard equation:

ċ = ∇ ·
(
κ∇

δψ
δc

)
= κΔ

δψ
δc

= κΔ(
∂ψ0

∂c
−AΔc) (16.80)

This is the general form for a conserved quantity in contrast to non–conserved phase
field or order parameter considered in the previous section.



16 The Method of Virtual Power in Continuum Mechanics and Thermodynamics 327

16.5.2 Method of Virtual Power with Additional Balance Equation

The existence of a principle of virtual power w.r.t. to the concentration field and its
gradient is assumed. The power density of generalized internal and contact forces is

p(i) = aċ+b ·∇ċ, p(c) = acċ (16.81)

This leads to a field equation for the balance of generalized forces a and b , and
associated boundary conditions:

a = divb , b ·n = ac (16.82)

in addition to the balance of mass ċ = −divJ . The first and second principles
(isothermal case) take the form

ε̇ = p(i), −ψ̇+ p(i)−div(μJ )≥ 0 (16.83)

It should be noted that in the absence of concentration gradient in the free energy
potential, the generalized forces a and b identically vanish and the classical diffusion
theory is retrieved, as it should. The Clausius-Duhem inequality is

(a+μ− ∂ψ
∂c

)ċ+(b − ∂ψ
∂∇c

) ·∇ċ− J ·∇μ ≥ 0 (16.84)

leading to the state laws

μ =
∂ψ
∂c

−a, b =
∂ψ
∂∇c

(16.85)

Fick’s law (16.78) and the potential (16.73) are used again. The Cahn–Hilliard
equations are now obtained by combining the balance and constitutive equations in
the following way:

μ =
∂ψ
∂c

−a =
∂ψ
∂c

−divb =
∂ψ
∂c

−AΔc, (16.86)

ċ = −divJ = κΔμ = κΔ(
∂ψ
∂c

−AΔc) (16.87)

The Cahn–Hilliard model can also be derived from a more general theory introducing
micromorphic concentration or microconcentration variables cχ and its gradient in
addition to the concentration as done in Sect. 16.3 for the entropy or temperature.
The internal constraint c ≡ cχ leads to the previous equations (Forest, 2008). The mi-
croconcentration can be regarded as a description of the variance of the composition
inside the volume element.
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16.5.3 Second Gradient Diffusion Theory

The Cahn–Hilliard equations can also be interpreted as emerging from a second
gradient theory of diffusion. For that purpose, let us first recall the

16.5.3.1 Variational Formulation of Classical Diffusion

The variational formulation of the field and boundary equations of classical diffusion,
namely

−∇ · J + γ = ċ on B, j = J ·n on ∂B (16.88)

can be written in the form ∀c�,∀D ⊂ B

I (i)(c�,D)+I (c)(c�,D)+I (e)(c�,D)+I (a)(c�,D) = 0 (16.89)

for test compositions c� and with the following contributions

I (i)(c�,D) =
∫
D

J ·∇c� dV, I (c)(c�,D) =−
∫
∂D

jc� dS (16.90)

I (e)(c�,D) =
∫
D

γc� dV, I (a)(c�,D) =−
∫
D

ċ c� dV (16.91)

In other words, ∫
D

(−∇ · J + γ− ċ)c� dV +
∫
∂D

(J ·n − j)c� dS = 0 (16.92)

16.5.3.2 Variational Formulation of Second Gradient Diffusion

The internal contribution (16.90) is extended by introducing the second gradient of
the test functions and a generalized second order flux tensor:

I (i)(c�,D) =
∫
D

(
J ·∇c�+K∼ : ∇∇c�

)
dV (16.93)

Two integration by parts are necessary to obtain the form of the generalized surface
flux:
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I (i)(c�,D) =
∫
D

(
(Jic�),i +(Ki jc�,i), j − Ji,ic�−Ki j, jc�,i

)
dV

=
∫
D

(
(Jic�),i +(Ki jc�,i), j − Ji,ic�− (Ki j, jc�),i +Ki j,i jc�

)
dV

=
∫
∂D

(
Jic�+Ki jc�,i −Ki j, jc�

)
ni dS−

∫
D

(Ji,i −Ki j,i j)c� dV

=
∫
∂D

(
J −K∼ ·∇) ·n c� dS+

∫
∂V

(K∼ ·n ) ·∇c� dS−
∫
V

((J −K∼ ·∇) ·∇)c� dV

At this stage, tangent and normal derivatives, D t and Dn of the concentration field
on surfaces must be distinguished:

∇c = D tc+(Dnc)n , Dnc = ∇c ·n (16.94)

It follows that∫
∂D

(K∼ ·n ) ·∇c� dS =
∫
∂D

(K∼ ·n ) ·D tc
� dS+

∫
∂D

(n ·K∼ ·n )Dnc� dS (16.95)

An integration by parts of the integral involving the tangent derivative is possible:∫
∂D

(K∼ ·n ) ·D tc
� dS =

∫
∂D

D t · (K∼ ·n c�)dS−
∫
∂D

(D t · (K∼ ·n ))c� dS (16.96)

The divergence theorem for surfaces2 can be applied to the first term of the right-hand
side to get the final expression of

2 The divergence theorem for a closed and smooth surface ∂V (no edge) is∫
∂V

D t ·q dS =
∫
∂V

2C q ·n dS, with 2C = D t ·n

where C is the mean local curvature.

Proof. Evaluate

curl (n ×q ) = εi jkε jlm(nlqm)k e i =−ε jikε jlm(nl,kqm +nlqm,k)

= −(δilδkm −δimδkl)(nl,kqm +nlqm,k) =−(ni,kqk −qink,k +niqk,k −nkqi,k)

n · curl (n ×q ) = −(qknini,k −qinink,k +qk,k −qi,knink) = qinink,k −qk,k +qi,knink

= qinink,k −Dtiqi

since nini,k = 0 (‖n ‖= 1). Hence∫
∂V

D t ·q dS =
∫
∂V

q .n (divn )dS−
∫
∂V

n · curl (n ×q )dS
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I (i)(c�,D) =−
∫
D

(
(J −K∼ ·∇) ·∇)

c� dV

+
∫
∂D

(
(J −K∼ ·∇).n +(n ·K∼ ·n )2C −D t · (K∼ ·n )) c� dS+

∫
∂D

(
n ·K∼ ·n ) Dnc� dS

(16.97)
where C is the mean surface curvature. The form of the surface contribution can be
deduced from the previous calculation:

I (c)(c�,D) =
∫
∂D

( jc�+ kDnc�)dS (16.98)

where j and k are generalized prescribed mass flux surface densities. External contri-
butions take the form:

I (e)(c�,D) =
∫
D

(γc�+ γ ·∇c�+ γ
∼

: ∇∇c�)dV =
∫
V

(
γ− γ ·∇+ γ

∼
·∇ ·∇

)
c� dV

+
∫
∂V

(
γ ·n − (γ

∼
·∇) ·n −D t · (γ∼ ·n )+2C n · γ

∼
·n

)
c� dS+

∫
∂V

γ
∼

: (n ⊗n )Dnc� dS

(16.99)
The last contribution I (a)(c�,D) keeps the classical form (16.91).

The variational principle (16.89) is invoked again to derive the field equations:

ċ =−J e f f ·∇+ γ (16.100)

with the effective3 tensor diffusion flux defined as

J e f f = J + γ − (K∼ + γ
∼
) ·∇ (16.101)

The associated boundary conditions for simple and double flux are

j = J e f f ·n +2R(K∼ + γ
∼
) : (n ⊗n )− ((K∼ + γ

∼
) ·n ) ·D t ,

k = (K∼ + γ
∼
) : (n ⊗n )

(16.102)

The energy and entropy principles (isothermal case) take the following form

Ė = I (e), ε̇ = γ ċ+ γ ·∇ċ+ γ
∼

: ∇∇ċ, T Ṡ ≥
∫
∂V

TΦ ·n dV (16.103)

The last term vanishes due to Stokes theorem:
∫
S
(curl A ) ·n dS = −∮

Γ A · l dl and Γ = /0 for a

closed surface. Finally, note that

nk,l = Dtlnk +nk, jnknl =⇒ nk,k = Dtknk, divn = D t ·n �

3 This is similar to Germain’s effective stress whose divergence arises in the strain gradient balance
of momentum equation.
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In contrast to the formulation (16.83), there is no internal energy contribution due to
composition rate and its gradient (only the source terms γ,γ ,γ

∼
), as in the classical

case. The new contributions are included in the extended entropy flux (Maugin and
Muschik, 1994):

TΦ = μJ e f f +TΦ extra (16.104)

The Clausius–Duhem inequality (for vanishing γ,γ ,γ
∼
≡ 0) then reads

−ψ̇−∇ · (TΦ extra)−∇ · (μJ e f f )≥ 0

−
(
∂ψ
∂c

−∇ · ∂ψ
∂∇c

−μ
)

ċ−∇ ·
(

TΦ extra +
∂ψ
∂∇c

ċ
)
− J e f f ·∇μ ≥ 0

The chemical potential is now defined as

μ =
∂ψ
∂c

−∇ · ∂ψ
∂∇c

(16.105)

The following constitutive choices are made ensuring positivity of dissipation:

• extra–entropy flux

TΦ extra =− ∂ψ
∂∇c

ċ (16.106)

• generalized Fick law
J e f f =−κ∼ ·∇μ (16.107)

• corresponding constitutive equations for J and K∼

J e f f = J −K∼ ·∇ =−κ∼ · (∇(
∂ψ
∂c

−∇ · ∂ψ
∂∇c

)) (16.108)

with

J =−κ∼ ·
∂ψ
∂c

, K∼ =−(∇ · ∂ψ
∂∇c

)κ∼ (16.109)

(for uniform diffusion coefficients κ∼).

16.6 Conclusions

The development of continuum theories involving the gradient of field variables re-
quires the introduction of suited (conjugate) generalized forces and stresses fulfilling
higher order or additional balance equations. Such models can be constructed in an
efficient and rigorous manner by applying the method of virtual power. It has been
illustrated in the case of gradient and micromorphic plasticity and can be extended to
damage and other internal variable theories in a straightforward way. The applica-
tion to nonmechanical fields like temperature, microtemperature, concentration or
microconcentration was shown to be possible even though it remains rather formal.



332 Samuel Forest

It provides new higher order diffusion equations that can be compared to existing
ones derived from different concepts. For instance, micromechanically motivated
higher-order continuum formulation of linear thermal conduction was proposed in
Temizer and Wriggers (2010) based on a second gradient of temperature model
very close to the formulation proposed in Sect. 16.5.3. In particular the higher order
boundary conditions are the same. These boundary conditions, involving surface
curvature effects, differ from the ones derived by means of an additional balance laws
in Subsect. 16.5.2. Two different views of the Cahn–Hilliard model were presented,
one based on an additional balance equation, the second one based on second gradient
diffusion theory, all derived using the method of virtual power. The different inter-
play between generalized forces and the use of extra–entropy flux leads to different
boundary conditions. This combination of kinematic and constitutive choices was
discussed many times by G.A. Maugin who tried in each situation to reduce the
arbitrariness in the choice of generalized forces and extra–entropy flux vectors.

References

Aifantis E (1984) On the microstructural origin of certain inelastic models. Journal of Engineering
Materials and Technology 106:326–330

Altenbach H, Maugin GA, Erofeev V (2011) Mechanics of Generalized Continua, Advanced
Structured Materials, vol 7. Springer, Heidelberg

Ammar K, Appolaire B, Cailletaud G, Feyel F, Forest S (2009) Finite element formulation of a
phase field model based on the concept of generalized stresses. Computational Materials Science
45:800–805

Aslan O, Forest S (2011) The micromorphic versus phase field approach to gradient plasticity and
damage with application to cracking in metal single crystals. In: de Borst R, Ramm E (eds)
Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational
Mechanics 55, Springer, pp 135–154

Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal
plasticity and damage. International Journal of Engineering Science 49:1311–1325

Cahn J, Hilliard J (1958) Free energy of a nonuniform system. I. Interfacial free energy. The Journal
of Chemical Physics 28:258–267

Coleman B, Mizel J (1963) Thermodynamics and departures from Fourier’s law of heat conduction.
Arch Rational Mech and Anal 13:245–261

Coleman B, Noll W (1963) The thermodynamics of elastic materials with heat conduction and
viscosity. Arch Rational Mech and Anal 13:167–178

Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to
media presenting singular surfaces and interfaces. Acta Mechanica 60:217–240

dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and
intersticial working allowed by the principle of virtual power. CR Acad Sci Paris IIb 321:303–308

dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of
Cauchy cuts in N-th gradient continua: approach “à la D’Alembert". Zeitschrift für Angewandte
Mathematik und Physik 63:1119–1141

Finel A, Le Bouar Y, Gaubert A, Salman U (2010) Phase field methods: Microstructures, mechanical
properties and complexity. Comptes Rendus Physique 11:245–256

Forest S (2008) The micromorphic approach to plasticity and diffusion. In: Jeulin D, Forest S
(eds) Continuum Models and Discrete Systems 11, Proceedings of the international conference
CMDS11, Les Presses de l’Ecole des Mines de Paris, Paris, France, pp 105–112



16 The Method of Virtual Power in Continuum Mechanics and Thermodynamics 333

Forest S (2009) The micromorphic approach for gradient elasticity, viscoplasticity and damage.
ASCE Journal of Engineering Mechanics 135:117–131

Forest S (2016) Nonlinear regularisation operators as derived from the micromorphic approach to
gradient elasticity, viscoplasticity and damage. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 472(2188)

Forest S, Aifantis EC (2010) Some links between recent gradient thermo-elasto-plasticity theories
and the thermomechanics of generalized continua. International Journal of Solids and Structures
47:3367–3376

Forest S, Amestoy M (2008) Hypertemperature in thermoelastic solids. Comptes Rendus Mécanique
336:347–353

Forest S, Bertram A (2011) Formulations of strain gradient plasticity. In: Altenbach H, Maugin
GA, Erofeev V (eds) Mechanics of Generalized Continua, Advanced Structured Materials vol. 7,
Springer, pp 137–150

Forest S, Sab K (2012) Continuum stress gradient theory. Mechanics Research Communications
40:16–25

Forest S, Sab K (2017) Finite-deformation second-order micromorphic theory and its relations to
strain and stress gradient models. Mathematics and Mechanics of Solids

Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J
Solids Structures 33:1083–1103

Germain P (1973a) La méthode des puissances virtuelles en mécanique des milieux continus,
première partie : théorie du second gradient. J de Mécanique 12:235–274

Germain P (1973b) The method of virtual power in continuum mechanics. Part 2: Microstructure.
SIAM J Appl Math 25:556–575

Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. Journal of Applied Mechanics
50:1010–1020

Gurtin M (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce
balance. Physica D 92:178–192

Gurtin M (2003) On a framework for small–deformation viscoplasticity: free energy, microforces,
strain gradients. International Journal of Plasticity 19:47–90

Gurtin M, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated
plastic strain: The theories of Aifantis and Fleck & Hutchinson and their generalization. Journal
of the Mechanics and Physics of Solids 57:405–421

Ireman P, Nguyen QS (2004) Using the gradients of temperature and internal parameters in contin-
uum mechanics. CR Mécanique 332:249–255

Liu W, Saanouni K, Forest S, Hu P (2017) The micromorphic approach to generalized heat equations.
Journal of Non-Equilibrium Thermodynamics 42(4):327–358

Maugin GA (1980) The method of virtual power in continuum mechanics: Application to coupled
fields. Acta Mechanica 35:1–70

Maugin GA (1990) Internal variables and dissipative structures. J Non–Equilib Thermodyn 15:173–
192

Maugin GA (1992) Thermomechanics of Plasticity and Fracture. Cambridge University Press
Maugin GA (1999) Thermomechanics of Nonlinear Irreversible Behaviors. World Scientific
Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak

nonlocality. Archives of Applied Mechanics 75:723–738
Maugin GA (2013) The principle of virtual power: from eliminating metaphysical forces to providing

an efficient modelling tool. Continuum Mechanics and Thermodynamics 25:127–146
Maugin GA, Metrikine AV (eds) (2010) Mechanics of Generalized Continua - One Hundred Years

After the Cosserats, Advances in Mechanics and Mathematics, vol 21. Springer, New York
Maugin GA, Muschik W (1994) Thermodynamics with internal variables, Part I. General concepts.

J Non-Equilib Thermodyn 19:217–249
Mindlin R (1965) Second gradient of strain and surface–tension in linear elasticity. Int J Solids

Structures 1:417–438
Nguyen QS (2010a) Gradient thermodynamics and heat equations. Comptes Rendus Mécanique

338:321–326



334 Samuel Forest

Nguyen QS (2010b) On standard dissipative gradient models. Annals of Solid and Structural
Mechanics 1(2):79–86

Nguyen QS (2016) Quasi-static responses and variational principles in gradient plasticity. Journal
of the Mechanics and Physics of Solids 97:156 – 167

Saanouni K, Hamed M (2013) Micromorphic approach for finite gradient-elastoplasticity fully
coupled with ductile damage: Formulation and computational aspects. International Journal of
Solids and Structures 50:2289–2309

Svendsen B (1999) On the thermodynamics of thermoelastic materials with additional scalar degrees
of freedom. Continuum Mechanics and Thermodynamics 4:247–262

Temizer I, Wriggers P (2010) A micromechanically motivated higher–order continuum formulation
of linear thermal conduction. ZAMM 90:768–782

Villani A, Busso E, Ammar K, Forest S, Geers M (2014) A fully coupled diffusional-mechanical
formulation: numerical implementation, analytical validation, and effects of plasticity on equi-
librium. Archive of Applied Mechanics 84:1647–1664


	16 Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and Thermodynamics 

	Abstract
	16.1 Introduction
	16.2 Micromorphic and Gradient Plasticity
	16.2.1 The Micromorphic Approach to Gradient Plasticity
	16.2.2 Direct Construction of Gradient Plasticity Theory

	16.3 Gradient of Entropy or Temperature Models
	16.3.1 A Principle of Virtual Power for Entropy
	16.3.2 Gradient of Entropy or Gradient of Temperature?

	16.4 The Method of Virtual Power Applied to Phase Field Modelling
	State Laws and Dissipation Potential

	16.5 On the Construction of the Cahn–Hilliard Diffusion Theory
	16.5.1 Usual Presentation Based on the Variational Derivative

	16.5.2 Method of Virtual Power with Additional Balance Equation
	16.5.3 Second Gradient Diffusion Theory
	16.5.3.1 Variational Formulation of Classical Diffusion
	16.5.3.2 Variational Formulation of Second Gradient Diffusion


	16.6 Conclusions
	References




