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PREFACE TO THE ENGLISH EDITION

This work deals with elastic models of crystal defects, a field situated at the boundary
between continuum mechanics and solid state physics.

The understanding of the behaviour of crystal defects has become unavoidable
for studying such processes as anelasticity, internal damping, plastic flow, rupture,
fatigue, and radiation damage, which play a determining role in various fields of mate-
rials science and in top technological areas. On the other hand, the lattice distortion
produced by a crystal defect can be calculated by means of elastic models, at least at
sufficiently large distances from the defect. Furthermore, the interaction of a crystal
defect with other defects and with applied loads is mainly due to the interaction of
their elastic states. This explains the permanent endeavour to improve the elastic
models of crystal defects, e.g. by taking into account anisotropic and non-linear
elastic effects and by combining elastic with atomistic models in order to achieve a
better description of the highly distorted regions near the defects.

This book has grown out of a two-semester course on ‘“‘Continuum Mechanics
with Applications to Solid State Physics” held by the author some ten years ago
at the University of Stuttgart, which was an attempt to unify the topic with recent
developments that have made continuum mechanics a highly deductive science. Since
then, the extension of the application area and the development of new computing
techniques have considerably enlarged the field and changed the plan of the work.
However, the stress is still laid on theory and method: the problems solved are illus-
trative and intended to serve as background for approaching more complex or more
specific applications. Moreover, their choice is inevitably influenced by the preference
of the author for subjects to which personal contributions have been brought.

Chapter I concerns the basic concepts and laws of the kinematics, dynamics,
and thermodynamics of deformable continuous media, the linear and non-linear
elastic constitutive equations, as well as the formulation and solving of the boundary-
value problems of linear elastostatics. Special attention is given to anisotropic elasti-
city, to the accurate formulation of boundary-value problems involving infinite domains
and concentrated forces, and to the determination of Green’s tensor function, in
view of the importance of these topics for the simulation of crystal defects.

Chapter II contains a systematic study of the elastic states of single straight
or curvilinear dislocations, of the elastic interactions between single dislocations,
and of moving dislocations. The emphasis lies on the anisotropic elasticity theory
of dislocations, especially on the powerful methods developed during the last ten years
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for the computation of the elastic states of dislocation loops by means of straight
dislocation data.

Chapter III presents the main results obtained so far in describing non-linear
effects in the elastic field of straight dislocations, as well as in the study of the core
configuration of dislocations by using semidiscrete methods.

Chapter 1V is devoted to the linear and non-linear theory of continuous distri-
butions of dislocations and to its application to investigating the influence of dislo-
cations on crystal density and on the low-temperature thermal conductivity of crystals.

Chapter V deals with the modelling of point defects as rigid or elastic inclusions
in an elastic matrix, or as force multipoles. Finally, some of the results available
on the interactions between point defects and other crystal defects are briefly reviewed.

Although the material in the text covers mainly the mathematical theory of
crystal defects, the author has been constantly concerned with emphasizing the
Dphysical significance of the results and some of their possible applications. The
reader can easily enlarge his information in these directions by reference to the stan-
dard books on crystal defects by Cottrell [84], Read [275], Friedel [124], Kroner
[190], van Bueren [365], Indenbom [167], Nabarro [258], Hirth and Lothe [162],
or to the review articles by Seeger [286], Eshelby [111], de Wit [385], and Bullough
[50].

Printed jointly with Springer-Verlag, the English edition is a revised and up-dated
version of the Romanian book ‘“‘Modele elastice ale defectelor cristaline’, published
in 1977 by Editura Academiei. The present edition is supplemented by several subsec-
tions concerning the simulation of crystal dislocations by means of Volterra and Somi-
gliana dislocations, the dislocation loops in anisotropic media, the interaction of crystal
defects, and the flexible-boundary semidiscrete methods, as well as by a review of the
main results published in the last four years.

The author expresses his deep gratitude to Prof. A. Seeger and Prof. E. Kréner
Jor continuous encouragement to writing this book and for numerous discussions on
the application of continuum mechanics to the simulation of crystal defects. The
author is also greatly indebted to Dr. E. Sods for his valuable detailed criticism of
the manuscript.



CHAPTER [

FUNDAMENTALS OF THE THEORY
OF ELASTICITY

Before broaching the very subject of this chapter, we shall review briefly the basic
elements of vector and tensor calculus that are necessary in the present work. This
will also allow the reader to become familiar with the system of notation used in
the following.

1. Vectors and tensors

1.1. Elements of vector and tensor algebra

We denote by & the three-dimensional Euclidean space; its elements P, Q, ..
are called points. The translation vector space associated with & is denoted by ¥~
and its elements u, v, ... are called vectors.

The scalar product of the vectors u and v is denoted by u.v. The magnitude
of the vector u is the non-negative real number

(ul = Vu-u. (1.1)

Since ¥ is also three-dimensional, any triplet of non-coplanar vectors is a
basis of 7, and any vector of ¥~ can be written as a linear combination of the basis
vectors. A Cartesian co-ordinate frame consists of an orthonormal basis {e,} =
= {e;, &;, €;} and a point O called the origin. Then

€€y =0m k,m=123, (1.2)
where
1 for k=m
Sim = (1.3)
0 for k#m

—
is the Kronecker delta. The vector OP = x is called the position vector of the point
Pe §. Clearly, the correspondence between points and their position vectors is
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one-to-one. Therefore, we shall sometimes label points by their position vectors,
referring for conciseness to the point P whose position vector is x as “the point x”.

The real numbers u,, u,, u;, uniquely defined by the relation
U= u,€; + ue;, + uze; 1.4

are called the Cartesian components of the vector u.

Both direct notation, using only vector and tensor symbols, and indicial nota-
tion, making use of vector and tensor components, will be employed throughout.
Whenever indicial notation is used, the subscripts are assumed to range over the
integers 1, 2, 3, and summation over twice repeated subscripts is implied, e.g.

u-v =y, = 0, + U0, + u.v;. (1.5)

From (1.4) and (1.2) we see that the Cartesian components of u can be also
defined by

U, = u-e (1.6)

The vector product of two vectors u and v is denoted by u X v. In view of (1.4)
we can write

€ X € = €41l )}
where €,,,, is the alternator symbol. A direct proof shows that

1 for klm = 123, 231, 312
1 for kim = 132, 213, 321 (1.8)

klm

0 for any other values of kim.

From (1.4) and (1.7) it follows that
u X V=€, U0,e. (1.9
We notice that the symbols g, satisfy the identities
0ij Oim Oin
Okj Okm Okn |2 (1.10)

iK1 Sjmn =

€
Ialj 5lm 51:1

€i1€imn = 5km51n - 6kn51m' (111)
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A second-order tensor A is a linear mapping® that assigns to each vector u
a vector

v = Au (1.12)

We denote by & the set of all second-order tensors defined on ¥". The sum
A -+ B of two tensors A, B€ ¥ is defined by

(A + B)u = Au + Bu, (1.13)
and the product of a tensor A€ ¥ and a real number o by
(xA)u = a(Au). (1.14)

The space & endowed with the composition rules (1.13) and (1.14) is also a vector
space.
The unit tensor 1 and the zero tensor 0 are defined by the relations

Iu=u, Ou=20 for every ue?vy’, (1.15)

where 0 is the zero vector.
The tensor product uv of two vectors u and v is the second-order tensor
defined by '

(uv)w = u(v-w) for every we 7. (1.16)
It can be shown that if f, and g,, are two arbitrary bases of ¥7, then the tensor
products f,g,, k,m = 1,2, 3, are a basis of &, which is thus a nine-dimensional

vector space. In particular, the tensor products ee,, k, m = 1,2, 3, are a basis
of £, and we can write for every A€ &

A = A4;.ee,. 1.17)

The nine real numbers A,,, uniquely defined by (1.17), are called the Cartesian
components of the tensor A. From (1.17), (1.16), and (1.2), we deduce the relation

Aim = epo(Aey,), (1.18)

which can be considered as an equivalent definition of the tensor components.
In particular, by applying this definition to the unit tensor and taking into account
(1.15); and (1.2), we infer that J,,, are the Cartesian components of the unit tensor,
ie.

1 = 5kmekem.

1 This definition can still be applied when 4 is an arbitrary vector space.
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If v = Aw, we also have by (1.17) and (1.16)

V= (Aim€s€m) 0 = Ay, €,
and hence
vk = A,,mu,,,. (1.19)

The product AB of two tensors A and B is defined by the composition rule

(AB) u = A(Bu) for every ue ¥,

wherefrom it follows that
(AB)im = ApBym- (1.20)

The transpose of the tensor A = A,,e.e, is the tensor AT = 4,,e.c,.. A
second-order tensor A is called symmetric if AT = A, and skew or antisymmetric
if AT = —A. By defining

symA =3 (A + A7), skwA = (A — A7)

as the symmetric part and the skew part of an arbitrary second-order tensor A,
we can always write

A = sym A + skw A.
Given any skew tensor Q, there exists a unique vector @ such that
Qu =@ X u for every ue¥. (1.21)

Indeed, from (1.21), (1.9), and (1.11), it results that
;= — lieijkgjks Q= —€;Wy. (1.22)

The vector ®, uniquely defined by (1.22),, is called the axial vector of the skew
tensor Q.
The trace of A€ & is the real number

trA=A,,. (1.23)

The passing from A to tr A is called (tensor) contraction. It is easily seen that
tr AT =tr A, tr(AB) = tr(BA). (1.24)
The inner product A -B of two second-order tensors A and B is the real number

A.B = tr(AB7) = A, B, (1.25)
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while the magnitude of A is the real number
Al =VA-A =V dimAim - (1.26)

The determinant det A of the tensor A is defined by
det A = det [4,,], (1.27n

where [A4,,] denotes the matrix of the Cartesian components of A. From this defi-
nition and some well-known rules of matrix algebra, we see that for every A, Be £

det AT = det A, det(AB) = (det A)(det B). (1.28)

If det A # 0, there exists a unique inverse linear transformation A=l of ¥ on ¥~
such that if v =Au then u= A™1v for every u, ve¥". From these two equations and
(1.15), it follows that

AAT1=A"A=1 (1.29)

The tensor A~1is called the inverse tensor of A.
A tensor Q is said to be orthogonal if

QQ" =1, 04;0m, = Oim (1.30)

By (1.30) and (1.28) we have (det Q)? = 1, det Q = 1. Hence, every orthogonal
tensor admits an inverse and, by (1.30);, Q~* = Q7. The set of all orthogonal ten-
sors forms a group, called the orthogonal group ; the set of all orthogonal tensors
with determinant equal to -1 forms a subgroup of the orthogonal group, called the
proper orthogonal group.

A tensor of w’th order is a linear mapping that assigns to each vector ue ¥~
a tensor of (n — 1)’st order, n = 3. Combining this definition with that of a second-
order tensor given above allows the iterative introduction of tensors of an arbitrary
order. We denote by %, the space of all tensors of order ».

The tensor product wi, ... w, is a tensor of n’th orderdefined asa linear
mapping of ¥ in &£, _; by the relation

(wuy ... w, _yu,)V=um, ...u, ,(u,-v) for every v€ ¥,

It can be shown that the tensor products e, ... e, ky, ..., k, =1,2,3, form a
basis of &,. Hence %, is 3*-dimensional, and every tensor ®€ ¥, can be written
uniquely in the form

D=0, &, -, (1.31)
where @, ... are the Cartesian components of ®. Moreover, if ¥ = ®u, then

Yiroknes = Prs o b
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Let us consider now the transformation rules of vector and tensor components
when passing from the orthonormal basis {e,} to another orthonormal basis {e;}.
Denote by

Gy = €€ = cos(ey, €y), k,r=1,2,3, (1.32)
the direction cosines of the unit vectors e, with respect to the unit vectors e,;. By
{1.4) and (1.6), we obviously have

& = i€ € = i€ (1.33)
wherefrom

Der9ks — 5rs’ Gy = 5kl'
Substituting successively (1.33) into the relation
u = e, = ue,,

and taking into account the unicity of Cartesian components, we obtain the trans-
formation rule of the vector components

U = Quelhys  Ur = Qrliy. (1.34)
In a similar way, the transformation rule of the components of a second-order

tensor A reads
Akm = qqumsA;s’ A;s = qqumsAkm’ (1'35)
the generalization for higher-order tensors being evident.

A real number A is said to be a principal or characteristic value of a second-
order tensor A if there exists a unit vector m such that

An = Jn; (1.36)

in this case m is called a principal direction corresponding to A.

It can be shown (see, e.g. Halmos [151], Sect. 79) that if A is a symmetric
second-order tensor, then there exists an orthonormal basis m;, m,, n; and three
(not necessarily distinct) principal values 4;, 45, 4; of A such that

3
k=1

If A, = A, equation (1.37) reduces to
A = Ann, -+ 4,1 — o). (1.37a)
Finally, if A, = A, = 45, then
A=\1 (1.37b)
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This theorem, called the spectral theorem, is of great importance for the elasticity
theory. For instance, it implies the existence of the principal values of the strain
tensor and of the Cauchy stress tensor for these are symmetric second-order tensors.

1.2. Elements of vector and tensor analysis

In this section we choose a fixed Cartesian co-ordinate frame in &, with origin O

and orthonormal basis {e,, e,, e;}. Let (x, x5, x;) denote the Cartesian co-ordinates
—_

of a point P€ & with respect to this frame. The position vector OP = X can be

written as

X = xkek-

For the sake of simplicity we denote the partial derivative 0(.)/0x; by (.),-

Let D be an open set in &. A function ® that assigns to each point P€ D
a scalar, vector, or tensor ®(P) is called scalar, vector, or tensor field on D, respective-
ly. A vector or tensor field is said to be of class C* on D if its components with
respect to the fixed co-ordinate frame are continuous on D together with their par-
tial derivatives up to the »’th order.

—

Let @ be a scalar, vector, or tensorfield on &. Denoting [JOP|| = r, we shall
write ®(P) = O(™) as r - o, or ®(P)= o(r") as r —» oo, according to whether
the expression [r~*®(P)| is bounded or tends to zero as r — co. The same system
of notation will be used to describe analogous properties for r — 0.

Consider a scalar field F of class C. The gradient of Fis the vector field

grad F=F, e, (1.38)

Let u be a vector field of class C! on D. The gradient of u is the second-order
tensor field !
grad u =y, e.e,, (1.39)
the curl of u is the vector field

curl u=€_,u, e,, (1.40)
and the divergence of u is the scalar field
dive = tr(grad u) = u,, . (1.41)

These operators, as well as those subsequently introduced in this section, can be
also defined as linear mappings between scalar, vector, or tensor spaces (see, €.g.
Gurtin [150), Sect. 4), and hence they are independent of the co-ordinate system.

1 Note that we use throughout the so-called right-hand gradients, curls, and divergences
of vector and tensor fields (cf. Malvern [227], Sect. 2.5, Jaunzemis [433], p. 88).

2 — 120
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We shall also use the symmetric gradient of u, which is the symmetric part
of grad wu, i.e.

symgrad 0 = % Uy, + U, 1) € (1.42)

Next, let A be a second-order tensor field of class C* on D. The gradient of A
is the third-order tensor field

grad A = 4;,,,€:€,€., (1.43)
the curl of A is the second-order tensor field
curl A =€,,.4,, ee,, (1.44)
and the divergence of A is the vector field
divA = 4,,, .- (1.45)

For a tensor field A of class C? we shall also use the so-called incompatibility of A,
which is the second-order tensor field !

inc A = ——Eiklejm,,A,mkmeiej. (1.46)

Finally, we define the Laplacian of a scalar field F and that of a vector field u,
both of class C2 on D, by the relations

AF = div(grad F) = F,,, 1.47)»
Au = div (grad u) = u, ;. (1.48)

It can be shown by a direct calculation that if F, u, and A are of class C? on
D, then they satisfy the identities

curl (grad F) =0, curl(grad u) = 0, (1.49)
div(curl u) = 0, div(curl A) = o, (1.50)
and if w and A are of class C® on D, then

inc(symgrad u) = 0, div(incA) = 0. (1.51)

1 This operator has been introduced by Krdner [190]. Its name is justified by the fact
that the compatibility equations in the linear theory of elasticity can be written as inc E = 0
where E is the infinitesimal strain tensor (cf. Sect. 2.7). In other words, infinitesimal strains are
compatible only if the “incompatibility® of the infinitesimal strain tensor vanishes.
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Let V be a finite region in &, bounded by a two-sided and piecewise smooth
surface S, and designate by n the outward unit normal to S (Fig. 1.1). It can be

n
n
S
S
Fig. 1.1. On the application of Fig. 1.2. On the application
Gauss’ formulae. of Stokes’ formulae.

shown that if uis a vector field and A is a second-order tensor field, both of which
are of class C* on ¥V = V y S, then

S u-nds—_—g divudo, (1.52)
s v

S Ands = S div A dv. (1.53)
Js v

These integral transformations, sometimes called Gauss’ formulae, are still valid
for unbounded regions, provided u and A are of bounded support.

Let S be a closed two-sided and piecewise smooth surface, bounded by a
closed simple and piecewise smooth curve (Fig. 1.2). Then, given any vector field
u and any second-order tensor field A, both assumed of class C! in some neigh-
bourhood of S = S U L, the following integral transformations, known as Stokes’
formulae, hold

% u-dx = — S (curl w)-n ds, (1.54)
L s

f’; Adx = — S (curl A) n ds, (1.55)
L s

where n is one of the unit normals to S, and the integration sense on L is chosen
clockwise when looking down along n.

1.3. Orthogonal curvilinear co-ordinates.
Physical components of vectors and tensers

The formulation of the boundary-value problems in the elasticity theory can be sometimes sig-
nificantly simplified by passing from the Cartesian co-ordinates x; to a suitably chosen system of
curvilinear co-ordinates, say 0,. In general, such a system is introduced by the transformation

Xk = xk(oa), k; a = 1:2,3, (1.56)
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which is supposed to be one-to-one and continuously differentiable, except some possible singular
points or curves. Hence, excluding from & these possible singularities, we have

ox,
det| —= | 0, (1.57)
09,
X3
93
] e<3)
! > ‘qe 03
curve 6, G
) E2>
@ 'g Fig. 1.3. Curvilinear co-ordinates
x g 2 64, natural basis {g,}, and corres-
© ponding orthonormal basis {e,,,} of
. physical components, a =1, 2, 3.
3
€, X2
0

e

Xy
and there exists an inverse transformation

0, = 0,(xp), (1.58)

which is also continuously differentiable.

If 6, is held constant, the three equations (1.56) define parametrically a surface, giving its
Cartesian co-ordinates as a function of the parameters 0, and 6;. This surface is called a 6,-surface;
0,- and 60;-surfaces are defined in a similar way. The three co-ordinate surfaces intersect by pairs in
three co-ordinate curves, on each of which varies only one curvilinear co-ordinate. Through any
regular point of the space there passes one and only one co-ordinate curve of each family (Fig. 1.3).

To each point P& & we can associate a so-called natural basis composed of the three
vectors
ox Oxy,

=2 1.59
90, 00, © (1:59)

g, =

which are tangent at P to the co-ordinate curves, and are linearly independent by virtue of (1.57).
However, when the curvilinear co-ordinates have different physical dimensions, the vector and
tensor components with respect to the natural basis have also different physical dimensions,
thus complicating the analysis. To avoid this difficulty, the vectors of the natural basis are usually
replaced by the corresponding unit vectors

e ——1-— g, (no sum), (1.60)

<> i
-4

where h, = lig,Il.

In the following we consider only orthogonal curvilinear co-ordinates. In this case the co-or-
dinate curves through any point P are mutually orthogonal, and the basis {e,} is orthonormal
Fig. 1.3), while its orientation is generally point-dependent.
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The vector and tensor components with respect to the basis {e,} are called physical
components; they will be labelled by sharp brackets { ). For example, the physical components

A cap> of a second-order tensor A will be defined by
A= A<¢ﬁ>e<¢>e<p>- (1.61)
Denoting as above by
k> = ©k €coy0 k,a=1,2,3, (1.62)

the direction cosines of the unit vectors e; with respect to the unit vectors € > WE obtain from
(1.33) the transformation formulae

€k = Grce>Cear €o> = ThcasCke (1.63)

Next, from (1.34) and (1.35) it follows that the physical components of a vector u and of a se-
cond-order tensor A are connected with their respective Cartesian components by the relations

Up = Greqstcas Ueas = Dpcartk
(1.64)
Agm = qk<q>qm<ﬁ>A<a,5>’ A<¢ﬁ> qk(a>qm<ﬂ>A

By using these formulae and taking into account that now the G1eq> S are functions of Pe &,

it is possible to deduce the expressions in physical components of the operators defined in Sect. 1.2.
In particular, by using (1.47), (1.39), and (1.45), it can be shown that

AF =0,9 ,F + {Bap) 2 a5t (1.65)
gradu =3 <8 Uyt {Bya) u y>) x> (1.66)
GV A = Qg agy + Bra> Acyp+ B> Acgy) € .67

where F(P) is a scalar field, u(P) is a vector field, and A(P) is a second-order tensor field, all of them
of class C1; the symbols (aﬂy> are defined by the relation

a<a>e<ﬁ> =<abyye Ceyss (1.68)
where
i}
a0,

(no sum). (1.69)

1
a<al> = h—a-
From (1.68) and (1.63) it follows that

{apy) = ey’ <a>qk<ﬁ> (1.70)

Since TrepsTreys = Gﬁy, equation (1.70) can be rewritten as

(aBy) = — GrepcasTicys = —<avB),
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and hence the symbol {efy) is antisymmetric in the 1ast two indexes. Moreover, it can be shown
[227] that {afy) = 0, except when § # y and a = f or @ = , and that for a # f

€;

1
<aﬁa) = - (aaﬂ) = 'h_a'a<§>ha

> <ee

(no sum),

Fig. 1.4. Cylindrical co-ordinates

p, 6, z and corresponding ortho-

normal basis {e,, eg, €;} of physical
components.

€

X
3 2
€

X4

The last formula allows the calculation of all non-zero {afy)-symbols. However, the direct use of

the definition (1.68) sometimes leads more easily to the same result.

We finally give the main results that are obtained when applying the above formalism to
cylindrical and spherical co-ordinates. For the sake of simplicity we denote in this case the curvi-
linear co-ordinates 6,, 6;, 6, by (p, 9, z), respectively (p, 6, ¢), and thus the sharp brackets of

the subscripts may be omitted without possible confusion.

We limit ourselves to indicate only the non-zero symbols g, ,, and (afy), as well as the
physical components of the fields H = grad u, E = symgrad u, div A, and A4F, which occur sys-

tematically in the theory of elasticity.

Cylindrical co-ordinates (Fig. 1.4): 0, = p, 0, = 0, 0, = z.

x; = pcos 0, X, = psin 0, X3 = Z.
hp=1, h9=p, hz=1-
@z:=1, @p=0q=c0sb, g = —g9=sinb.

1
(Opby = — (bp) = —.
p

du, 1 du, uy Ou,

2 F
p 00 p bz 0z ’

allo 1 0uo up Ouo
Hy, = . =——4+ - H, =
%= 3, 00 pae+p 60z = 50 (
_ ou, 1 Ou, _ Ou,

0z

1.71)
1.72)

(1.73)

(.79

(1.75)
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_ Oup 1 (1 ou, Oug uo),]
Y P2 \p a6 ap p
1 (0u Ou, ou,
E,, =— |2 . =
7z 2 [ 0z + dp ) ", [
1 6”9 Ilp 1 3uo 1 3uz
E, = —_ E, = —1—- _ L)
06 p 00 + p 0z ( 0z + p 00 ]
0A4 1 94 04 1
div A), = 22 4 — —#0 P2 1 (4, — Agp),
Wiv A=, 5 a6 5z T Woe,— Ae0
0dg, 1 0Agg 04y, 1
div A)g = —2 + — —(4 Ago),
(@iv A o a0 e +P(p9+ oh
04, 1 0A, 04, 1
iv A), = —2 4 — — Azp.
(div A), ap s 90 9z + P zp
AF — 1 9 ( oF 1 0%F 02F
T ") T e T e

Spherical co-ordinates (Fig. 1.5): 6, =r, 0,=10, 6, = o.
Xx; = rsin 0 cos ¢, Xy = rsin 0 sin @, X3 = rcos 0,

=1, hg=r, hy, =r sin 0.

Fig. 1.5. Spherical co-ordinates r,

6, ¢ and corresponding ortho-

normal basis {e,, ey, €} of phy-
sical components.

Xy
g1p = sin 0 cosg, qyr = sin G sin ¢, qar = cos 0,
q19 = c0s 0 cosg, ds9 = cos Osin @, qzg = — sin 0,

Q1p = — sin @, Qg = COS @, 30 =0.

X2
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{1.76)

1.77)

(1.78)

(1.79)
(1.80)

(1.81)
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1
(Or6y = — (60r) = {gro) = — {gogr)= o

(1.82)
{pbp) = — {pgd) = -:—ctg 6.
ou, 1 0u, 1 Ou, Ugp
T o T80 v " rsin6 09 r

Har=a—g:—’ Hao'——”:‘?;fz'*‘?a Hocp:r-sil?g%—u—:ﬂgﬂ, v (1.83)

o 2 um (-

(div A)r= a;r" rl 6;0"’ rsilnB a;: + %(ZA, — Agg — Agp + Argctg 0),

(aiv Ay = Loy 2 T s a:;“’ - DAy Ay (dgg — dp) g 0], 1 (189)

(div A)p = a;:,, + % a::;’" rsiln ; a:;,,, + —:—[ZAW + Ay + (Agpt+Agy) ctg 01.
AF=rl—z—;—r«(rzi;;i +ﬁ%‘g%(ﬁn"%§) —r—z—;;nz—o%zg. (1.86)

2. Kinematics of deformable continuous media

2.1. Configuration, motion

Continuum mechanics assumes that any body “fills” the spatial region it occupies
at a given time. Therefore, each material point or particle X of a body # may be
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identified with its place P€ & in an arbitrary but fixed configuration (K) of the body,
called reference configuration . Let X denote the position vector of P.
The motion of a body # may be described by the mapping

x =X, 1), @1

where x is the position vector of the place occupied by the particle X in the current
configuration (k) of the body at time ¢. Thus, the motion is a one-parameter family
of configurations, with the time ¢ as real parameter. We assume that the function
% is one-to-one and of class C3. The Cartesian components X, of X are called material
or Lagrangian co-ordinates, whereas the components x;, of x are called spatial or
Eulerian co-ordinates.

Any time-dependent scalar, vector, or tensor field defined on 4 may be consi-
dered either as a function of the particle X and time ¢, or as a function of the
current position vector x and time ¢, provided that a definite motion (2.1) is given.
These two possible descriptions are called material description and spatial description,
respectively 2. Material derivatives and spatial derivatives are defined accordingly.
We shall use the symbols Grad, Div, Curl, and grad, div, curl for the gradient,
the divergence, and the curl, calculated with respect to the co-ordinates X} and x,,
respectively.

Material time derivatives are denoted by d/d¢ or by superposing dots; they
are partial time derivatives with the material co-ordinates X, held constant. In
particular, the velocity v and the acceleration a of the particle X are, respectively,
the first and second material time derivatives of the motion (X, ¢), i.e.

v=x=L9x 9, 2.2)
dr
R T ) @3)
e T ’

Spatial time derivatives are denoted by 9/0t; they are partial time derivatives
with the spatial co-ordinates x; held constant.

If @ denotes a vector or tensor field depending on x and #, then its material
time derivative can be expressed, by using the chain rule, as

d

— O, t) = 9o -+ (grad @) v. 2.4)
ds ot

1 Through this identification, the topology of material manifolds reduces to that of the
spatial differentiable manifolds of the three-dimensional Euclidean space &. In particular, we
understand by material neighbourhood of a particle X the set of all particles that occupied a
spatial neighbourhood of X in the reference configuration (K).

2 The spatial description is especially useful in fluid mechanics where we may observe a
flow in a fixed region of the space. In the elasticity theory, however, the material description is
generally preferred, since the reference configuration can be chosen as the initial unstressed state,
to which the body will return when it is unloaded.
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Hence, the rate of change of the field @ can be decomposed into a local rate of change,
d®/0t, which would be measured by an observer located at the fixed place x, and
a convective rate of change, (grad ®)v, which is generated by the motion of the particle
X to places where the field @ has different values. Replacing @ by v in (2.4) yields *

av avk axk
a=—- (gradv) v, a = — »
or T &Y " av,,

s 2.5)

where now v is considered as function of x and ¢.

2.2. Deformation tensors

The mapping defined by a motion at any fixed time is called a deformation. Diffe-
rentiating (2.1) for ¢t = const gives

dx = FdX, dx, = F,dX,, 2.6)
where
F=GrdiX, ), Fn= 200, @7)

m

The second-order tensor field F is called the deformation gradient. Since 7y, is one-to-
one, we have?

J=detF >0. 2.9
By inverting (2.6) it follows that
dX =F-1dx, dX,= Fiidx, (2.9)

where

—1,
F-'=grad y"'(x,1), Fgt= ?xk_a(xﬁ (2.10)
X

m

1 We shall generally write all major formulae in both direct notation and component form-
In the last case we shall always use rectangular Cartesian components and denote by X; and x;
material and spatial co-ordinates, respectively, with respect to a common Cartesian frame.

2 Indeed, since det F is by hypothesis a non-vanishing and continuous function throughout
the motion for any fixed X, it must have a constant sign for any X and ¢. On the other hand,
we have in the reference configuration F = 1, and hence J = 1. Consequently, (2.8) must hold
for any X and ¢.
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The keystone of the theory of finite deformation is the following theorem!?,
which we state without proof.

Polar decomposition theorem. Any invertible second-order tensor F as two
unique multiplicative decompositions

F=RU, F=VR, 2.11)
in which R is orthogonal and U and V are symmeiric and positive-definite, i.e.
U=U7, V=VT, RRT=R'R=1. (2.12)

When F is the deformation gradient, R is called the rotation tensor, U the
right stretch tensor, and V the left stretch tensor of the deformation. The tensors
C and B, defined by the relations

C=1U2=FTF, B=V?=FF, (2.13)

are called the right and the left Cauchy-Green tensors of the deformation. The moti-
vation cof this terminology will result from the discussion in the next subsection.

2.3. Length and angle changes

Let dL and d/ denote the distance between the particles X and X + dX in the con-
figurations (K) and (k), respectively. From (2.6) and (2.13), it follows that

dP = dx.dx = G, dX,dX,, (2.14)

The variation of the squared length of the infinitesimal material vector dX may
now be written in Cartesian components as

di2 — dI? = dx-dx — dX.dX = (C;,, — O, dX X,
By introducing the second-order tensor
1 1
D= 3(C—1)=(FF -1, (2.15)
the last relation becomes

2 — dL? = 2D,,dX,dX,,. (2.16)

1 See, e.g. Truesdell and Toupin [357], Sect. 43 of the Appendix.
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The tensor D, which gives the change in the squared length of material vectors around
a given particle X, is called the finite strain tensor.

A motion of a given body is said to be rigid if it leaves unchanged the distances
between the particles of that body. In the case of a rigid motion, the general form
of (2.1) is

X=¢ + Q(X - a)9 X = €k + ka(Xm - am)’ (217)

where ¢ is a time-dependent vector, Q isa time-dependent orthogonal tensor, and
a is a fixed position vector. It can be shown that a motion of a body is rigid if
and only if D = 0 for any particle of the body. When this is the case, it results
from (2.15), (2.13), (2.17), and (2.11) that C=B=U =V =1and R= Q.

Now let N be the unit vector of the infinitesimal material vector dX in the
configuration (K), i.e. N = dX/dL. The ratio Ax = d//dL is called the stretch of
dX. Dividing (2.14) by dL? we obtain

N = CuNiN, (2.18)
The ratio
_dl—dL

=An—1 2.19
7 N 2.19)

€N

is called the unit extension of the material vector dX. In particular, if the material
vector was parallel in the reference configuration to the unit vector e,(1, 0, 0), then
its stretch A, and its unit extension € ;, are given, respectively, by the relations

Ay =Cy=1+2D,;, €4y=)Ch—1=)1+2D,—1. (220

We will consider now the change in angle produced by deformation. Let
dX’ and dX”’ be two infinitesimal material vectors, which had in the reference confi-
guration (K) the unit vectors N’, N’ and the lengths dL’, dL"’, respectively. Assume
that these vectors become in the current configuration (k) the vectors dx’, dx”,
with the unit vectors n’, n"’, and the lengths di’, d/’’, respectively. By (2.6) and (2.13),,
we have

dx’.dx"’ CindXdX;,

= = ’

ardrr — drdr

1

cos(m’,m’’) =n’-n

wherefrom, by taking into account that
dX; = N;dL', dX,, = N,dL"”, dI'= An.dL’, dl"” = An-~dL"”

and removing the common term dL’dL’’ from both terms of the last fraction, we
obtain

Ckle;Nl’r:

. 2.21
A A 2.21)

cos(n’,n"") =
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Since cos (N’, N”’) can be easily calculated when the directions of the infinitesimal
material vectors in the configuration (K) are known, the two angles determined from
the two cosines can be subtracted to give the change in angle produced by defor-
mation. For example, if the material vectors dX’and dX'’ were parallel in the reference

ol

~

Fig. 2.1. Stretches and change in angle of

two infinitesimal material vectors dX’ and

dX” that were parallel in the reference con-

figuration to the unit vectors e; and e,
respectively.

configuration to the unit vectors e,(1,0,0) and ey(0, 1, 0), respectively, then the
angle change produced by deformation (Fig. 2.1) is 7/2 — 6,5, where

Cie Cis 2D,,

cos Oy = = = .
Apde,  VCuCm V(4 2Dy)(1 + 2Dy,)

(2.22)

2.4. Material curves, surfaces, and volumes

M aterial curves, surfaces, and volumes are sets of particles that occupy in the refe-
rence configuration spatial curves, surfaces, and volumes, respectively. Thus, a
material curve may be defined in the reference configuration by a relation of the
form

X = f(u), uela, b], 2.23)

where u is a real parameter, and the vector-valued function f has to satisfy the same
regularity conditions as in the case of a spatial curve. At the current time ¢, the
material curve coincides with the spatial curve given by the equation

x = %(f(u), t) = gy, t). 2.24)

Material surfaces and volumes can be defined in a similar way, by letting the function
f depend on two or three parameters, respectively.

Let us consider now in the reference configuration an infinitesimal material
vector dX, an infinitesimal oriented area N dS with unit normal N, and an infini-
tesimal volume d¥, and denote by dx, nds, and dv the corresponding elements in
the current configuration of the body at time .

The relation between dX and dx is given by (2.6). The change of the oriented
element of area is given by Nanson’s formula ([357], p. 249)

JNAS = Flnds, JNdS = Fn,ds. (2.25)
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Finally, by considering the deformation x; = y,(X,,, t) for a fixed value of ¢
as a change of co-ordinates from the material co-ordinates to the spatial co-ordi-
nates of the particle X, and taking into account the change-of-variable rule of the
integral calculus, we obtain

dv = JdV, (2.26)

since, by (2.6) and (2.8), J is the absolute value of the Jacobian determinant of the
co-ordinate transformation.

2.5. Displacement vector

Whereas in the non-linear theory of elasticity the most important kinematical
quantity is the motion %(X, ¢), in the linearized theory it proves advantageous to
use the displacement vector w(X, t), which is defined as the translation carrying the
particle X from its place X in the reference configuration to its place x = y(X, ?)
in the current configuration (Fig. 2.2). In Cartesian co-ordinates we have then

x = X, 1) = X + uX, 1). 2.27)
Differentiating with respect to X, and taking into account (2.7) gives

F=1+H, F,,, = 0y + Hyps (2.28)
where
(X, 1)

H = Grad u(X, ¢), H,,
X, 1) k oX,

(2.29)

Fig. 2.2. On the definition
of the displacement vector u.

Finally, from (2.15), and (2.28), we ded uce the expression of the finite strain tensor
D in terms of the displacement gradient H

1/ ou ou Ou, Ou
D=1 + HT + HTH), sz”_‘( k —m 4 P 7P ) (230
 H b Dim =", 0X, 0X, oX, 0X, (2.30)
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In particular, it follows from (2.30), that

Ju 1 Ju, \? Ouy \2 Oouy \2
D=t 4 ( ) ( : ) + ( =),
1 ax, 2{ oxX, 0x, 0X,

33

__1_( ou, + auz) _1_( Ou, Ouy Ou, Ou, Juy
" o\lax, ox, ) 2\ox, ox, = oXx, 0X, = oX,

2.6. Linearization of the kinematic equations

Jug ) )
0X;

If the magnitude of the displacement gradient is small compared to unity we may
neglect in (2.30) the squares and the products of its components in comparison
to the linear terms. More precisely, in order to linearize the kinematic equations,
we assume that ¢ = [|H|| € 1 and neglect all terms of order O(g?) or higher as ¢—0.

From (2.28), (2.30), and (2.11—13) we conclude that to within an error of

order O(e®) as ¢ — 0, the following relations hold *

C~B=~1-+2E, UxVx~1-+E,

D=~E, Rx1+Q
where
1 { Ou ou
E—1H+ H), Em=—( k m
z ¢ ) ) aX,,,+an

is the infinitesimal strain tensor, and

Q:_;_(H__HT), ka=i Ou _ Ouy
2 \ox, ox,

is the infinitesimal rotation tensor.
Next, from (2.20), and (2.22), it follows that

€ ~ Ey,

T . (=
5 015 ~ sin (? — 012) = cos 0,5 ~ 2E;,.

(2.31)

(2.32)

(2.33)

(2.34)

1 From this point onward in this subsection, the sign % is to be interpreted as equality to

within an error of order O(e?) or greater in &.
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Hence, to within an error of O(g?), the diagonal components of the infinitesimal
strain tensor coincide with the stretches of material vectors initially parallel to the
co-ordinate axes, and the off-diagonal components of the same tensor coincide with
half the changes of the angles between material vectors initially parallel to the co-or-
dinate axes.

It is worth noting that, when the gradient of an arbitrary vector or tensor
field @ is of the order O(g), we may write

oD oP od oo
= Fm = 5,” + Hm ~
ox, ox, ™ @ O Y

m Xm k

=, (2.35)

and hence we may identify Grad @ with grad @. In particular, equations (2.33),
and (2.34), may be written in the linearized theory as

Eim = 5 Wi + Uy, (2.36)
Qi = > (i — U 1)- (2.37)

To the same approximation, it results from (2.37), (1.22),, and (1.40), that the axial
vector @ of Q, called the infinitesimal rotation vector, which is defined by

Oy = — %Erkmgkm’ ka = - karwr! (238)

may be expressed in terms of the displacement vector as

1 1
® = — zcurly, O = — 5 €kl me (2.39)

It should be remembered that the above linearization holds for small dis-
placement gradients. Starting from a different hypothesis, for example assuming
that either the stretches or the rotations are small, may lead to different results.

The following identities relating the fields u, @, E, Q may be easily proved by
making use of (2.36—38)

uk,m = Ekm+ ka = Ekm - ekmrwr ’ (2'40)
'Qrs,k = Ekr,s - Eks,r,

Otm = —€krsEmes - (2.41)

Finally, it can be shown (see, e.g. Gurtin [150], p. 31) that the infinitesimal
strain tensor E vanishes at a given time if and only if the displacement field has the
form

u(x) =u’ + 0’ X (x — X, u(x) = uf + Eklmw?(xm —xp), (2.42)
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where u’ and @° are constant vectors, and x° is the position vector of a fixed point.
A vector field of the form (2.42) defined on a body £ is called a rigid displacement
field. It obviously consists of a translation of vector u® and a rotation of vector ®»°
around the point x°.

2.7. Compatibility conditions

When all kinematic quantities are calculated in terms of the functions (X, ¢) or
u(X, 1), the continuity of the deformed body is assured by the assumption that
21X, 1) is one-to-one and continuously differentiable. Alternatively, if the strain
tensor is used as fundamental kinematic quantity in the formulation of the boun-
dary-value problems, then (2.30) are six independent partial differential equations
for the three unknown components of the displacement vector. This overdeterminate
system will not admit a solution unless the functions D,,, satisfy some integrability
conditions, known as compatibility equations .

In the non-linear theory of elasticity the easiest way to infer the compatibility
equations is by using the geometry of Riemann spaces (see, e.g. Eringen [105],
Sect. 13, Malvern [227], pp. 193—195). However, since we shall not make use in
the following of these rather sophisticated equations, we confine ourselves to indi-
cating here the reduced form assumed by the compatibility equations in the linear
case.

First, we note that, in view of the definition (1.42), we may rewrite (2.36) as

E = sym grad u.

If we apply the operator inc to this equation and take into account the identity
(1.51),, we see that a necessary condition for the existence of a displacement field
u is that E satisfy the following equations of compatibility 2

incE=0, —€,€,,EL,»=0, 1ij=123. (2.43)

Since E is symmetric, inc E is also symmetric, and hence there are only six distinct
equations (2.43),. Moreover, since incE must satisfy the tensor identity (1.51),,
which is equivalent to three scalar equations, it follows that only three of the six
compatibility equations (2.43), are independent 3.

By virtue of (1.44) and of the symmetry of the strain tensor, equation (2.43),
may be also written in the equivalent form

—curl (curl E)T = 0. (2.44)

1 The physical meaning of the compatibility conditions may be seen by imagining that
the body is cut up into small volume elements, and then each element is given a certain strain.
In general, the strained volume elements cannot be fitted back together to form a continuous body,
unless the strain of each element is related to the strain of its neighbours according to the
compatibility equations.

2 The equations of compatibility were first derived by Saint-Venant in 1864.

3 For a detailed analysis of this problem, see Washizu [374] and Malvern [227], p. 187.

3 — c¢. 120
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Next, by (1.10), equations (2.43), become after some calculation and rearranging
terms

AEkl - Elm,km - Ekm,lm + (Emp, mp AEmm) 5k1 + Emm,kl =0.
By using this relation and considering also its trace

E, AE,,, =0,

psmp
we obtain
AE,— Elm,km - Ekm,lm + Emm.kl =0. (2-45)

As first shown by Beltrami in 1886, if the body is simply-connected!, conditions (2.43)
are also sufficient for the integrability of system (2.36), i.e. for the existence of a displacement
field. More precisely, we have the following theorem.

Theorem. Assume that the strain field E is single-valued, of class C*, and satisfies equations
(2.43) in a simply-connected region ¥. Then there exist single-valued vector fields u of class C*
and © of class C? that satisfy (2.36), and respectively (2.41), in V.

Proof. The reasoning proceeds along the lines of Cesaro [58 . Let P, be a fixed point and P
a current point in ¥ with position vectors X = x,‘:ek and x= x.€,, respectively. From (2.41) it

follows that

@(x) = (1)[? - S ExrsEmr,s(¥) A¥m, (2.46)
PP
or, by (1.44),
x
ox) = 0 — S [curl E(Y)]T dy, 2.47)
X,

where @0 is a constant vector and y=y,,e,, is the position vector of a current point on the integra-
tion path joining P, and P. The vector field e(x) is single-valued in ¥ if the line integral in (2.47)
is independent of the path in ¥ from x, to X, or, equivalently, if it vanishes for every closed
curve L in the body, a condition which is always fulfilled in our case. Indeed, since ¥ is simply-con-
nected, there exists a surface £ bounded by L and lying entirely in ¥, Then, by applying Stokes,
formula (1.55) and considering (2.44), we conclude that

fi; [curl E¥)1Tdy = — S {curl [curl E(¥)]T} nds = 0, (2.48)
L =

where n is one of the unit normals to 2, and the integration sense on L is chosen clockwise when
looking down along n. Hence, the infinitesimal rotation vector @(x) is uniquely defined in ¥;
in particular, it follows from (2.47) that @® = @(x,).

1 An open region is said to be simply-connected if every closed curve in the region can
be continuously deformed to a point without leaving the region; such curves will be called redu-
cible circuits. A reducible circuit has the important property that there exists at least a surface
bounded by the circuit and lying entirely in the region. Simply-connected regions are e.g. a solid
sphere or a cube.

2 In this connection, see also Volterra [373], Love [222], Sect. 156 A, Nabarro [258], Sect.
1.2, de Wit [486], Lurie [447], § 2, and Gurtin [150], Sect. 14,
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In order to show that @(x) given by (2.47) satisfies (2.41) we will first prove a preliminary
formula for the differentiation of a line integral. Let U(y, x) be a second-order tensor field of
class C* on ¥ X ¥. Then, for each fixed m, we have

9 X 1 X+aem X
—67-8 UGy, x) dy = lim — {S U@, x + aey,) dy — S Uy, x) dY} =
m 7

Xy 0 o Xo Xo

d x+aem

= Uy, x + ae,,) dy
do

0 «=0

wherefrom it follows (Goursat [420], Sect. 94) that

—S, Uy, x)dy = qu aU(y’—x)— dy + U(x, x) e, (2.49)

Taking into account this formula, we obtain from (2.47)
0,,(x) = — [curl E(x)]Te,, (2.50)

which coincides with (2.41) by virtue of (1.44). Clearly, ® is of class C? since E is also of class
C2 in ¥.
Next, (2.40), yields

u(x) = u]g -+ S Ep(Y) dy) + S Etrm2r(Y) GV pms .51
PP PP

or
x

u(x) =u? + S

x

E(y)dy + S a(y) x dy, 2.52)

Xo Xo

where u0 is a constant vector. Integrating by parts and taking into account (2.50) the Ilast inte-~
gral in (2.52) can be transformed as follows

S. m(y)xdy=S a(y) xd(y——X)=S dlo®@) x ¥ — x)] +
0 Xo X0

X X
+S y —x) X do@®) = o® X (x —x) + S x —y) x {[curl E()IT dy}.
%o %o

Substituting this result into (2.52) gives

u(x) =’ + @ X (x — xp) + S Uy, x)dy, .53)
where ’
U(y, x) = E(y) + (x — y) X [curl E@)IT, 2.59)
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or, in component form,

Uir(y, X) = Ex(y) + €ppglxp — ¥p) €4iiEpi, j(¥) =
= Ex(y) + (xp — ¥p) [Ex p(¥) — Erpx(¥)] - (2.55)

In order to prove that (2.53) defines a single-valued vector field u(x), it is necessary and
sufficient to show that the line integral in the right-hand side vanishes for every closed line in the
region. Denote as above by L a closed curve in ¥ and let X be a surface bounded by L and lying
entirely in ¥. Then, by (1.55), (1.44), and (2.55), and taking into account (1.46), we successively
find

AUy, x)
§ Uiy, x) dy, = — S Emrs —%-— Npds =
L 5 Vs

=S {~ EmrsErr,s(Y) t+ EmrsOsp [Evk, p(y) — Ep ()] —
z

- ekpq(xp - yp)eqijemrsEri.js(Y)} Npds = S ekpq(xp — yp) (inc E)qm"m ds,
z

and hence, by (2.43),,

fi; Uy, x)dy = S (x —y) X {[inc E(¥)]n}ds = 0. (2.56)
L =

Thus, u(x) is uniquely defined in ¥'; in particular, (2.53) yields u® =u(x,). To show that u(x) given
by (2.53) satisfies (2.36) we again apply (2.49) and obtain, in view of (2.55), and (2.46),

X

Ug,m(X) = Egp(X) + Sgmg [S €qijEr,ij(¥) dyr — wg] = Epm(X) — Exmq@q(X)- (2.57)

Xo

The symmetric part of this equation yields (2.36). Moreover, u is of class C?®since both E and o are
of class C? in ¥ and this completes the proof.

Equations (2.47) and (2.53), which allow computation of an infinitesimal rotation field
o(x) and of an infinitesimal displacement field u(x) corresponding to a given infinitesimal strain
field E(x) in a simply-connected region, are called Cesdro’s formulae.

Finally, we notice that the compatibility equations ensure only the existence of the fields
u and ®, but not their unigueness. Indeed, the displacement field is not unique, since we can always
superimpose a rigid displacement field, which does not change the strains. Specifically, Cesaro’s
formulae show that if u*(x) and ®*(x) are particular solutions of equations (2.36) and (2.41)
then the general solutions of these equations are

u(x) = u*(x) + w0 + @ X(x — xp), (2.58)
o) = 0*x) + o, 2.59)

where u® and @9 are arbitrary constant vectors, and x, is the position vector of an arbitrary fixed

point.
In the next subsection we shall consider the significance of the compatibility equations for

multiply-connected bodies.
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2.8. Volterra dislocations

Consider a multiply-connected body?! occupying a region 4 and a single-valued infinite-
simal strain field E of class C2in ¥ that satisfies the compatibility conditions (2.43) in 4. We can
still construct solutions of equations (2.36) and (2.41) by using Cesaro’s formulae (2.47) and (2.53).
However, when L is an irreducible circuit we can no longer apply Stokes’ formula to prove (2.50)

Fig. 2.3. Toroidal doubly-con-
nected region. S and S’ are
cuts rendering the region sim-
ply-connected. C and C’ denote

irreducible circuits.

and (2.56). Consequently, the line integrals in (2.47) and (2.53) are not necessarily independent of
path, and the fields «w(x) and u(x) defined by these equations may be multiple-valued. For example,
assume that ¥ is the toroidal doubly-connected region shown in Fig. 2.3. Let S be a two-sided
barrier transforming ¥ into a simply-connected region 4\ S. Arbitrarily choose a positive side S*
and a negative side S of the barrier and denote by P™ and P~ the points where an irreducible cir-
cuit C intersects S* and S, respectively.

In the simply-connected region ¥\ S we can still apply the theorem proved in the pre-
ceding subsection to obtain single-valued vector fields @(x) and u(x). However, these fields may
now be discontinuous across the barrier S. Indeed, by (2.47) and (2.53), we have

a(P") — o(P) = — fi; [curl E(W]IT dy, w(P) —u(P) = jg Uy, x)dy, (2.60)

C C

where x denotes the common position vector of the points P and P, and the integration sense
on C is taken from P~ to P*. In view of (2.54), equations (2.60) may be rewritten as

oPY —a(P)=d, uPH—uwP)=b-+dxx, (2.61)

1 An open region is said to be multiply-connected if it contains at least an irreducible circuit,
i.e. a closed curve that cannot be contracted to a point without passing out of the region. Multi-
ply-connected regions are for instance a torus or a hollow cylinder. A multiply-connected region
can be reduced to a simply-connected one by means of a system of cuts or barriers. For example,
the region between the bounding cylindrical surfaces of a hollow cylinder can be rendered simply-
connected by a plane barrier passing through the axis of the cylinder and having that axis for
an edge. If n — 1 simple non-intersecting cuts are necessary to transform a multiply-connected
region into a simply-connected one, we say that ¥ is n-tuply connected. Accordingly, the torus and
the hollow cylinder are doubly-connected regions.
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where d and b are constant vectors defined by

d= — f;; [curl E(Y)]T dy, b= % {E(y) — y X [curl E(¥)}7} dy. (2.62)
(o} C

It can be proved that d and b do not depend on the choice of C. Indeed, let C’ denote
another irreducible circuit and let O and Q~ be the points where C’ cuts ST and S~, respecti-
vely (Fig. 2.3). Clearly, the closed circuit I' = P"PTQtQ~ P~ is reducible, and hence there exists
a surface 2 bounded by I"and lyingentirely in 4\ S. Then, applying Stokes’ formula (1.55) and
making use of the compatibility equations (2.43), the line integrals in (2.62) vanish on I, like in
the preceding subsection. On the other hand, the joint contribution of the paths P*Q™ and QP
vanishes, since the integrands in (2.62) are continuous across S, and this implies the equality of
the integrals taken on C and C’ from S” to S*.

The above reasoning enables us to rewrite (2.61) as

o'x) —o (x)=d on S, (2.63)
ufx) —u(®x)=b+dxx on S, (2.64)

where the superscripts -+ and — denote the limiting values taken by the corresponding fields on
the positive and negative sides of the cut at an arbitrary point, whereas d and b are given by (2.62),
where C is an arbitrary irreducible closed circuit connecting the negative side of the cut with
the positive one. Clearly, (2.64) implies that the jump of the displacement vector across S is an
infinitesimal rigid displacement consisting of a small translation of vector b and of a small rota-
tion of vector d around the origin. Finally, it is worth noting that the jumps of (x) and u(x)
across the barrier S do not depend on the choice of the barrier, for the integrands in (2.62) are
continuous across the cuts that render ¥ simply-connected. From this point of view the cuts S
and S shown in Fig. 2.3 are, therefore, equivalent.

The extension of the above results to regions with arbitrary connectivity is straightforward,
leading to the following theorem, due to Weingarten [380].

Weingarten’s theorem. Let ¥ be an n-tuply connected region and let Sy, S,, . .., Sp_y be
n—1 non-intersecting barriers rendering ¥ simply-connected. Assume that the infinitesimal strain
field E is single-valued and of class C? in V. Then the jump of the displacement vector across any
barrier Sy, k =1, ...,n — 1, is a rigid displacement given by

ut®) —u'(x) = b, +-dy X x on S, (2.65)

dp= — «J> [curl E(y)1T dy, by = f*; {E(y) — yx [curl E)]T}dy, (2.66)
k k

where x is the position vector of a current point on Sy, and Cy is an arbitrary irreducible circuit
intersecting only the barrier Sy and oriented from the negative side to the positive side of Sg.
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Volterra [373] was the first! to consider displacement fields that are discontinuous across
some surfaces although the corresponding infinitesimal strain fields are continuous together with
their partial derivatives of first and second orders across these surfaces. From the theorem given
in the preceding section it is apparent that such deformations, which are presently called Volterra
dislocations, are impossible in a simply-connected region. Specifically, a deformation of an
n-tuply connected body is said to be a Volterra dislocation when it has the following properties:

G)if Sy, k=1,...,n—1, are n — 1 regular and non-intersecting surfaces rendering
simply-connected the region ¥ occupied by the body, then u is discontinuous across these barriers;

(ii) the infinitesimal strain field E corresponding to u is continuous across the surfaces Sg
and the extension (by continuity) of E to ¥ is of class C2.

Clearly, by Weingarten’s theorem, (ii) implies that the jump of u across any surface Sy is
a rigid displacement given by (2.65) and (2.66) in terms of E. As already mentioned, these jumps
are independent of the system of barriers chosen. Consequently, we can regard the displaoer;lent

n—
as either single-valued and discontinuous at the barriers in the simply-connected region ¥\\_J Sk,
k=1
or as multiple-valued and of class C*in the multiply-connected region ¥, supposed without barriers.
In the latter case, the displacement vector may be again represented by (2.53). However, the
line integral in (2.53) generally depends on the path in ¥, and the multivaluedness of uis determined
by the vectors d; and by, which now play the role of (vector) cycling constants 2. From the dis-
cussion above it follows also that the compatibility equations are no longer sufficient for the
existence of a single-valued displacement corresponding to an infinitesimal strain field E of class C2
in a multiply-connected region ¥. To assure the single-valuedness of u it is in fact necessary and
sufficient to require the vanishing of the line integrals in (2.66) for £k = 1, ..., n — 1, together with
the fulfilment of the compatibility conditions (2.43) in ¥3.

Volterra dislocations can describe real states of self-strain in multiply-connected bodies 4.
Indeed, assume that a body % occupying a multiply-connected region is rendered simply-connected
by a system of non-intersecting cuts. If the two faces of each cut are given a small rigid relative
displacement and then the continuity of the body is re-established by eventually adding or remov-
ing material and joining the faces of the cuts, the body will be again multiply-connected, but in a
state of self-strain. As already pointed out, the position of the cuts is, to a great extent, immaterial.
Thus, in a multiply-connected body which has suffered a Volterra dislocation, there is, in general,
nothing to show the seat of the cuts.

3. Dynamics of deformable continuous media

3.1. Mass. Continuity equations

In non-relativistic mechanics one associates with each body # a positive scalar
quantity m(4) called the mass of 4, which is assumed as being constant throughout
the motion. In continuum mechanics, however, we need supplementary concepts
that are applicable to arbitrary small parts of a body. In particular, we assume that

1 Weingarten [380] required only the continuity of the strain tensor across the barriers; dis-
locations of Weingarten’s type are possible also in simply-connected regions, but under rather
artificial restrictions on the admissible form of the cut faces (cf. also Pastori [458]). More general
dislocations, which are possible in simply-connected bodies and correspond to more realistic
mechanical conditions, will be discussed in Sects. 7.5. and 10.6.

2 In this connection, see also Muskhelishvili [254], Sect. 15 and App. II, and Lurie [447],
Sect. 2.4.

3 For plane multiply-connected regions such conditions have been derived as early as 1900
by Michell [246] (cf. also Gurtin [150], Sect. 47).

4 For the application of Volterra dislocations to the modelling of single crystal dislocations
see Sect. 7.3.
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the mass distribution m in any configuration of the body is a positive scalar measure
and an absolutely continuous and additive function of volume. Consequently,
there exists a configuration-dependent mass density p, which is the ultimate ratio
of mass to volume. More precisely, let 2, be a sequence of measurable parts of #
having only one particle X in common and such that lim »(#,) = 0, where v(2,)

n—>00
denotes the volume of £, in a given configuration (k) of the body. Then, the mass
density at X in the configuration (k) is defined by the relation

() = pu(X) —nlilg u(2,)

9

where x is the position vector of the place occupied by X in the configuration (k),
the dependence of the mass density on the configuration being pointed out by the
subscript (k).

By hypothesis, the total mass of a system of bodies equals the sum of the masses
of those bodies. Thus we can calculate the mass of a material volume £ that occu-
pies, respectively, the regions ¥°, and ¥~ in the reference configuration (K) and in
the current configuration (k), by either of the formulae

m(#P) = S pedV = S p dv, (3.1)
v

Yy

where py(X) and p(x) are the corresponding mass densities. In (3.1), dV and dv
designate the infinitesimal volume elements occupied by the same material neigh-
bourhood of the particle X in the configurations (K) and (k), respectively. Hence,
by virtue of the conservation of mass, we have the relation

podV = pdo, 3.2
which may be also written, by (2.26) and (2.8), in the alternative forms
po=pJ =pdetF. 3.3)

By differentiating (3.3) with respect to ¢ and using the differentiation rule of a deter-
minant, we obtain

p + pFinFuk = 0. (3.4)

On the other hand, differentiating (2.6) with respect to ¢ and considering (2.2) and
(2.9) gives

do,=FndX,, = F, F7ldx,,
wherefrom it follows that

grad v = FF,
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and hence
F,, Fy}l = tr (FF) = tr(grad v) = div v.

Substituting this result into (3.4), we obtain
p+pdivv=0. (3.5)

Equations (3.2), (3.3), and (3.5), which express mathematically the law of
mass conservation of a continuous body, are called continuity equations.

Finally, we notice for further use that if ¥"jand ¥ denote as above the regions
occupied by a material volume 2 in the reference configuration (K) and the current
configuration (k), respectively, then, by virtue of (3.2), we may write

4 p(l)dv=—(—1— @AV =\ p,®dV =\ pddy, (3.6)
dr Yy dr v, v v

[

where @ designates any continuously differentiable scalar, vector, or tensor field.
Clearly, in (3.6), ® is considered alternatively as a function of X or x according
as the integral is taken over ¥°, or ¥".

3.2. Forces and stresses. Principles
of continuum mechanics

In continuum mechanics the concept of force describes the interaction between
different bodies or between different parts of the same body. We assume that
the force f(#) exerted by the outside world on a body & in the current configu-
ration (k) consists of body forces, which act on the elements of volume or mass
inside the body, and surface forces, which are contact forces acting on the boun-
dary of the body. More precisely, we suppose that f(#) may be written in the form
f(#) = S pbdv + S tds, 3.7
v 4
where ¥ is the region occupied by £ in the configuration (k), & is the boundary
of ¥7, b is the body force per unit mass, and t is the surface force per unit area, or
surface traction.

Furthermore, we assume that there are neither body couples nor surface cou-
ples acting on the body. Consequently, the resultant moment of the forces exerted
on 4 with respect to the origin is

my(%B)= S px X bdv+ S x X tds, (3.8)
14 k4

where x denotes as before the position vector of the particle X in the configuration (k).
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The principles of continuum mechanics have been formulated by Euler as
early as 1775 in the form of two integral balance equations, which generalize the
corresponding principles of the dynamics of particle systems, namely the balance
equation of the momentum

d S pvdv = (%) (3.9
dt )y

and the balance equation of the moment of momentum

4 S PpX X vdv = myH). 3.10)
dr )y

Obviously, the left-hand sides of (3.9) and (3.10) are the rates of the total momen-
tum and moment of momentum, respectively. Substituting (3.7) into (3.9), (3.8)
into (3.10), and making use of (3.6), we obtain

S p\'/dvzs pbdu—{—S tds, (3.11)
v ¥ P

S pxxﬁdvzs pxxbdv—{—s x X tds. (3.12)
v ¥

4

Besides the external force £(#), there exist interactions between different parts
of the body, resulting from the atomic or molecular interactions. To describe these
internal forces, Cauchy made in 1822 the basic hypothesis that the interaction between
two arbitrary parts of a body that have a common boundary may be replaced by
a continuous distribution of surface forces acting on both sides of the common
boundary. These forces referred per unit area, which have by hypothesis the same
nature as the externai surface forces, are called stress vectors; they will be denoted
by the same symbol t as the external surface forces. Accordingly, the balance
equations (3.9) and (3.10) may be applied to any part £ of the body.

Cauchy’s assumption, which is also known as the stress principle, plays a
fundamental role in continuum mechanics, because it allows the unified description
of the internal forces, irrespective of the peculiar atomic structure of the body.
To better understand its simplifying character, assume that a part 2 of % is cut
out of the body; then, according to the stress principle, the action of the rest of the
body on £ could be replaced by surface forces acting on the boundary of # (Fig. 3.1).
However, this is certainly not true whenever the action range / of the internal forces,
although small, cannot be neglected, e.g. in regions of high strain gradients. In
such cases the concepts of boundary and stress vectors should be reconsidered.
Namely, the boundary of & should be replaced by a “shell” or “boundary layer”
of thickness /, containing a distribution of supplementary body forces that are
necessary for preserving the form of 2. Clearly, this would result in a continuum
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non-local theory which stands closer to the lattice theory of crystals than the local
theory considered in this chapter L.

Let us explore now in more detail the consequences of the stress principle.
We begin by noting that the stress vector depends not only on x but also on the
orientation of the separation surface, i.e.?

t = t(x, n). (3.13)

Fig. 3.1. On the definition of #
the stress vectors.

The set of all stress vectors t(x, n) for x fixed and all n is called the stress state around
the point X.

To establish the dependence of t on m, we apply the balance equation (3.11)
to a tetrahedron which has three mutually orthogonal faces parallel to the co-ordi-
nate planes of a Cartesian system of co-ordinates and intersecting at x, and a fourth
face with unit outward normal n (Fig. 3.2). Let & be the height of the tetrahedron
and S the area of the oblique face P,P,P;. Then the areas of the orthogonal faces
are Sn;, Sn,, and Sn,, respectively. Assume that pv and pb are bounded and that t
is a continuous function of both x and n. Then, by the mean-value theorem of the
integral calculus, we deduce from (3.11) that

S(t¥ + notf + gt 4 t¥) + 5 hSpK = o, (3.14)

where K is a constant vector depending on the evaluation of the volume integrals
in (3.11), and t}, t¥, t¥, and t* are stress vectors applied in certain points of the
corresponding faces of the tetrahedron. Dividing through by S in (3.14) and letting
h — 0 for fixed n, it follows that

t(x, m) = — (tyn; -+ tny + tyng), (3.15)

where now the stress vectors t, t,, t;, and t are calculated at x. Equation (3.15)
shows that the stress state around a point x of the body is completely determined
by the stress vectors acting on three mutually orthogonal planes intersecting at x,

1 A first step towards such a continuum non-local theory can be taken by replacing the sup-
plementary body forces by additional surface forces and double forces acting on the boundary of
&, as it is done for instance in the so-called theory of the materials of grade two. For the modelling
of crystal defects using this more general approach see Teodosiu [332—3341].

2 For convenience we shall suppress the argument ¢ in what follows,
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If now P, — P, n, — 1, and n,, n; — 0, then, by the continuity of t with respect
to m, we have t; = t(x, —n), since the unit outward normal —e, to S; coincides
in the limit to —n. Substituting the limiting values into (3.15) gives

t(x, — n) = — t(x, n). (3.16)

X3
Fig. 3.2. Surface forces acting
on a tetrahedron.

X4

Clearly, this result does not depend on the limiting approach considered since the
direction of the x;-axis can be chosen arbitrarily. According to (3.16), the stress
vectors acting at the same place on the two sides of an internal surface have the
same magnitude, but are oppositely directed.

Let us choose now a Cartesian frame with unit vectors e, e,, €;, and denote
by T}, the component parallel to the x;-axis of the stress vector — t,, which acts
on the positive side of the plane x,, = const passing through x (Fig. 3.3), i.e.

t,(x) = — T;,(X)e. 3.17
Substituting (3.17) into (3.15), we obtain
t(x,n) = T,.(x) n,. (3.18)
i T33
f T3
! T
Fig. 3.3. Positive stress components : T3
acting on the faces of a rectangular |
parallelepiped whose edges are parallel l T, T,
|

to the co-ordinate axes.

X2 VA
Xq V2

Since t and m are vectors, it is seen from (3.18) that T}, are the components of a
second-order tensor field T, which is called the Cauchy stress tensor. Moreover,
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as (3.18) is a tensor equation, it holds for any system of co-ordinates. In direct
notation it reads

t(x,n) = T(X)n, (3.19)

showing that the stress tensor T(x) is the second-order tensor field (linear vector
function) that assigns to each unit vector n the stress vector acting at X across the
surface whose unit normal is n.

It is important to note that when t(x, n) is a prescribed traction on the boundary
of the body, equation (3.19) represents a traction boundary condition for the deter-
mination of the stress tensor.

It can be also seen that the first subscript of Tj,, identifies the component of
the stress vector, while the second subscript identifies the plane®. The diagonal
components (k = m) of the stress tensor are called normal stresses, while the off-dia-
gonal components (k # m) are called shear stresses.

The components T}, are considered positive or negative according as they
have the directions indicated in Fig. 3.3 or opposite to them. In any case, by virtue
of (3.16), the stress components acting on the negative sides of the rectangular
parallelepiped shown in Fig. 3.3 will have senses opposite to those on the positive
sides. It is easily seen that positive and negative normal stresses correspond to
tensile and compressive tractions, respectively, whereas the algebraic sign of a
shear stress has no intrinsic physical meaning.

Introducing now (3.19) into (3.11), we obtain the relation

S pvdv= S pbdv 4+ S Tads, (3.20)
v v P
which, by making use of (2.3) and (1.53), may be rewritten as
S (divT + pb — pa)dv = 0. 3.21)
v

Assuming that the integrand is a continuous function and recalling that ¥ can be
any material volume of £, we deduce that (3.21) is equivalent to

div T + pb = pa, %Tﬁ’”— -+ pb, = pa,. (3.22)
x

m

This equation, which represents the local form of the balance equation of momentum,
is called Cauchy’s first law of motion.
Next, introducing (3.19) into (3.12), we have

S px><\'1dv=S pxxbdv—{—S X X (Tn) ds. (3.23)
A v

4

1 Some authors, e.g. Malvern [227], reverse this convention, using the first subscript for the
vector component and the second subscript for the plane. Their stress tensor is then the transpose
of the one defined here.
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By making use again of the divergence theorem (1.53), the last integral in the right-
hand side may be transformed as follows

S X X (Tn) dS - ek S lemxlep np dS = ek S“/ i(ek,mx, Tm‘,) dv =
& ox

s r

=€ S €imTmy dv -+ S (x x div T) dv.
v

v

Substituting this result into (3.22) and rearranging terms, we find

S X X (diV T + pb - p\'!) dU = ekg eklmel dv = 0. (3.24)
v s

By (3.21), the first integral vanishes and hence, since ¥~ is arbitrary, we deduce that
(3.24) is equivalent to

eklmel = 0. (3.25)

Multiplying (3.25) by €,,,, summing with respect to k, and taking into account the
identity (1.11), we finally obtain

T=T, Ty=T,. (3.26)

Thus, the local form (3.26) of the balance equation of the moment of momentum,
which is called Cauchy’s second law of motion, is equivalent to the assertion that.
the stress tensor is symmetric, in the absence of body couples and couple stresses

3.3. The Piola-Kirchhoff stress tensors

We have seen that the stress vector t(x, m) is the internal surface force acting at x
per unit deformed area in the current configuration (k) across a surface with unit
normal n. Therefore, both t and the associated Cauchy stress tensor T are adequate
for the spatial description. On the other hand, in non-linear elasticity theory, it
is often convenient to use the material description, in order to solve problems in
which the initial boundary of a body is deformed in a prescribed way, or the trac-
tions keep their initial direction and magnitude per unit undeformed area in the
reference configuration. There are two alternatives for such a material description,
leading to the introduction of the so-called Piola-Kirchhoff stress tensors.
The first Piola-Kirchhoff stress tensor, S, is defined by

SNdS = t ds = Tn ds. (3.27)

The first of these relations may be rewritten as
s = SN, (3.28)
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where s = t ds/dS. Hence, the first Piola-Kirchhoff stress tensor is the second-order
tensor (linear vector function) that assigns to the unit normal N of the undeformed
element of surface the actual force t ds on the deformed surface element, but reckoned
per unit undeformed area d.S.

With the aid of (2.25), we deduce from (3.27) that the stress tensors T and
S are related by

T :jSFT, Tkm :jSkamp’ (3.29)

where j = J™1. Substituting (3.29), into Cauchy’s first law of motion (3.22), leads to

0
o (j SkpFmp) + Pb = pay. (3.30)

m

On the other hand, using the differentiation rule of a determinant and the chain
rule of differentiation, and considering (2.7), (2.8), and (2.10), we successively obtain

o . dj 0 , OF, oJ . 0F,, 0X
(jFpp) = —2— Zom g j T +j=r =
0x,, ox, 0X, 0x,, X, 0X, oOx,
3.31)
= =L o gy e g,
J 0X, 0X,
and hence, by (2.7) and (3.3),
o . oS, 0S,, 0x, oS,
_'(JSkPFmp):]FmP kp=£ﬁ kp.____~=£ ke,
0x,, 0x, py 0x, 0X, p, 0X,
Putting this result into (3.30), we arrive at the simplified equation
DivS + peb = poa, ox + Pobi = poti. (3.32)

m

Thus, Cauchy’s first law of motion preserves its form when passing to material
co-ordinates, provided that T, p, and div be replaced by S, p,, and Div,
respectively. On the contrary, Cauchy’s second law of motion (3.26) combined with
(3.29) leads to the relation

SFT = FS7, (3.33)

which shows that the first Piola-Kirchhoff stress tensor is not, in general, a symmetric
tensor. By introducing the second Piola-Kirchhoff stress tensor, X1, defined by the
relations

IH=F7'S=JF1TFEY, (3.34)
this difficulty is removed, since now (3.26) and (3.34) give
II =117, (3.35)
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showing that IT is symmetric whenever T is symmetric, i.e. in the absence of body
couples and couple stresses. In exchange, Cauchy’s first law of motion (3.32) assumes
in terms of IT the more complicated form

. d
Div (FII) + pob = poa, x (Frp I ) + pobi = Pogy (3.36)

m

4. Thermodynamics of elastic deformation.
Constitutive equations

For our purposes in contintum mechanics we shall always use as thermodynamic
system a closed system, i.e.a part of the material universe not interchanging matter
with its surroundings. Moreover, we assume that the only energy transfers to the
system are by mechanical work done on the system by surface tractions and body
forces, by heat transfer through the boundary, and possibly by distributed internal
heat sources.

A thermodynamic state variable is any macroscopic quantity which characteri-
zes the system, e.g. the temperature or the strain tensor. The set of the instantaneous
values of all state variables at a given time is called the thermodynamic state of the
system at that time. Clearly, the selection of the state variables depends on and
implies a certain idealization of the system and of its evolution.

A thermodynamic state variable of a homogeneous system is called extensive
or intensive according as it is proportional to or independent of the mass of the
system. The density per unit mass of an extensive state variable is obviously an
intensive one.

The passing of a system from a thermodynamic state into another one is called
a thermodynamic process. A thermodynamic process is said to be reversible or
irreversible according as the time-reversal of the external actions exerted on the
system leads or not to a reversal of the process. A thermodynamic process is called
cyclic if the final and initial states of the system carried through the process coincide.

4.1. The first law of thermodynamics

The first law of thermodynamics relates the work done on the system and the heat
transfer into the system to the change in energy of the system.

Let us take as thermodynamic system an arbitrary part & of a body £ and
consider its evolution during the time interval [z,, ], Where ¢, is the time at which
the body occupied the reference configuration. Denote as usual by ¥~ the region
occupied by £ in the current configuration (k) at time ¢ € [t,, #),] and by & the boun-
dary of ¥,

The mechanical power input P resulting from the surface tractions t and the
hody forces b acting on 2 at time ¢ is given by

P=S t-vds+S pb-vdo. 4.1)
P 1
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The heat input rate Q may be written in the analogous form

Q::S qu—f—S prdo, “4.2)
4 '

where g = q(x, n, t) is the heat flux input resulting from conduction through the

surface & and measured per unit surface area, and r = r(x, t) is the heat supply

per unit mass in £ from the external world (possibly from a radiation field).
Generalizing from many experimental observations, it is found that

jl; P+ Q)dt =0 (4.3)

for all cyclic thermodynamic processes. In addition, it is found that the integral

(P 4+ Q) dt calculated for any process carrying a homogeneous system is propor-

tional to the total mass of the system. These experimental results imply the existence
of an extensive state variable E, called the total energy of the system, such that

E=P+0Q. 4.9

Equation (4.4), which is named the energy balance equation, represents the mathe-
matical form of the first law of thermodynamics.
The difference

U=FE-—K 4.5

between the total energy of the system and its kinetic energy

K= 1; S pvido (4.6)
"

is called the internal energy of the system. Since E and K are extensive variables,
U must be an extensive variable, too. Consequently, we can write

U= S pedo 4.7
v

where ¢ is the specific internal energy per unit mass.
Introducing (4.1), (4.2), and (4.5—7) into (4.4), we obtain

iS (iv2+8)pdv=s (t.v+q)ds+8 (b.v+r)pdo. 4.8)
dr Yy 2 o v

4-c, 120
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By applying (4.8) to a tetrahedron included in ¥~ which has three sides inter-
secting at x and parallel to the co-ordinate planes of a Cartesian frame and using
a reasoning similar to that leading to the existence of the stress tensor, it can be
shown that there exists a vector q(x, ?), called the heat flux vector, such that

q(x, n, t) = - q(x, t)'l‘l. (49)
The negative sign is needed because q-n is the outward heat flux per unit area of &,

whereas, g is the heat flux input.
On the other hand, by virtue of (3.19), we have

t.v=— (Tn).v = Tkmnmvk = (TTV)'D. (410)

Substituting now (4.9) and (4.10) into (4.8) and making use of (1.52) and (3.6)
leads to

S [pv-a -+ & — div(TTy) + divqg — p(b-v+ r)]dv = 0. 4.11)
»

Remembering that ¥~ is arbitrary and assuming that the integrand in the left-hand
side of (4.11) is a continuous function on %, we deduce that (4.11) is equivalent to

p(v-a + &) = div (TTv) — divq - p(b-v 4 r). 4.12)
But
div (TTv) = g (Timts) = 04 OTim + Tim o _ v.div T 4 T.gradv,
0Xp 0%y, 0X s

and hence, considering also (3.22), equation (4.12) reduces to
pé = T.gradv — divq + pr. 4.13)

This relation represents the local form of the energy balance equation.

4.2. The second law of thermodynamics

The first law of thermodynamics can be regarded as an expression of the intercon-
vertibility of heat and work, provided that the total energy of the system remains
constant. Therefore, this principle places no restriction on the direction of thermo-
dynamic processes. On the contrary, the second law of thermodynamics introduces
a severe discrimination between reversible and irreversible processes. According
to this law there exists an extensive state variable S, called the entropy of the system,
which satisfies the relation

S>—S —‘%'Lds+s ﬂa’-du, 4.13)
174 v
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where 0(x, t) > 0 is the absolute temperature, the equality being valid for reversible
processes and the inequality for irreversible processes.

The first integral in the right-hand side of (4.14) is the total entropy flux across
& due to conduction, whereas the second integral is the entropy supplied per unit
time into the interior of & from the external world (possibly from a radiation
field). According to the inequality in (4.14), the rate of entropy increase is greater
than the entropy input rate, thus implying internal entropy production in an irre-
versible process.

Denoting by n(x, t) the specific entropy per unit mass, we can write in view
of (3.6)

S = is pndv=S pndo. (4.15)
dt )y v

Substituting (4.15) into (4.14) and using the divergence formula (1.52) to transform
the surface integral into a volume integral, we obtain

SV [pﬁ + div (i;-) - %’] do > 0. (4.16)

Remembering that ¥~ is an arbitrary material volume and assuming that the inte-
grand is a continuous function on #, we deduce that (4.16) is equivalent to the
relation

pi + div (i) _ P, @4.17)
0 0
which is called the Clausius-Duhem inequality. Since
div (%) =~;~ divq — 0—12 q-grad 6
and 6 > 0, (4.17) may be rewritten as
p0ﬁ+divq—pr—%q-grad0 = 0. (4.18)

Another form of this relation, which is particularly convenient for further applica-
tions, may be obtained by considering the local form (4.13) of the first law of ther-
modynamics. Namely, by solving (4.13) with respect to divq — r and substituting
the result obtained into (4.18), it follows that

— p& + pOny + T.gradv — —:)— q-grad 6 >0, “4.19)
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Finally, by introducing the specific free energy per unit mass (X, t), defined by
v =¢—no, (4.20)
we deduce from (4.19) that

—py — pnb + T -grad v— %q-grad 9 > 0. @4.21)

4.3. Thermoelastic materials. Elastic materials

The principles of mechanics and the laws of thermodynamics must be satisfied by
any thermodynamic process, irrespective of the material of the body undergoing the
process. On the other hand, the thermomechanical behaviour of a material is cha-
racterized by some supplementary relations between the state variables and possibly
their histories. Such specific relations are called constitutive equations. Since in
what follows we shall deal only with elastic materials, we devote the remaining of
this section to the constitutive equations characterizing the elastic materials and
their thermomechanical behaviour.

A thermoelastic material is defined by four constitutive equations giving the
specific free energy V¥, the stress tensor T, the specific entropy #, and the heat flux
q at each material point X in terms of the deformation gradient F, the absolute
temperature 0, and the temperature gradient g = Grad 6 at X

'// = ll’/\(F’ 0, g), T= i‘(F: 0,8, n= ﬁ(F9 0, g), q= é\(F’ 0, g)’ (422)

where the argument X has been suppressed for convenience. We assume that the

response functions , T, #,q are continuously differentiable on their common
domain.

Let us consider first the restrictions placed on the constitutive equations (4.22)
by the second law of thermodynamics. Differentiating the first of these equations
with respect to ¢ gives

. .
=t R4 g 4.23
v OF o0 og & “.23)
Next, by (2.7) and (2.2), we have
F = Grad v = (grad v) F. (4.24)

Substituting (4.24) into (4.23), and the result obtained into (4.21), we find after
rearranging terms the inequality

[%(FT)-I ——p%] . F—p(ﬁ+ %)é—p—?:— g — %ﬁ-gradﬂzo. (4.25)
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On the other hand, it can be shown (see, e.g. Carlson [56], p. 303) that there exists
at least a thermodynamic process which is compatible with the balance equations
and such that F, 6, g take arbitrarily assigned values at a given material point and
ata glven time. Consequently, the last inequality is fulfilled only if the terms multi-

plying F, 0, and g vanish identically. It then follows that the constitutive equations
4.22) of the thermoelastic materials must assume the reduced form

V=9F0, T=p ﬁig%—(—))— F, n=-— a—‘/’(;o’—el, (4.26)

and the heat flux must obey the heat conduction inequality
4 (F,0,g)-grad 0 < 0. @.27)
Clearly, the conditions (4.26) and (4.27) are also sufficient for the fulfilment of
(4.25) and hence of (4.21). For the restrictions placed by the residual inequality

(4.27) on the constitutive equation (4.22), for the heat flux we refer to Carlson [56],

p- 309. In particular, it can be shown by making use of (4.27) that the heat flux
vanishes together with grad 6.

By (4.20),
&=y +nb + 05,

while (4.23), (4.24), and (4.26) imply that

Y = 1 T-grad v— 50, (4.28)
P
and hence
= S T-.grad v -+ 6. (4.29)
p

Finally, by substituting (4.29) into (4.13), we obtain the reduced form of the energy
balance equation for thermoelastic materials

pn = — divq + pr. (4.30)

An alternative approach of the constitutive equations of thermoelastic mate-
rials is to choose as independent variable the’ specific entropy # instead of the abso-
lute temperature 0 and to replace the specific free energy y by the specific internal
energy 7 as dependent variable, i.e. to start by adopting constitutive equations of
the form

8=E(F’”7g)s T=T(F:"’g)a 0=b(F’n’g): q=ﬁ(F’"’g)' (431)
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Then, by making use again of the Clausius-Duhem inequality and employing a
similar reasoning as above, it can be proved that the first three constitutive equations
(4.31) must assume the reduced form

e—i@® ), T=pl®ND gr o %En) 4.32)
OF on

By comparing the constitutive equations (4.26), and (4.32),. we see that,
when ignoring the thermal variables 8 and #, they both reduce to the same purely
mechanical constitutive equation

1= WE o

- (4.33)

where W is the so-called the specific strain energy per unit volume in the reference

configuration and is taken equal to py, respectively p,e. Materials characterized
by the constitutive equations (4.33) are called elastic materials 1.

The form of (4.33) may be further simplified, by requiring that the specific
strain energy be invariant under a superimposed rigid motion of the body. Let

x* = y*(X, 1) 4.349)

be a motion of the body, differing from the real motion (2.1) by a rigid motion.
By analogy with (2.17), we may write

1*X, ) = c(?) + QX, 1) — a), (4.35)

where ¢ is a time-dependent vector, Q is a time-dependent orthogonal tensor, and
a is a fixed position vector. The deformation gradient of the modified motion is

F* = QF (4.36)
and the corresponding finite strain tensor is
D* =1 (F*TFT — 1) =  (FTQ’QF— 1) =D, 4.37)
since QTQ = 1. The invariance condition stated above may be written now in the
form

W(F*) = W(F),
or

W(QF) = W(F). (4.38)

1 These materials are sometimes called Ayperelastic, whereas the name elastic materials is
preserved for thg more general case when the dependence of T on F cannot be derived from a scalar

potential like W. However, it was not possible up to now to find out elastic materials that
are not hyperelastic, too.
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This relation must be satisfied for every proper orthogonal tensor Q and every
invertible tensor F in the domain of W. With the special choice Q = R, where R
is the rotation tensor in the polar decomposition (2.11);, we obtain from (4.38)
the necessary condition W(F) = W(U). Instead of U we may obviously use the
tensor C = U?, or the finite strain tensor D = % (C—1). In the last case we
have, say,

W(F) = W(D). (4.39)
Clearly, by (4.37), the condition (4.39) is also sufficient for the invariance of the

strain energy under superimposed rigid motions.
Finally, by introducing (4.39) into (4.33) and taking into account that

0 W(F) owW(D) oD, 1 (oW(D) W (D) ow(D)
= =_ ““—"st—*_ Fkr =Fkr ’
0F,,, oD,, OF;, 2 oD, oD,,, oD,
we obtain the relation
.. OW(D) . oW (D)
T =jF F7, Ty =JjF Fpys ————, 4.40
J D k J By aD.. ( )

which is the non-linear constitutive equation of elastic materials. The response
function W(D) will be also called the strain-energy function. Generally, the form
of this function may depend on the particle X, as well as on the reference configu-
ration. If it is possible to choose a reference configuration of the body # so that
W(D) is the same for all particles X€ %, we say that the body is homogeneous.

By making use of the considerations which haveled us to (4.40), it can be shown
that the theory of elasticity, which primarily concerns the purely mechanical beha-
viour of the materials, may be also applied to isothermal and adiabatic processes.

A thermodynamic process is called isothermal when the temperature is uni-
form throughout the body and is time-independent (6 = 8,). For such processes

the constitutive equation (4.40) still holds provided that we set W(D) = p(D, 6,).
A thermodynamic process may be satisfactorily approximated by an isothermal
process when it is sufficiently slow for allowing the levelling of the temperatures of
different parts of the body with the temperature 6, of the surrounding medium (ideal
exchange of heat). An isothermal process may also be considered as a limiting case
of a real thermodynamic process when the conductivity of the material tends to
infinity. In this case, the heat flux is no longer determined by a constitutive equation
but by the energy equation (4.30) combined with the thermoelastic boundary
conditions.

A thermodynamic process is called adiabatic when q = 0, r = 0. The energy
equation (4.30) gives in this case # = 0, hence y = 7, (const). Consequently, any
adiabatic thermoelastic process is isentropic, too. The constitutive equation (4.40)
still holds provided that we take W(D) = ps (D, #,). A thermodynamic process
may be satisfactorily approximated by an adiabatic process when it is sufficiently
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rapid for preventing the heat exchange between the body and its surroundings
and between different parts of the body (ideal thermal insulation). An adiabatic
process may be also viewed as a limiting case of a real thermodynamic process
when the conductivity of the material tends to zero.

The isothermal and the adiabatic processes are ideal processes, but they often
provide a rather good approximation of real thermodynamic processes. Finally,
it should be noticed that a thermoelastic material behaves like an elastic material
throughout isothermal processes and like a different elastic material throughout
adiabatic processes. In particular, the elastic constants, which will be considered
below, assume different values in these two cases, the differences between them being,
however, small.

Let us resume now the case of the elastic constitutive equation (4.40). Assume
that the reference configuration is stress-free (natural state). Since in the reference
configuration we have F = 1, hence D = 0 and j = 1, it follows from (4.40) that

oW(D)

= 0. 4.41
3D o (4.41)

Moreover, since W is defined (like ¥ and &) to within an additive constant, we may
always take

w(0) = 0. (4.42)

Next, assuming that the strain energy can be expanded in a series of powers
of D and taking into account (4.41) and (4.42), we obtain

1 1
W(D) = ; cklmnDlemn + 3‘" CklmnrsDlemnDrs + e, (443)
where
2 3
Ckimn = ﬂ—(ﬂ' s Cklmnrs = _ﬂ@——' (444)
aDk, aDm" D=0 aDklaDm"aD,.s D=0

The components of the fourth-order tensor ¢ are called second-order elastic
constants, while the components of the sixth-order tensor C are called third-order
elastic constants. Clearly, by (4.44), these elastic constants must satisfy the symmetry
conditions

Ckimn = Cikmn = Ckinm = Cmnkl>

4.45)

Cklmnrs = Clkmnrs = Cklnmrs = Cklmnsr = Cmnkirs = Corsmnki = Cklrsmn'}

To linearize the constitutive equation (4.40) of the elastic materials, we assume
that ¢ = ||H|| € 1 and neglect all terms of order O(e?) or higher, as ¢ — 0, taking
also into account the results obtained in Sect. 2.6. We notice first that
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oW(D)
oDy,

= cklmann + %‘ CitmnrsDmnDrs + + + = = CitmnEmn + O(€?),  (4.46)

and
Jj=I[det@ +H)]1=1—H,, + 0. 4.47)

Substituting (2.28), (4.46), and (4.47) into (4.40), we find that, to within an error of
O(e?) as e > 0,

Ty1 = ChtmnE mn- (4.48)

This constitutive equation, which is characteristic of linear elastic materials, is called
the generalized Hooke’s law. We assume in what follows that equations (4.48) may
be solved with respect to E, thus leading to

E\ = SitmnDune 4.49)

The components of the fourth-order tensor s are called second-order elastic com-
pliances. It can be shown that they satisfy the relations

CrimnSmnpr = % (5kp5h‘ + 5kr51p)' (450)

To the same approximation as above it results from (3.29) and (3.34) that
IT =S =T, and hence, in the linear theory of elasticity, the Piola-Kirchhoff stress
tensors coincide with the Cauchy stress tensor. Moreover, if we assume that v
and grad v are of the order O(g), then the convective term (grad v) v may be neglected
in comparison with the first term in the right-hand side of (2.5), i.e.

ov %
=— =, 4.51
ot o @31
Consequently, the three forms (3.22), (3.32), and (3.36) of the first law of motion
are indistinguishable and reduce to
. 0%
div T+ Pob = Po 5;2" . (452)

Finally, we note that in the linear theory of elasticity only the lowest-order
terms in & are retained in the expression (4.43) of the specific strain energy, thus
obtaining

W = WAE) = 3 CuimExiEonn (4.53)
Equations (4.48) and (4.52), together with the linearized kinematic equations given

in Sects. 2.6 and 2.7, provide the field equations of the linear or infinitesimal theory
of elasticity.
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In order to investigate some non-linear phenomena in elastic materials sub-
jected to large deformations, without increasing too much, however, the mathe-
matical difficulties, it is customary to retain in the constitutive equation (4.40)
besides the linear terms also the non-linear terms of lowest order, i.e. those of
second order in &. The effects arising from the presence of these non-linear terms
are called second-order elastic effects. To obtain the corresponding constitutive
equation we first note that, by (4.46),, (2.30), and (2.33),

oW (D)

= Ckimn (Emn + —12_ Hpmen) + —;‘ CklmnrsEmnErs + 0(83)' (454)

Next, by substituting (2.28), (4.47), and (4.54) into (4.40) and neglecting terms of

third and higher order in & we obtain the required constitutive equation of second-order
elasticity

Tkl = cklmnEmn(l - Epp) + cplmnHkp Emn + ckpmnEmnHIp
(4.55)
+ ‘12_ cklmanmen + % CklmnrsEmnErs'

Before closing this section, we remark that, in view of the symmetry conditions

(4.45), it is advantageous to denote each pair of indexes of the elastic constants by a
single index after Voigt’s convention [372], namely

11 ~1, 22~2, 33~3, 23~4, 13~5, 12~6. (4.56)
According to this convention, we shall write

Crimn = CxM> thmurs = CKMR: (4'57)
where the small subscripts range over the values 1, 2, 3, while the capital subscripts

range over the values 1, 2, ..., 6. Moreover, the symmetry conditions (4.45) assume
now the concise form

Cxkm = Cmk> Crmr = Cryxr = Cryx = Ckru- (4.58)

There are several ways for extending Voigt’s notation to the components of the
tensors T,D, E, and s. The convention mostly used presently is that of Brugger
[44]. According to this convention, the components Ty;, Dy,, E;, and g, are re-
placed by Ty, Dy, Ey, and sy, respectively, after the rule

I, = Tx, 2Dy, = (1 + 5kl) Dxa 2Ekl = (1 + 5kt) EK’ (4-59)
Asipn = (1 4 ) (1 + Onn) Sgms> (4.60)

in which the correspondence between the pairs of small subscripts and the capital
subscripts is given by (4.56). In particular, the detailed form of (4.59), is

Dy =Dy, Dy =Dy, Dyy= D3, 2Dp3=D,, 2Dy3=D;, 2Dy,=Ds. (4.61)
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Unlike other conventions, Brugger’s notation has the advantage that it does
not lead to the occurrence of new numerical coefficients either in the expression

of the specific strain energy or in the constitutive equations. Namely, (4.43) may
be rewritten as

1
WD) = Y — CxpDxDy + CKMRDKDMDR + - (4.62)
while the equations (4.48 —50) of the linearized theory become

TK = cKMEM’ EK = SKMTM’ CMPSPM = 5KM’ (4.63)

where K, M, P range over the values 1,2, - .-, 6.

Finally, by making use of the symmetry conditions (4.58), it can be shown
that the maximum number of independent second-order elastic constants is 21,
and that of independent third-order elastic constants is 56. We shall see in Sect. 5.2
that, whenever the elastic behaviour of the material exhibits certain symmetry
properties, the number of independent elastic constants decreases accordingly.

5. Material symmetry

5.1. Material symmetry of elastic solids

All the considerations in the preceding section assumed a fixed reference confi-
guration, the dependence of the constitutive equations and in particular of the
function W on this configuration belng implied. We shall consider now this depen-

dence in more detail. Let D and D be the finite strain tensors associated with the

deformations carrying a homogeneous elastic body from two different stress-free
A

reference configurations (K) and respectively (K) into the current configuration (k)

(Fig. 5.1). Since the strain energy in the configuration (k) does not depend on the
choice of the reference configuration, we must obviously have

W (D) = Wp(D), (5.1)

while the response functions Wy and Wy may differ in general from each other.

Now, the question naturally arises: when are the functions Wy and Wy iden-

tical? Or, in other words, what is the deformation bringing the material from a
A

given configuration (K) into another configuration (K) such that the response of
the material to any further deformation from both configurations be the same?

Experiments show that elastic solids have preferred configurations, such that
any pure strain from a preferred configuration affects the subsequent behaviour of
the material. Consequently, the gradient of the deformation relating the configu-

rations (K) and (I?) must be an orthogonal tensor Q, since only in this case the
corresponding finite strain tensor vanishes identically (cf. Sect. 2.3).
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Denoting by F and F the gradients of the deformations bringing the conﬁgu-

rations (K) and (K) into the configuration (k), respectively, we have F = FQ,
and hence

A

D=1 (FTF—1) = ! (QFTFQ” — 1) = QDQ,
2 2

F
/’———\
1 2 2 3 =
2 3
Qa_ £
1
g 3 T % _ ‘
(K) (K) (k)

Fig. 5.1. Two different stress-free reference configurations

(K) and (K), used to describe the deformation of an elastic
body in the current configuration (k).

since QTQ = 1. Substituting this result into (5.1) and assuming that the functions
Wy and Wy are identical, it results that

WD) = Wx(QDQ") (5.2

for every symmetric tensor D. The set ¢ of all orthogonal tensors Q that obey (5.2)
for every symmetric tensor D is called the symmetry group or the isotropy group

of the material %

A homogeneous elastic solid is called isotropic if there is at least one confi-
guration such that the symmetry group ¢ of the corresponding function W coincide
with the full orthogonal group; a configuration with this property is called an un-
distorted state of the material. On the contrary, when ¢ is a proper subgroup of the
orthogonal group, the elastic solid is called aelotropic or anisotropic.

By (5.2), when Q belongs to ¢ then —Q belongs to ¥, too. In fact, any sym-
metry group ¢ can be represented as a direct product between the minimal symmetry
group {1, —1}, consisting of the identity 1 and the inversion —1, and another
group, say ¢+, which consists only of proper orthogonal deformations, i.e. rota-
tions ([358], Sect. 33). Consequently, the type of anisotropy is characterized by the
type of the rotation group 4. In particular, an elastic solid is isotropic or aniso-
tropic according as 4* equals the proper orthogonal group or is a proper sub-
group of it.

To characterize the material symmetry of an elastic body it is sufficient to
indicate the so-called generators of ¥*. These are defined as a set of elements of

1Ttis easxly seen thatif Q;, Q,€ & then Q,Q,€ ¥, if Q€ % then Q! = QT € ¥, and that
1€ %, hence ¢ is a group indeed. For inhomogeneous bodles, the symmetry group may generally
vary from one material point to another.
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%" having the property that any element of ¥* can be represented as a product
of generators and, eventually, of their inverses.

After Coleman and Noll [78] we denote the generators of 4+ by R, which
means the (proper) orthogonal tensor corresponding to a right-handed rotation
through the angle ¢, 0 << ¢ << 2r, about an axis in the direction of the unit vector n.
We say that n is a symmetry axis of order q of the material, if * contains the rota-
tion RZ"4,

The anisotropic solids can be divided into twelve subsystems (subgroups
of the proper orthogonal group) according to the symmetry of their elastic proper-
ties. The first eleven subsystems correspond to the thirty-two crystal classes. Table
5.1 shows the symbols of these classes introduced by Schoenflies [283] (column S)
and by Hermann [160] and Mauguin [237] (column H—M). The fifth column of
this table shows the generators of the corresponding rotation groups, where {i, j, k}

denotes a right-handed orthonormal basis and p = (i + j + k)/l/g.

Smith and Rivlin [309] have proved that the specific strain energy W(D) is
invariant with respect to the rotations belonging to ¥ if and only if it depends on D
only through a certain number of scalars I3, I, . . ., I, of D that are invariant under
%+, ie. if

W=Wl,L,...1I,).

In table 5.1, the scalar invariants corresponding to each of the first eleven types of
anisotropy are listed in the last column. D, ..., Dg denote the Cartesian components
of D with respect to the orthonormal basis {i, j, k}; they are labelled according
to Voigt’s notation and assuming that the axes x,, x,, and x; of the co-ordinate
system are chosen along the unit vectors i, j, and k, respectively.

Smith and Rivlin [309] showed that when W(D) is a polynomial in the com-
ponents D,, ..., Dg it can be expressed as a polynomial in the invariant scalars
I, ..., I, Moreover, Smith [310] has shown that these invariants satisfy certain
algebraic relations, which he has subsequently used to obtain unique representations
of polynomial strain-energy functions in terms of 1, ..., I,.

The last type of anisotropy, called transverse isotropy, is characterized by the
property that all directions perpendicular to a certain direction, e.g. that of unit
vector k, are elastically equivalent. In this case the rotation group ¥+ consists of
1 and all rotations R, 0 < ¢ < 2r, about the axis determined by the unit vector k.
Transverse isotropy is appropriate to real materials having a laminated or bundled
structure. As shown by Ericksen and Rivlin [104], the strain-energy function of an
elastic solid which is transversely isotropic with respect to the xj;-axis must have
the form

W= W(ID’ IID, IIID) D3’ D} + D;})’ (5'3)
where

Ip=trD =D, + D, + Ds, (5.4)
Ilp = § [(tt D)2 — tr D¥ = D,D, + DyDy + DDy — ¢ (D2 + D+ DY),  (5.5)
Ilip = detD = D,D,D, + - (DyDsDs — DD} — D,D? — DyD?) (5.6)

are the so-called principal invariants of D.
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When the symmetry group contains the reflection on a plane, that plane is
called a plane of elastic symmetry of the material. A material is called orthotropic
if it possesses three mutually perpendicular planes of elastic symmetry, i.e. if its
symmetry group contains reflections on three mutually perpendicular planes. Such
a triple of reflections is —RY, —R}, —R{. Since RTR} = R} and R}”R}"” = R{, it
follows that the crystals hsted in table 51 under subsystems 3, 5 6, and 7 are
particular orthotropic materials.

Unlike anisotropic solids, the isotropic solids have no preferred directions
in an undistorted state. For such materials, the strain energy may be expressed as a
function of the principal invariants, i.e.

W = W(Ip, llp, IlIp), 5.7

provided that the reference configuration is chosen as an undistorted state of the
material.

Let us resume now the general case of an elastic solid, isotropic or anisotropic.
If the strain-energy function W is a known function of the scalar invariants
L,..., I, then the corresponding constitutive equation for the stress tensor results
from (4.40), as

» (al, azu) ow 58

N
Tkm— 2]FkrFms¢§ 6.D,.s 6Ds, 61‘,

Since the calculation of the derivatives involved in (5.8) is generally rather tedious,
we shall not give here the explicit form of the constitutive equation (5.8) for various
types of anisotropy. However, we shall come back to this point below, when consi-
dering the constitutive equations of linear and second-order elasticity.

5.2. Second-order elastic constants

We will consider in this subsection the explicit form taken for each type of aniso-
tropy by the first term,

WyD) = 5 CKMD Dy, (5.9

of the expansion (4.62) of the strain-energy function . To this aim we shall retain
from the last column of Table 5.1 only the invariants and their products that are
of second degree in the components of D. By comparing the dependence of W,
on Dy obtained in this way with (5.9), it is possible to derive the restrictions imposed
by each type of material symmetry on the second-order elastic constants cyy,.

For the sake of simplicity we assume again that the body is homogeneous;
for an inhomogeneous body all the considerations below are still valid at any fixed

1 This first term of the expansion will play a special role in what follows, since, according to
(4.53), the strain-energy function of a linear elastic material is W(E).



5. Material symmetry 65

point of the body, but the type of anisotropy and/or the values of the elastic constants
may vary from one point to another.

The triclinic system corresponds to the lowest material symmetry. As shown
in Table 5.1, the strain-energy function can be in this case an arbitrary function of
D. Consequently, a triclinic material has 21 independent second-order elastic con-
stants, and W,(D) has the general form (5.9).

Materials belonging to the monoclinic system possess at any point an axis of
symmetry of second order or a plane of elastic symmetry. Choosing the unit vector
k along the axis of symmetry, respectively taking it perpendicular to the plane of
elastic symmetry, the group 4+ will have the generator Rj. Considering Table 5.1,
we infer that the function Wy(D) must have in this case the form

W2 = W2 (DD D2’ D39 Dga Dg, D4D5)' (5'10)

Consequently, the quadratic form (5.9) cannot contain the terms DgD, and DgD;,
K=1,2,3,6, and hence

C1a = Cgq = C34 = Cgg = C15 = Cp5 = C35 = C36 = 0. (5.11)

The materials belonging to the rkombic system possess at any point two
mutually perpendicular planes of elastic symmetry. Choosing the unit vectors i
and j of the orthonormal basis {i, j, k} perpendicular to these planes, the generators
of ¥+ will be the rotations R} and R{. From Table 5.1 we deduce that

W2 = W2 (Dl, D:z, D39 Dg’ Dt'zn D(25)9 (5.12)

and hence the quadratic form (5.9) cannot contain the terms D, D,, with K =1,2,3
and M = 4, 5, 6. Consequently, the elastic constants cg,, that have a single index
equal to 4, 5, or 6 must vanish. In particular, it results that the plane perpendicular
to the unit vector k is also a plane of elastic symmetry, and hence any linearly
elastic material with rhombic symmetry is an orthotropic material, too.

The materials belonging to the subsystem 4 of the tetragonal system have an
axis of symmetry of foprth order. Taking the unit vector k along this axis, it follows
from Table 5.1 that

W, = Wy(D, + D,, D,, D + D%, D}, D,D,, D,Dg — D,D). (5.13)

Clearly, the conditions (5.11) must be satisfied since (5.13) is a particular case of
(5.10). Moreover, by comparing (5.13) with (5.9), we see that

Cip = €z, €13 = Cag, Caq = Csp Ca5 =1C36 =0, €= —cip.  (5.14)

The materials belonging to the subsystem 5 of the tetragonal system possess,
besides the axis of symmetry of fourth order, another axis of symmetry of second
order, perpendicular to the former. Taking the unit vector i along the axis of sym-
metry of second order, it results that, in addition to (5.11) and (5.14), we must have
Cig = 0.

5~c. 120
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Inspection of Table 5.1 re veals that the invariants of the first and second orders
of both subsystems 5 and 6 of the cubic system coincide and that in this case

Wy = Wy(D, + Dy + Dy, DD, + Dy,D, -+ D,D,, D? + D? 4+ D}). (5.15)

Since (5.15) is a particular case of (5.12), it follows that all conditions mentioned
for the rhombic system must be fulfilled. Moreover, by comparing (5.15) with (5.9)
we find

€11 = Cop = C33, C1p = C13 = Ca3, Cgq = C55 = Cgg. (5.16)
The materials belonging to the subsystem 8 of the hexagonal system have an

axis of symmetry of third order. Taking the unit vector k along this axis and consi-
dering Table 5.1, we see that

Wy, =W, (D1 + DZ’ D,, 4D1D2 - D(Zi’ Di + Dg,

(5.17)
DDy — D,Dy — D,D;, DDy — D,D, + D;Dy).
Comparing this expression with (5.9) yields
1
C11 = Caa C13 = Cags C4qg = Cs55 Cos = 5 (€11 — €19)s
(5.18)
C16 = Cog = €36 = €35 = 0, C14 = — €4 = Cs65 C15 = — €5 =  Cyg.

From Table 5.1 it also follows that in the case of the subsystem 9 of the hexa-
gonal system, the strain-energy function no longer depends on the combination
D,D; — D,D; — D,D;. Consequently, (5.18) must be supplemented by the condi-
tions

C15 = Ca5 = C4 = 0. (5.19)

The materials belonging to the subsystems 10 and 11 of the hexagonal system
possess an axis of symmetry of sixth order. Since in this case the strain-energy
function

Wy = W,(D, + D,, Dy, 4D, D, — D}, D; + D?) (5.20)
does not depend on DD, — D,D, 4 D;D, either, we must have

€1y = Coq = C56 = 0, (5.21)

besides (5.18) and (5.19).
The strain-energy function of a material with transverse isotropy has the
form (5.3). Accordingly, the quadratic form (5.9) can contain only the combinations

I} = (Dl + Dz + Ds)za D:JD = D3(D1 + D2 + Ds)a Dg,

5.22
Iy, = DD, + DyDy + DyDy — + (D} + D} + D), D+ D3 } -22)
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and hence the only non-zero second-order elastic constants are
1
C11 = Cpg = C33, C13 = Co3, Cyqa = C35, Cop =— 3 (€11 — ¢19)- (5.23)

Therefore, linear elastic materials with transverse isotropy have the same consti-
tutive equations as materials belonging to subsystems 10 and 11 of the hexagonal
system. Thus, an axis of symmetry of sixth order assures the transverse isotropy
of a linear elastic material with respect to that axis.

Table 5.2 summarizes the above results concerning the second-order elastic
constants for all types of material symmetry. For conciseness, the symbol ¢ of the
elastic constants has been omitted, only the subscripts of the non-zero independent
elastic constants being listed for each type of material symmetry. The order number
of the subsystem is written on the first line, and the corresponding number of inde-
pendent second-order elastic constants is written in brackets on the second line
of the table. Table 5.3 shows a compilation of experimental values of adiabatic
(isentropic) second-order elastic constants of various single crystals.

Table 5.2
Independent second-order elastic constants for various types of material symmetry
[#]
E Q Q
(2] _— b~ =
g 8 'g Tetragonal o Hexagonal 5
s | &2 £ g
= = ~ O Rz
1 2 3 4 5 6,7 8 9 10,11 —
1) a3y { O O] ©) 3) (7 ©) (&) 3]
11 11 11 11 11 11 11 11 11 A4 2u
12 12 12 12 12 12 12 12 12 A
13 13 13 13 13 13 13 13 13 A
14 0 0 0 0 0 14 14 0 0
15 0 0 0 0 0 15 0 0 0
16 16 0 16 0 0 0 0 0 0
22 22 22 11 11 11 11 11 11 A+ 2p
23 23 23 13 13 12 13 13 13 i
24 0 0 0 0 0 —14 —14 0 0
25 0 0 0 0 0 —15 0 0 0
26 26 0 |—16 0 0 0 0 0 0
33 33 33 33 33 11 33 33 33 u
34 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0
36 36 0 0 0 0 0 0 0 0
44 44 44 4 44 44 44 44 44 [
45 45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 —15 0 0 0
55 55 55 44 44 44 44 44 44 U
56 0 0 0 0 0 14 14 0 0
66 | 66 | 66 | 66 | 66 | 4 | —(1-1) | S1-1) |Za1-12)} &
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Table 5.3

Experimental values of adiabatic second-order elastic constants in GPa
Cubic system, subsystem 7, crystal class Oy (m3m)

|
Material cn Cya Cyy Temp. ! Source Structure type

Ag 122.2 90.7 45.4 room [161]
Al 106.43 60.35 28.21 300 K [135]

Au 192.9 163.8 41.5 room [161] | A4;: fc.c.
Cu 166.1 119.9 75.6 room [161]
Ni 250.8 150.0 123.5 300 K [4]
Pb 49.66 42.31 14.98 296 K [248]
Th 75.3 48.9 47.8 300 K [6]
Cr 350.0 67.8 100.8 298 K [34]
a—Fe 230.1 134.6 116.6 300 K [147]
K 3.71 3.15 1.88 295 K [312]
Li 13.42 11.30 8.89 298 K [305]

Mo 463 161 109 300 K [86] |A,: b.c.c.
Na 7.69 6.47 4.34 299 K [236]
Nb 246.5 134.5 28.73 300 K [33]
Ta 266.8 161.1 82.49 300 K [417]
A\'% 230.98 120.17 43.76 300 K [35]
w 523.27 204.53 160.72 300 K [417]
a—CuZn 119.0 102.3 174.4 room [7]

(55.1% Cu)
C 1079 124 578 298 K [243]
Ge 128.528 48.260 66.799 298 K [241]1 | A,: Diamond

Si 165.773 63.924 79.619 298 K [241]
AgBr 56.10 32.70 7.24 300 K [217]
AgCl 59.85 36.11 6.24 300 K [217]
KBr 34.68 5.80 5.07 298 K [303]
KCl 40.69 7.11 6.31 298 K [303]
KF 64.80 16.00 12.52 300 K [234]
KI 27.71 4.36 3.73 298 K [18]
LiBr 39.20 18.90 18.85 300 K [235]
LiCl 48.99 22.23 24.89 299 K [272]
LiF 113.97 47.67 63.64 room [96]
LilI 29.07 14.21 14.07 295 K [239]

NaBr 40.37 10.13 10.15 298 K [181] | By: NaCl
NaCl 49.36 12.88 12.78 300 K [136]
NaF 97.00 23.80 28.22 300 K [247]
Nal 30.35 9.15 7.42 298 K [18]
RbBr 31.630 4.672 3.840 298 K [66]
RbCI 36.589 6.153 4.753 298 K [66]
RbF 55.09 14.49 92.39 300 K [76]
RbI 25.730 3.776 2.790 298 K [66]
CaO 223 59 81 298 K [315]
MgO | 296.64 95.08 155.81 298 K [65]
SrO 173 45 56 298 K [315]
CsBr 30.63 8.07 7.50 room [304]
30.77 8.27 7.60 286 K [64]

CsCl 36.64 8.82 8.04 room [304] | B,: CsCl
36.83 8.93 8.17 286 K [64]
Csl 2446 6.61 6.29 room [304]
24.62 6.59 6.44 286 K [64]
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Table 5.3. (continued)

Cubic system, subsystem 7, crystal class O}, (m3m)

Material i C1g Cy4 Temp. Source Structure type

BaF, 89.48 38.54 24.95 295 K [134] C, : CaF,
CaF, | 164.94 44.62 33.80 295.5 K [164]

YFe—g | 269 107.7 76.4 room [100] Garnet

Cubic system, subsystem 7, crystal class T,,(Tt3m)

GaAs | 119.04 53.84 59.52 room [94]
118.77 53.72 59.44 room [242]1 | B;: p— ZnS
InSb 67.00 36.49 30.19 room [951
Hexagonal system, subsystem 11, crystal class Den(6/mm), structure type A,: h.c.p.
Material cn Cr2 €13 Cag Cu Temp. Source
Be 288.8 20.1 4.7 354.2 154.9 298 K [278]
Cd 115.2 39.72 40.53 51.22 20.25 300 K [125]
Co 307.1 165.0 102.7 358.1 75.5 298 K [241]
Er 86.3 30.5 22.7 85.5 28.1 298 K [274]
Mg 59.40 25.61 21.44 61.60 16.40 300 K [3061
Ti 40.80 354 29.0 52.80 7.26 300 K [114]
Y 77.9 28.5 21.0 76.9 24.31 300 K [311]
Zn 163.68 36.4 53.0 63.47 38.79 295 K [3]
Zr 143.68 73.04 65.88 165.17 32.14 298 K [116]
Ag,Al 141.5 84.7 74.6 168.5 34.08 298 K [62]
Hexagonal system, subsystem 11, crystal class Cev(6mm), structure type B,: a-ZnS
BeO 460.6 126.5 88.48 491.6 147.7 298 K [771
Cds 84.31 52.08 45.67 91.83 14.58 300 K [133]
CdSe 74.90 46.09 39.26 84.51 13.15 298 K [771
a—ZnS | 123.4 58.5 45.5 139.6 28.85 298 K [59]

Hexagonal system, subsystem 9, crystal class D3d (3m)

Material I o ] C1s , [ | Cia | Ca3 | Caq *Temp. Source

Bi ‘ 63.5 l 24.7 ) 24.5 } 72.3 ! 38.1 | 11.3 ]301K [176]

Tetragonal system, subsystem 5, crystal class D4n(4/mmm), structure type A;:TiO,

Material I 1 ’ C12 l C13 ' Cy3 ' Ca \ Ces ’ Temp |Source
' [

f—Sn 72.0 58.5 37.4 ! 88.0 | 21.9 24.0 301 K | [176]

TiO, 271.4 178.0 149.6 | 484.0 124 .4 194.8 298 X | [228]

Rhombic system, subsystem 3, crystal class Dap(mmm), T=298 K

Mat. | Cia ] C12 ‘ C13 ‘ Cas . Cog ‘ C3 ‘ Cu [ Css | Ces ISource

a—U i 214.74 I 46.94 ) 21.77 { 198.57 l 107.91 ( 267.11 l124.44’ 73.42 ' 74.33 ’ [139]
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Finally, in the case of an isotropic material, the quadratic form W,(D) depends
only on I, and IIy,. Therefore, we may write

WD) = = Ty = & Dpal + WDinDpss (520

where A and p are Lamé’s constants*. With Voigt’s notation, (5.24) becomes

A+2u

Wza)) = (D% + Dg + Dg) + A(DD; + D,D; + D,D;,) +

(5.25)
+ - (Df+ D+ DY

and comparing this expression with (5.9) it results that the only non-zero second-
order elastic constants of an isotropic material are

Cin=Cop=Cy=AF 2U, €1a=1C3=Cy =14, Cy=Cs5= Co6= [

As already mentioned in Sect. 4.4, in the linear elasticity, the strain-energy
function is given by W,(E) and the constitutive equation is given by (4.63);. By
using the results above, and in particular Table 5.2, it is a simple matter to write
the expljcit form of this constitutive equation for each type of material symmetry.
In particular, by comparing (5.24), to (4.53), we deduce that the tensor ¢ of the
second-order elastic constants has the components

Ckimn = laklamn +u (5km51n + (Skn(slm)- : (526)

Finally, by substituting (5.26) into (4.48), we obtain the constitutive equation of an
isotropic linear elastic material

T = l (’[I‘ E) 1 + Zl,lE, Tkl - lEmmékl + 2l'lEkl‘ (5.27)

5.3. Higher-order elastic constants

We shall see in chapter III that the solving of non-linear elastic problems requires
the knowledge of higher-order elastic constants and in the first place that of the
third-order elastic constants. That is why we will devote most of this subsection
to a closer examination of third-order elastic constants for various types of mate-
rial symmetry. To this end we make use of a similar reasoning as before, starting
from the results of Smith and Rivlin indicated in Table 5.1 and retaining for each

1 It can be shown that W,(D) is positive definite if and only if x> 0, 34+ 24> 0.
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5. Material symmetry 71

type of anisotropy only the invariants and their products that are of third
degree in the components of D. The expressions thus obtained are subsequently
compared with the terms of third-order degree in the expansion (4.62) of the
strain-energy function,

1
WoD) = - CraurDxDuDr (5.28)

and this leads to the restrictions imposed on the third-order elastic constants Cyyr
by each type of material symmetry.

Since this method has been repeatedly used in the preceding subsection, we
confine ourselves to illustrating its application for materials with highest cubic
symmetry and for isotropic materials.

In the case of subsystem 7 of the cubic system, W,(D) may depend only on the
following combinations of the invariants listed in the last column of Table 5.1

(D, + Dy + Dy)’, (Dy+ Dy + Dy) (DiD; + DyDy + D3Dy),
D1\D;D;3, DyDsDg, (D, - D, -+ D) (D + Di + D7),

(5.29)
(D; + D3) D} 4~ (D3 + Dy) D% + (D, + D;) D;.

By comparing (5.29) to (5.28), it results that the only non-zero third-order elastic
constants are

C111 == C222 = C333, Ciz = C113 = C122 = C223 = C133 = C233, C123,

} (5.30)
Cua = Co55 = Cygq, Crs5 = Cig6 = Cass = Cop6 = Caaa = Cass, Case-
Therefore, a material with highest cubic symmetry has six independent third-order
elastic constants.

Table 5.4 shows the results obtained by a similar reasoning for all other types
of anisotropy. They coincide with those derived in a different way by Fumi and
Hearmon (see Hearmon [159], where a different notation is used, however, for the
components of the tensors C and D). For conciseness the symbol C is again omitted
in Table 5.4, only the indexes of the non-zero elastic constants being listed. The
number of independent third-order elastic constants is written in brackets under
the order number of each system. Table 5.5 shows a compilation of experimental
values of the adiabatic (isentropic) third-order elastic constants for various single
crystals.

In the case of isotropic materials, Wy(D) may contain only the products of
third degree in the components of D of the principal invariants Iy, II,, and
Iy, ie.

I?) = (D; + D, + D3)3,

IpIly = (D, + Dy + Dy) [D,D, + DyDy + DyDy — 5 (D + D% + DY),

Il = D,D,yD; + + (DyD;Ds — DD} — D,D? — Dy D).
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Table 5.5

Experimental values of adiabatic third-order elastic constants in GPa for cubic
materials!, at room temperature

Material | Cyyy Cis Clos Cus | Cue Cyss Source'Structure type
Cu —1271 |—814 |— 50 |— 3 [—780 {—95 [161]
Ag — 843 |—529 189 56 |—637 83 [161]] A4,: fc.c.
Al —1076 |—315 36 |—23 |—340 |30 [350]
Au —1729 |—922 {—233 |—13 [—648 |—12 [161]
Ge — 710 |—389 |— 18 [—-23 [—292 {—53 [241]
— 681 |—363 — 9 9 |—306 {—43 [ 92]1|4,: Diamond
Si — 825 |—451 |— 64 12 =310 |—64 | [241]
— 744 |—418 2 29 |—315 |70 [93]
LiF —1423 | —264 15.6/ 85 |—273 94 961
KCl — 701 |— 22.4] 13.3] 12.7|— 24.5 11.8| [63]

— 726 |— 24 1 23.0 |— 26.0] 16.0| [96]

NaCl — 80 |— 57.1| 284 25.8|— 61.1) 27.1; [63]| B;:NaCl
— 823 200, 53.0/ 23.0|— 61 20 [140]
— 863.6 |— 49.6 9.3] 7.1 |— 58.7} 13.2} [326]
— 843 |— 50.0] 46.0/ 29.0|— 60 26.0| [96]

MgO ~4895 |— 95 |— 69.0| 113 |—659 | 147 [32]

BaF, — 584 |—-299 |—206 |—121 |— 88.9{—27.1| [134]| C;: CaF,

YFe—g| —2330 |—717 |— 33 |—148 |—306 |-—97 [100]] Garnet

GaAs — 675 [—402 |— 4 | —70 |—320 |—69 [94]
— 622 |—387 |— 57 2 |—269 |—39 [242]| B;: B—ZnS
InSb — 314 |—210 |— 48 9 1—-118 02] [95]

1 Al materials listed in this table belong to subsystem 7 and they per-
tain to the crystal class Op (m3m), except GaAs and InSb that belong to the

crystal class Tq (43m).

Comparing these expressions with (5.28), we see that the six independent third-order
elastic constants of subsystem 7 must be related by three supplementary equations,
namely

Cus = (Cp2 — 0123)/ 2, Ciss = (C — Cuz)/ 4,
(5.3
Cise = (Cin — 3Cyps + 2C123)/ 8.
By choosing after Toupin and Bernstein [355] as independent elastic constants
Cis=v, Cuu=vy Cue="Vs (5.32)

we obtain from (5.31) the expressions of the other three elastic constants

Cin=v1+6v,+8v;, Cup=v+2v;, Cy5="1y4 2v,.
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It can be shown that the tensor C of an isotropic material has the Cartesian
components

Cklmurs = V15“(Sm"5,s + Va2 {6kl(6mr5ns + 5ms5nr) + 5mn(5kr51s + 6ks51r) +
+ 5rs(6km51n + 5kn51m)} + V3 {6km(5lr6ns + 6ls5nr) + 5ln(5kr5ms + (533)
+ aks(smr) + 6kn(5lr6ms + 5ls6mr) + 5lm(6kr6ns + 5ks5nr)}'

Finally, by substituting (5.26) and (5.33) into (4.55), we deduce that the
constitutive equation of second-order elasticity for isotropic materials is

Tyt = AEpnd -+ 2uEq + {% HopHon -+ (32— - ) Epn)? + szmE,,.,} Su+
(5.34)
+ 2 (A — U + v2) EmmEkl + #Hkalm + 4 (.u + v3) EkmEml'

Going a step further in the expansion (4.43) of the strain-energy function,
we consider the terms of fourth-order degree in the components of the finite strain
tensor, W4(D) == (1/24) LijklmnrsDijDlemnD Where

*W(D)
a‘Dij aDkl aDmn aDrs D=0

ijklmnrs =

are the fourth-order elastic constants. The number of independent fourth-order
elastic constants for all crystal classes and for the isotropic case have been obtained
independently by Markenscoff [450] and by Brendel [402]. The latter author has
also developed computer programs that allow to obtain the dependence relations
between the elastic constants of n’th order, as well as the independent and the zero
constants for each crystal class.

Fourth-order elastic constants are used to describe higher-order non-linearities
occurring in such phenomena as generation of higher-harmonics in finite-amplitude
waves, pressure dependence of elastic constants at higher pressures, temperature
dependence of the second-order elastic constants, and shock waves in solids that
can sustain large compressions.

The most precise method for the determination of higher-order elastic con-
stants is based on the accurate measurement of the velocity of small-amplitude
waves superposed on homogeneously prestressed media (Thurston and Brugger
[481], Markenscoff [449]). The third- and fourth-order elastic constants are related,
respectively, to the first and second derivative of the wave velocity with respect to
the initially applied stress, both taken at the zero stress.

It is interesting to note that some of the experimental results available to
date (see, e.g. Chang and Barsch [66, 406, 407], Graham [421]) show that partial
contractions Cjjyimm and L;jiimmer Of the third- and fourth-order elastic constants
are about 10 to 25 times, respectively 200 to 500 times, larger than the corresponding
second-order elastic constants. This clearly illustrates the rather slow convergence
of the expansion (4.43), at least in the cases investigated so far.
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5.4. Transformation of elastic comstants
under a change of co-ordinates

Until now we have constantly assumed that the Cartesian axes of co-ordinates
Xy, X9, X3 are taken, respectively, along the unit vectors i, j,k that are associated
with the preferred directions of the elastic material, in order to take the maximum
advantage of the material symmetry for simplifying the form of the constitutive
equations. An alternative approach, which proves to be particularly useful in con-
tinuum mechanics, is to choose a co-ordinate frame that exploits the geometrlc
symmetry of the body and/or the symmetry of stress state. In such situations it is
necessary to know the rules governing the change of the elastic constants under a
transformation of co-ordinates.

For the sake of convenience, in what follows, the unit vectors i, j, k, which
are associated with the preferred directions of the material in the reference configu-
ration, will be denoted by ey, e,, €3, respectively. Let Dy, Ciimns Crimnrs D€ the com-
ponents of the tensors D, ¢, C in the bases e, eeeye, and €;€,€,8,8,e;, TeS-
pectxvely, and Dy, ck,,,,,,, C,‘,,,,,,,s the components of the same tensors in the bases
e/e/, eierene,, and eeje,enere;, respectively. We denote, as in Sect. 1. 1 by Gip S
the direction cosines of the unit vectors e, with respect to the unit vectors e, i.e.

Gip = COS (&, €;) = € €. (5.35)
We have then, by (1.35),,
Dkl = 4kp qer;r' (5'36)
By making use of Voigt’s notation, the last relation gives for typical components
of D
D, = ¢}, D] + ¢3,D; + q3:Ds + q1241D5 + q1361 D5 + q11912D5s

D, = 24,g5:D; + 242,G5:D; + 245393303 1 (422933 + G2352) D; +

+ (g2s951 + 921933) D5 -+ (921932 + 922931) Ds
and, in general,
Dy = QypDp, (5.37)

where the transformation matrix Q = [Qyp] is given by

g 9 9B 912913 913911 qudre
g5 g5 33 q22923 q23921 21922
q %1 q A g5 q32q33 q33q31 31932
Q= . (5.38)

2G519s1 2G99G5> 223933 Gasss + Gesdaz Ge3ds1 1 921953 Fa1dsz + Geedm
2951911 2950012 2433015 Gaodis + Gasdrz 933911 + 9s1d1s 91912 1 Gs2qu1

| 2411921 212902 213903 G123 T G1392e 13921 + 911923 GuiGae + G129 |
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Since the strain-energy function W(D) must be invariant under a change of
co-ordinate frame, it follows from (4.62) that

1 1
WD) = 5’“ cxmD gDy + ?' CkmrDg Dy Dy + . ..

1 ’ ’ ’ l 14 ’ ’ 14
=21 cprDpDr + 3 CpryDpDrDy + ...
Substituting (5.37) into this relation and equating coefficients of Dp D7 and

D% Dy Dy leads to the transformation rule of the elastic constants of second and
third order under a change of co-ordinates!

C}’T = QKPQMTCKMa Crrv = Oxpr Omr Orv Cxmr- (5.39)

Although the application of these transformation rules requires the previous cal-
culation of the matrix Q = [Qg,] by (5.38), it is generally more convenient than the
use of the direct transformation rules of the components ¢, and Cy,,,,.s by means
of the formulae given in Sect. 1.1 and of the matrix ¢ = [g;,].

6. Linear theory of elasticity

6.1. Fundamental field equations

The linearization of the kinematic equations and of the elastic constitutive equations
has been done in Sects. 2.6 and 4.3, respectively. We have also remarked that in
the linear theory the spatial co-ordinates of the particles can be identified with their
material co-ordinates when calculating the gradients of scalar, vector, or tensor
fields. Consequently, we shall adopt in the linear theory of elasticity the simplified
notation

o) _ 00)
X, Ox,

= ('):m'

Moreover, by using Lagrange’s theorem, it may be shown that, if
{|(Grad ®)ul| < ||®| at any point X of the body, where ® is an arbitrary vector or
tensor field of class C! and u is the displacement vector, then ®(X, ) ~ ®(x, 1).
In the linear theory of elasticity it is assumed that all fields occurring in the for-

1 1t is interesting to note that Dg, cxu, and Cgprr follow, under a change of co-ordinate frame,
the transformation rules of the Cartesian components of a vector, a second-order tensor, and a
third-order tensor, respectively. It should be remembered, however, that capital Latin subscripts
range over the values 1, 2, ..., 6, and hence the dimensions of the corresponding vector and tensor
spaces increase accordingly.
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mulation of the boundary-value problems satisfy this condition; consequently, no
distinction is being made between material and spatial co-ordinates of the particles.

In what follows we shall consider mostly applications of linear elastostatics *
to the modelling of crystal defects. Therefore, we recollect below for convenience
the basic field equations of linear elastostatics, namely the kinematic equations

Eim = 5 (om + tmy), (6.1)

the equilibrium equations

Tkm:m +ﬁc =0, (62)

and the constitutive equations

Ti1 = Chimn Ens (6.3)
or
Eit = SttmnTmn (6.4)

We recall that u is the displacement vector, E is the infinitesimal strain tensor, T
is the stress tensor, f = pyb is the body force per unit volume, ¢ is the tensor of
second-order elastic constants, and s is the tensor of second-order elastic complian-
ces. We assume throughout that the body is homogeneous, i.e. the tensors ¢ and s
do not depend on x.

For isotropic bodies, (6.3) reduces to

Tiq = AE Oy + 21Ey, 6.5)

where A and p are Lamé’s constants. By contraction, (6.5) leads to

where
K=21-+ 23& 6.7)

is the bulk modulus. In view of (6.6), we can solve equations (6.5) with respect to
E,;, thus obtaining

1 Vv
E,=—Ty———Tplul, 6.8
, 2#(“ o ) 65)
where
V= 4 — (6.9)
2(A+p)

is Poisson’s ratio.

1 Linear elastostatics deals with the equilibrium of linear elastic bodies.
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As already shown in Sect. 2.7, the components of the infinitesimal strain tensor
E must satisfy the compatibility equations

€ JmnEln km =0, (6.10)

which can be also written as
AEkl - Etm.km - Ekmrlm + Emm.kl = 0. (6-11)

We have also seen in Sect. 4.3 that the strain energy density of a linear elastic
material may be expressed as a quadratic form in the components of E, namely

W = Wo®) = 3 Cutmn Evt Em ©.12)
In view of (6.3) and (6.4), this relation may be rewritten in the alternative forms
W= TkmEkm = sklmnTlemn (613)

In the isotropic case, the strain-energy function takes the form (5.24) with
D replaced by E, i.e.

W= W2(E) (Emm) i uEkmEkm (614)

Throughout the remainder of this chapter we assume that f is a continuous
vector field on ¥ = ¥~ U &, where ¥  is the region occupied by the elastic body
in the current configuration and & denotes its boundary. We also assume that &
is the union of a finite number of non-intersecting closed surfaces that are two-sided
and piecewise smooth.

By an admissible state we mean an ordered array ¢ = [u, E, T], where u is

of class C2 on ¥, while E and T are of class C2 on ¥". An admissible state that sa-
tisfies equations (6.1—3) is called an elastic state corresponding to the body force f.
Clearly, by (6.1—3), when u is the displacement field of an elastic state, the regu-
larity conditions adopted for u imply those assumed for E, T, and f.

By virtue of (3.18), the surface traction t on & corresponding to the stress
tensor T is

t(x) = T(X)n(x), (6.15)
where n(x) is the outward unit normal to & at x. We call the pair [f, t] the external

force system for the elastic state 4.

The following two theorems are consequences of the equations of equilibrium
6.2).

Theorem of work and energy. If the elastic state [u, E, T] corresponds to the
external force system [f, t] then

W:S Wdu:iST-Ech;:iS t-uds+ig f-udv. (6.16)
2 . 2 2
14 v P v
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Proof. By (6.13) and (6.1), we have
W = %S T.E dv= %S Tt v = %S {(Tkluk),l - ukat,z} dv.
v v v

Now, by making use of (1.52) and taking into account (6.2) and (6.15), we obtain
(6.16) and the theorem is proved.

Betti’s reciprocal theorem [25). Let [u, E, T] and [u*, E*, T*] be two elastic
states corresponding to the external force systems [f,t] and [f*, t¥], respectively.
Then

S T-E*du=s t-u*ds—I—S f-u*du=S T-E*dv =
v ¥ v v

6.17)
=S t*-uds—i—s f*.udo.
£ v

Proof. By using an analogous reasoning as in the proof of the preceding theorem it
is easy to see that

S T-E*dvzs t-u*ds—i—S f-u*do,
v K4

»
S T*-Edv:S t*-uds—I—S f*.udvo.
v 4 v

On the other hand, the symmetry of ¢ implies that T -E* = T* ‘E and this completes
the proof.

6.2. Boundary-value problems of linear elastostatics

The field equations (6.1 —3) of linear elastostatics constitute a system of 15 scalar
equations with 15 unknowns: six components of the stress tensor, six components
of the strain tensor, and three components of the displacement vector. A boundary-
value problem is the problem of finding solutions of the field equations that satisfy
certain boundary conditions.

The main boundary-value problems occurring in linear elastostatics are of
the following three types:

1. The displacement boundary-value problem. The displacement vector is
prescribed on the boundary of the body, i.e.

u=u’ on &, (6.18)
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2. The traction boundary-value problem. The surface traction is prescribed
on the boundary of the body, i.e.

Tn=1t> on &. 6.19)

3. The mixed boundary-value problem. The displacement vector is prescribed
on a part &, of the boundary and the surface traction is prescribed on the comple-
mentary part &, of (¥, U &= &, %, and &, have no common interior
points), i.e.

u=1u’ on ¥, Tn=1t" on %,. (6.20)

Clearly, the displacement boundary conditions (6.18) or (6.20), correspond to
constraining the boundary & of the body, or a part &, of it, to assume a given
shape in the deformed configuration, whereas the traction boundary . conditions (6.19)
or (6.20), correspond to prescribing the loading on the surface & of the body, or
a part &, of it, respectively.

Any solution of a boundary-value problem in statics must be such that the
total force and the total torque acting on the body in the configuration of equili-
brium vanish:

Stds-{—S fdv=0, S xXtds—I—Sfodv:O.
L4 v 4 v

We shall consider now shortly the uniqueness question appropriate to the
boundary-value problems of elastostatics formulated above 1.

Kirchhoff’s uniqueness theorem [179]. If the elastic body is simply-connected
and the density of its strain energy W = Wy(E) is positive definite, then

(1) the displacement boundary-value problem has at most one solution;
(ii) the mixed boundary-value problem has at most one solution;

(iii) two solutions of the traction boundary-value problem differ by an infini-
tesimal rigid displacement.

Proof. Consider first the mixed boundary conditions (6.20), which include as
particular cases the displacement and the traction boundary conditions (&, = @
and &; = O, respectively). Let u’ and w” be two displacement fields that satisfy
equations (6.1-—3) and the boundary conditions (6.20). We denote by E’, E' the

1 The extension of the uniqueness theorems to the dynamic case may be done without
great difficulty provided that the boundary conditions be supplemented by initial conditions of the
type u(x, o) = i(x), u(x, fo) =¥(x) for x€ ¥, and the time-variation of the functions u°® and t° be
equally prescribed (see, e.g. Sokolnikoff [313], Sect. 27).
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infinitesimal strain tensors and by T’, T’’ the stress tensors corresponding to the
displacement vectors w’ and w'’’, respectively. Let

u=v —u’, E=E —E’, T=T —T" (6.21)
From (6.1—3), (6.20), and (6.21) it follows that

E,,, = _;- (#,m + um,k)a Tkm,m =0, Ty = CkimEmn in ¥ (6.22)

and that
=90 on &, t=0o0n %, (6.23)

By (6.23) we have also u-t = 0 on &, since &, and &, are complementary subsets
of &. Substituting this result into (6.16) and taking into account that the stress
field T corresponds, by (6.22),, to zero body forces, it results that

S Wdo = 0. (6.24)
.

Consequently, since W = W,(E) is by hypothesis a positive definite quadratic form
in the components of E, we deduce that E = 0 and, by (6.22),, that T = 0, too.
Moreover, as already mentioned in Sect. 2.7, E = 0 implies that u is a rigid dis-
placement. By (6.21), we conclude that E' = E”, T' = T" in ¥" and that u’ and
a'’ differ by a rigid displacement. In the case of the displacement boundary condi-
tions, we must have u = ¢ on & or a part of it, and hence u must vanish identi-
cally. On the other hand, the solution of the traction boundary-value problem,
if any, is unique to within a rigid displacement.

Let us consider now a multiply-connected elastic body 8. We have seen in
Sect. 2.8 that it is possible to produce in such a body a state of self-stress, i.e. a
non-zero stress state corresponding to vanishing external forces. Assume that the
body # occupies an n-tuply connected region ¥~ and let S;, S,, ..., S, ben — 1
cuts rendering ¥~ simply-connected. Let the faces of each cut be relatively displaced
by a small rigid displacement, and the opposing faces of the cuts be joined, by
removal or insertion, if necessary, of a thin sheet of matter of the same kind as
that forming the original body. Then the body will be again multiply-connected,
but in a state of self-strain, called a Volterra dislocation. As shown in Sect. 2.8,
the displacement u may be defined as a single-valued vector field of class C® on

n—1
¥\ Si> the jumps of u across the surfaces S; being equal to the relative rigid
k=1
displacements of the cut faces, whereas the infinitesimal strain field E corresponding
to u is continuous across the surfaces S, and the extension (by continuity) of E
to ¥ is of class C2. Alternatively, the displacement may be considered as a mul-
tiple-valued vector field of class C3 on ¥~ with cyclic constants given again by the
translation and rotation vectors of the relative rigid displacements of the cut faces.
For a multiply-connected body, Kirchhoff’s uniqueness theorem must be
replaced by the following theorem, which we give without proof.
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Volterra’s uniqueness theorem [373). Suppose that an elastic body # occupies
an n-tuply connected region ¥, that its strain-energy density W = Wy(E) is a positive
definite function, and that the jumps of the displacement vector u across n — 1 cuts
transforming ¥ into a simply-connected region are prescribed. Then

(i) the displacement boundary-value problem has at most one solution;
(ii) the mixed boundary-value problem has at most one solution;

(iii) two solutions of the traction boundary-value problem differ by an infini-
tesimal rigid displacement.

Finally, let us consider the case when the region ¥~ occupied by the elastic
body is infinite, but its boundary & consists of a finite number of closed, bounded,
piecewise smooth, and non-intersecting surfaces. Besides the boundary conditions
(6.18), (6.19), or (6.20) on &, we consider also the following alternative comple-
mentary conditions:

(C) lim ux) — &) =0,

[1x[{~>00
(Cy) lim |T(x) — 'f'\] =0, S tds= ?, S X X tds = l";l,
lix]l=00 & 14

{x]|->00

(C) lim [T(x) — T =0, S tds =1 lim [o®x) — & =0,
X} —>00 &

where 1, f, nAl, and @ are constant vectors, T is a constant symmetric second-order
tensor, and o= --—;« curl u is the infinitesimal rotation vector. With the above
notation we can formulate the following uniqueness theorem, which holds for the
solutions u(x) that are uniform and of class C? in V=9 U <.

Bézier’s uniqueness theorem [26]. Suppose that the strain-energy density
W = Wy(E) of the body @ is positive definite and that # occupies an infinite region
v, whose boundary & consists of a finite number of closed, bounded, piecewise smooth,
and non-intersecting surfaces. Then:

(i) the displacement, the traction, and the mixed boundary-value problems
have at most one solution that satisfies the complementary condition (C;);

(i) the displacement and the mixed boundary-value problems have at most
one solution that satisfies the complementary conditions (Cp) or (Cs);

(iii) two solutions of the traction boundary-value problem differ by an infini-
tesimal rigid displacement if they satisfy the complementary condition (C,), and by
an infinitesimal rigid translation if they satisfy the complementary condition (Cs).

For a proof of this theorem in the isotropic case we refer to Fichera [115},
Gurtin and Sternberg [149], and Gurtin [150], Sect. 50. An analogous theorem holds
for the plane problem of linear elastostatics (see Muskhelishvili [254], Sect. 41).

6.3. Stress and displacement formulations
of the boundary-value problems

The stress formulation of the boundary-value problem is generally used in conj\}nctiqn
with the traction boundary condition (6.19). This formulation can be obtained in
the following way. By substituting (6.4) into (6.10), we obtain the compatibility
conditions in terms of stresses

- eiklejmnslnqupq.km = 0.

6 — 120
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In the isotropic case, these equations take a much simpler form. Namely, by intro-
ducing (6.8) into (6.11) and considering (6.2), it follows that

1
ATy + —— (Tompa — V051 AT pp) + frn + fra =0,
1+v
wherefrom it results by contraction
ATmm = - Ly fm,m'
1—v

Combining the last two relations yields the Beltrami-Michell compatibility equationst

1
ATy + ——— Tt + fon + frae + —
1+v

Ot fnm=0. 6.25)

1 —v

Besides the boundary conditions (6.19), the six unknown stresses must satisfy the
three equilibrium equations (6.2) and the six compatibility conditions (6.25), i.e.
nine field equations; however, equations (6.25) represent only three independent
conditions, as already noticed in Sect. 2.7.

In the absence of body forces 2, the equilibrium equations (6.2) can be identi-
cally satisfied, in view of (1.51),, by using Beltrami’s solution [23)

T = iIlC 2L, Tij = "'EiklejmnXIn,km’ (626)

where y is the (symmetric) stress function tensor.

It can be shown (see Schaefer [282] and Gurtin [150], Sect. 17) that Beltrami’s
solution is complete, i.e. any stress field admits a representation as a Beltrami solu-
tion, if either the body is simply-connected or it is multiply-connected, but the

resultant force and the resultant moment vanish on each closed surface in ¥~ (in
particular, on each closed surface of the boundary)®. On the other hand, if the
body is simply-connected, the six distinct scalar stress functions y,, may be sub-
jected to three supplementary conditions, provided that these conditions be ad-
missible, in the sense of not restricting the generality of the possible stress states.
On using as before a Cartesian frame, and putting y;; = ¥es = Y33 into (6.26),
Morera’s solution results [251]; alternatively, setting x;s = Y25 = Xs1 = 0, one obtains
Maxwell’s solution [238]; both these sets of supplementary conditions can be shown
to be admissible.

Any general solution of the equilibrium equations in terms of stress functions
must still satisfy the compatibility conditions (6.25) and the boundary conditions
(6.19). While the uncoupling of equations (6.25) by stress functions can be done

1 Derived by Beltrami [23] for t = o, and by Michell [246] in the general case.

2 The general case may be reduced to this particular one, by finding out a particular solution
of the equations of equilibrium [282], [331].

3 A stress field having this property is called self-equilibrated.
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by a suitable choice of the admissible supplementary conditions (see Sect. 18.2),
the simultaneous uncoupling of the boundary conditions is rarely possible.

The displacement formulation of the boundary-value problems is generally
used in conjunction with the boundary conditions (6.18) or (6.20), i.e. when the
displacement is prescribed on the boundary of the body or on a part of it. However,
it can be also applied, without much difficulty, in the case of the traction boundary-
value problem.

By substituting (6.1) into (6.3), and the result obtained into (6.2), we obtain

Crimnlm,nl +=0, k=123 6.27)

The boundary-value problems of linear elastostatics can now be formulated as
follows: Find a class C? vector field u(x) that satisfies the equations (6.27) in ¥~
and the boundary conditions (6.18), or (6.19), or (6.20) on &. These boundary-
value problems can be simplified to a certain extent by solving equations (6.27)
in terms of displacement potentials that are solutions of simpler field equations. We
illustrate below this procedure, limiting ourselves for the sake of simplicity to the
isotropic case. Substituting (5.26) into (6.27) yields Navier’s equations

(A 4 Wty + 1t + fi = 0. (6.28)

These equations can be solved for instance by setting
_ 1
41 —v)

where @ is a vector field, and @, is a scalar field, both of class C? in ¥, and that
satisfy the equations of Poisson type

“A¢0 = xmfm3 ”A¢k = '—ﬁc’ k= 1’ 2’ 3.

u, = P,

(xm¢m+¢o),k3 k=1,2,3,

The above solution of the field equations in terms of the potentials ¢, and ® is
called the Papkovitch-Neuber representation, since Papkovitch [263] and Neuber
[259] have proved independently that this solution is complete, i.e. every sufficiently
regular solution of Navier’s equations admits a representation of this form .

6.4. Green’s tensor function of an infinite elastic medium

In this subsection we consider an elastic body occupying the entire space &, referred
to a rectangular Cartesian system of co-ordinates x,.
We call fundamental singular solution or Green’s tensor function of the infinite
elastic medium the second-order tensor field G(x) with the following properties 2:
(i) For any point of & with position vector x # 0 and for each p = 1, 2, 3,
the displacement field u{P(x)= Gy ,(x) defines a (regular) elastic state corresponding

1 For the admissible supplementary conditions that may be imposed on the Papkovitch-Neu-
ber potentials we refer to Eubanks and Sternberg [113].
2 As shown by Sternberg and Eubanks [321], properties (i)—(iii) uniquely characterize G(x).
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to zero body force. In particular, by (6.27),
CijiGipa(x) =0, ip=123. (6.29)

(i) G(x) is 2 homogeneous function of degree —1 in x,. In particular, we
have

G(x) = O0(r't), TW(x)=0(r? asr-—->0andalsoasr— oo, (6.30)

where r =|[x||, and TP =c;;,Gy,,; are the components of the stress tensor corres-
ponding to the displacement u(®,
(iii) Forallp >0and p=1,2, 3,

S T®nds =e,, SZT“”n ds = &;,, (6.31)
Z"' n

where X, is the sphere with radius 5 centred at the origin, and n is the inward unit
normal to Z,.

Equation (6.31) shows that the resultant of the stress vectors corresponding
to the displacement UP(x)= Gp(x) and acting on any sphere centred at the origin
equals e e,. That is why Gy, (x) 1s also said to be the component in the direction of
the x,-axis of the dlsplacement produced by a unit concentrated force acting at the
origin and directed along the x -axis. Since the elastic medium occupies the entire
space, it may be seen that a umt concentrated force acting at an arbitrary point
with position vector x’ and directed along the x -axis produces a displacement field
u‘,f)(x) Gy ,(x— x'). Finally, it results that an arbltrary concentrated force P acting
at x’ produces the displacement field

ux) = G(x — x)P, wu(x) = G ,(x — x)P,,. (6.32)

Of a special interest is the differential equations satisfied by the Green’s tensor
function in the sense of the theory of distributions. Let ¢(x) be an arbitrary function
of class C* and of bounded support on &. According to the definition of the deri-
vatives of a distribution ! we have

(€ij11Grp,1i(X)s @(%)) = ~(Cij1Grp.(X), @ ;X)) = (cijlekp(x)’ @.;(x). (6.33)

Denote by £, the exterior domain bounded by the sphere X, of radius r and the
centre at the origin. Integrating by parts twice, taking into account that ¢ vanishes
together with all its derivatives for sufficiently large values of r, we successively
obtain

SO cijlekp(x) ¢.jl(x) dv = Sﬂ (C'ijktka(X)(P,j(X)),th - S Cijktka,t(x)¢,j(X) dv =

2,

=S Cijktka(X)¢,j(X)”tdS - S (Cijszkp,z(X)(P(X)).de +S Cijk ka.tj(x) o(x) dv
=, 0,

r

! For the basic results of the theory of distributions used below see, ¢.g. Gelfand and Shilov
[137] or Kecs and Teodorescu [178].
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and hence, considering also (6.29),

Zr

S!J Cijia Grp(X) @ jy(x) dv = S CijiGip(X)@; (X)nds — S C3j11Gip,1(X) 9(X) nyds.

Zr

Next, by making use of the mean theorem of the integral calculus and taking into
consideration (6.30) and (6.31), it results that

llm S Cijk,ka(X)(p,j(X)n lds - 0,
Zr

r—0

r—

lim S Cijn1Gxp,(X)@(X)n; ds = lim S ﬂ,?)nj(p ds = 0;,0(0),
= r=0 Jr

and hence

r—0

llm S cijk,ka(X)(p,ﬂ(X) dU B -—-5ip(p(0).
Q2

r

Combining this result with (6.33), we conclude that the regular functionals associat-
ed to ¢;j4;Gy,.1;(X) on the regions @, tend to —6;,6(x) as r—0, where d(x) is Dirac’s
distribution. Consequently, the components of the distribution associated to G(x)
satisfy the system of equations?

CiiuiGrpj(X) + 0;,0(x) =0, i,p=1,2,3. (6.34)

Assume now that the elastic medium is subjected to the action of a body
force f(x) of class C! in & and that satisfies the condition

f(x) =0(r3%) asr— oo. (6.35)

Making use of the properties of the convolution and considering (6.34) we may
write

Fi(®) = 8,,0(x — XY (X)) = —€1j3aGrp.1j(Xx — XWHf,(X)
= —Cijnl {ka(x - X')*fp(x')},lj,

where the derivatives are taken with respect to x, and x;. By comparing this relation
with (6.27), we deduce that

u(X) = Gyp(x — X)f(X) (6.36)

1 The Green’s tensor function is sometimes defined as the particular solution of (6.39), in
the sense of the theory of distributions, that vanishes at infinity. The definition adopted above has
the advantage that it needs not the regularization of the solution of (6.34).
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is the unique solution of (6.27) that satisfies the supplementary condition

lim ju(x)|| =0. .37

r—»0
Finally, by taking into account the way in which the distribution G(x) has
been generated, as well as the continuity of the convolution, (6.36) may be rewritten

as

1, (x) = S Gop(x — X)f(x) V", (6.38)

[

the convergence of this integral being granted by the conditions (6.30), and (6.35).

The properties (i) and (ii) imply that the partial derivatives of n’th order
Gip.ir..kn Of G(X) define certain displacement fields that are homogeneous functions
of degree —n + 1 of the co-ordinates x; and such that the corresponding elastic
states are regular for all points of & except the origin. As shown by Fredholm [123],
these functions play in the anisotropic elasticity theory the same role as the spherical
harmonics of negative degree in the potential theory. Namely, it can be proved that
if u(x) satisfies the equations of equilibrium with null body forces,

Cijkr Uizt = 0, (6.39)

outside a sphere ¥,, of radius r, and with centre at the origin, then each component
u,(x) of the displacement field may be written as a sum of two series: a power
series and a series of derivatives of Green’s function. These expansions, which are
analogous to Laurent’s series, are uniformly convergent in any closed region that
is exterior to the ball bounded by X, ..

Let us consider now in more detail the physical significance of the partial
derivatives of first order of G(x). We can obviously write

Gip.m(X) = 1,1;210% {Gip(X) — Gyp(x — he,)}. (6.40)

Consequently, the elastic state associated to the displacement field
U(x) = Gip,m(X) 6.41)

is the limiting value as & — 0 of a sum of two elastic states: the first corresponds to
the concentrated force e, /h acting at the origin; the second corresponds to a con-
centrated load —e,/h acting at the point with position vector ke, (Fig. 6.1). A
straightforward calculation shows that the resultant of the stress vectors acting
on any sphere X, with radius # and centre at the origin is zero, while their resulting
couple equals —e,Xe,. Following the terminology introduced by Love [222],

1 See also Bézier [26]. An analogous theorem that is valid in the isotropic case has been
proved by Kelvin as early as 1863.
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Sect. 132, we say that the elastic state corresponding to the displacement (6.41)
is produced by a unit double force, which is statically equivalent to a directed concen-
trated couple* or to 0 according as m # p or m = p. In the latter case we say that
the singularity at the origin is a unit double force without moment.

.
n€p

Fig. 6.1. On the definition he.
of a unit double force by 2
a limiting process.

7
The elastic state corresponding to the displacement field

uk(x) = ka, m(x)’ (642)

which is produced by three mutually orthogonal unit double forces without moment
acting at the origin, is called a centre of compression, whereas the elastic state corres-
ponding to the opposite of (6.42) is called a centre of dilatation.

As has been shown by Sternberg and Eubanks [321], the part of (6.30) con-
cerning the behaviour of G as r — 0 is indispensable for a unique characterization
of the singular elastic state produced by a unit concentrated force. In fact, this
condition eliminates the possibility of superimposing self-equilibrated singular
elastic states, such as those produced by double forces without moment; indeed,
it is apparent from the reasoning above that such states correspond to displacement
fields of the order O(r™™),n > 2, as r = co, and hence do not satisfy (6.30).

Green’s tensor functions are particularly important for the modelling of
crystal defects, since they correspond to singular elastic states. That is why we will
consider in the following in more detail the most powerful methods of determining
Green’s tensor functions for various types of material symmetry, namely Fred-
holm’s method and the method of Fourier transformation.

Fredholm’s method. The Green’s tensor function of an infinite isotropic elastic
medium was determined by Kelvin [351] in 1848. Later on, Fredholm [123] deduced
the form of G(x) in terms of the roots of a sextic algebraic equation, for an elastic
medium with general anisotropy. We cannot follow here the rather intricate rea-

soning of Fredholm and content ourselves, therefore, with explaining his result.
Putting

Dy (%) = Dy(xy, Xa X3) = CyjiiXjXps (6.43)

1 For a detailed discussion of the elastic states produced by double forces in an isotropic
elastic medium we refer to Gurtin [150], Sect. 51 and to Kecs and Teodorescu [178], Chap. 5 and
Sect. 10.1.
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the equations of equilibrium (6.39) may be rewritten in the symbolic form

0 i 0
Dik ] H uk - 0. (6.44)
0x, 0x, Ox,
Let
D(xy, Xy, x3) = det [Dy(xy, X2, X35)] (6.45)

and denote by D}(x;, x5, x3) the algebraic complement of Dy (x;, x;, x3) in the
symmetric matrix [D;(x;, X5, Xx3)]. Then, Green’s tensor function of an infinite
anisotropic elastic medium is given by

3 %
1 Z ka(év’ "V’l) , (6.46)
i S oD oD

V=X (éva Mys 1) — Xg (év: Nys 1)
] ¢

G (x)=Re

where &, 17, are the roots of the system of equations
D&, n, 1) =0, &x;+nx;+x;3=0, (6.47)

and the sum in the right-hand side of (6.46) is extended to the three roots with
Im &, > 0, which are assumed to be simple. By eliminating 5 between equations
(6.47), it results that &, are the roots of the sextic algebraic equation

D (6, _at X 1) = o @y - @t g g b agé + ag = 0, (6.48)

X

whereas (6.47), yields n, = —(&,x; + X3)/x,.

It can be shown that equation (6.48) has real coefficients; moreover, by intro-
ducing the spherical co-ordinates r, 8, ¢, it may be seen that these coefficients do
not depend on r. Consequently, it results that the function G(x) determined by
(6.46) is indeed a homogeneous function of degree —1 in the co-ordinates x;,, and
we may write

Gip)(X) = r'1H, (0, ¢). (6.49)

As shown by Gebbia [126], the roots of equation (6.48) can be obtained in
closed form only for isotropic materials and for hexagonal crystals. The expression
of Green’s tensor function for materials with hexagonal symmetry has been inde-
pendently derived by Lifshits and Rozentsveig [216] and by Kroner [186]; later on,
the same result has been reobtained in a different way by Willis [381].

Starting from Fredholm’s formula, Mann, v. Jan, and Seeger [229] evaluated
numerically for copper the components of Green’s tensor function as well as its
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derivatives corresponding to unit double forces without moment directed along
the axes of the cubic lattice. Lie and Koehler [215] performed a similar calculation
for Al, Cu, and Li. In order to obtain the derivatives of Gy, they fitted the function
H, (0, ¢) in (6.49) to a truncated double Fourier series

Hkp(99 ¢) = Akpqr cos (kaqe) COS(kar (P), (650)

where 4, ,, are the Fourier coefficients, and the Fy,;’s and Gy,,’s are some known
polynomials of first degree in ¢, respectively r, depending on k and p, while the
summation is performed only over the subscripts ¢ and r. It should be mentioned,
however, that the error introduced by the subsequent differentiation term by term
of this series increases rapidly with the order of differentiation. Similar techniques
have been used by Bullough, Norgett, and Webb [51].

More recently, Meissner [244] substantially improved the Fredholm technique,
by deriving explicit formulae for calculating the coefficients g, of the sextic polyno-
mial in (6.48), as well as the algebraic complements Df,, and by elaborating pro-
grammes for the numerical calculation of Green’s tensor function for materials
belonging to the rhombic system and for the general anisotropic case. He also worked
out programmes allowing a very precise evaluation of the coefficients A4, ,,, of the
double Fourier series (6.50) for rhombic crystals and applied them to a-uranium.
Meissner’s results yield accuracies of at least 0.019%, for Gy, and 0.19, for its first
order derivatives.

The Fourier transform method. The Fourier transform of (6.34) is

cjlmsklksémp(k) = 5jp’ (6.51)

where k is the Fourier wave vector; é(k) is the Fourier transform of G(x) and is
given by the integral

G(k) =S G(x)elkxdy, (6.52)
&

whose convergence for ||x|| — 0 is again assured by the first condition (6.30).
By making use of the notation (6.43) we may rewrite (6.51) in the tensor form

D(k) G(k) = 1, (6.53)

wherefrom it results that
G(k) = DY(k), (6.54)

with D? = D*/D, and D given by (6.45). Now, by the Fourier inversion theorem
and taking into account that G(x) is a real-valued function, we obtain from (6.54)

GO = Re\ Gk)e-®*d5 — ——Re\ D® e-kxd5, (655
8nd 7 8n3 "

where & is the phase space, and d# is the volume element in é.
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In the isotropic case, by introducing (5.26) into (6.51), we obtain

(A 1k G oK) + pk?G; (k) = 5.,

where k = [[k||. Multiplying both sides of this equation by k; and summing over j
yields

(A + 20) k% G p(K) = k-

By eliminating k,,G,, (k) between the last two relations and using (6.9), we deduce

np
that

~ 1
G = - (

26, 1 k,-k,,). 656

k2 1—v kt

Next, from the relation !

_1_ ._l_e—ik'x d;j — _r’
n® )z k*

where r = ||x||, it results by differentiation that

1 kik, . ~ 1 | P
—S~ —L P e~kx dp =r;, ——S —e ®Xdp=r .  (6.57)

n? k* n? )3 k?
Substituting now (6.56) into (6.55) and considering (6.57), we obtain

1
Gjp(X) = —WS [2(1 — \)5J-pr.m,,, — r_jp]. (6 58)

Finally, by taking into account that r = (x? 4 x% -+ x%)'/2, we deduce that

L1
16nu(l —v) r

Gjp(x) = [(3 — 4v)5,, + 22e ] (6.59)

r2
and hence Green’s tensor function for an infinite isotropic elastic medium is

1 1 XX
_ ———— 3 - 4 1 . .
) 167mu(l —v) r [( L+ r2 ] (6.60)

It can be easily verified that this function has indeed the properties (i)—iii) given
at the beginning of this subsection.

1 See, e.g. Jones [175], p. 222.
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Although the relation (6.55), has been derived by Zeilon [390] as early as
1911, it has not been effectively used until much later. Lifshits and Rozentsveig
[216] and Leibfried [213] employed a perturbation method in order to determine
first-order contributions of cubic anisotropy to the Green’s tensor function (6.60)
and to the dilatation produced by a dilatation centre. The same problem was re-
considered more recently by Barnett [14], who obtained various representations
of the cubic Green’s tensor components as power series in the anisotropy factor
for cubic materials

€1y — Cp2
H=1--22_1

Cys

1t should be noticed, however, that such expansions have a rather limited range of
applicability, since H takes sufficiently low values only for a small number of cubic
crystals, such as aluminium and diamond.

From (6.43) and (6.53) it is easily seen that D(k) and D™Y(k) are homogeneous
functions of degree 2 and —2 in k;, respectively. As shown by Kroner [186], this
property can be exploited to obtain expansions of Green’s tensor components as
series of surface spherical harmonics. This method has been applied by Mann,
v. Jan and Seeger [229], who calculated numerically the coefficients of the expan-
sions for copper and compared the results obtained with those given by Fredholm’s
formula. Bross [42] used a similar procedure to derive expansions for Green’s tensor
components in terms of cubic harmonics.

As shown by Barnett [16], a considerable progress in the numerical calculation
of Green’s tensor function and of its derivatives can be achieved by transforming
the triple improper integrals in (6.55) into ordinary line integrals about the unit
circle in a plane orthogonal to x. To obtain this transformation we first write (6.55)
in the form

G(x) = —-I—S L poie) costhrt -p) d, (6.61)

8n® ), k2

Fig. 6.2. Orthogonal frames used
for the -calculation of Green’s
tensor function.

where £ and p are unit vectors in the directions of k and x, respectively. For any fixed
x, we choose an orthogonal frame {a, b, p}, with a lying in the plane x,x, (Fig. 6.2).
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It can be shown [16] that the components of the unit vectors a, b, p with
respect to the basis e, e,, €3, to which ¢;;, are referred, are given by

a; = sin @, a, = —cos ¢, a; =0,
by =cosfcosp, by=cosfsingp, by= —sinb, (6.62)
py=sinfcosep, p,=sinfsing, p;= cosb, ‘

where ¢ and 0 are the angular spherical co-ordinates associated to {e,}. We shall
calculate now the integral (6.61) by making use of the spherical co-ordinates k, o,
associated to the new basis {a, b, p}. Since

do =k®sinec dk do dy, E.p=cosa,

we obtain from (6.61)
27 b oo
G(x) = —L dy\ DY(E)sino do\ cos (kr coso) dk. (6.63)
8n2 Jo 0 0
On the other hand, we have !
S cos (k coso) dk = m 8(cos 6) = ———- 8(a — n/2),
o sin ¢

and hence (6.63) reduces to

600 = — SZ"D-IIW)] av. (6.64)
8n2r 0

where the integrand must be calculated for ¢ = n/2, i.e. in the plane defined by the
unit vectors a and b. Hence we must take in the right-hand side of (6.64)

EW)=acosy +bsiny,

with a and b given by (6.62). Finally, as D! is an even function of &, the integration
interval in (6.64) may be reduced to [0, z] and we obtain

1
n2r

Gx) = S"D-l[g@/,)] dy. 6.65)
4 o

Formula (6.64) has been derived for the first time by Synge [327] and later
reobtained in a different way by Vogel and Rizzo [371]. It has been used by Willis
[381] to obtain the explicit form of Green’s tensor function for materials with hexa-
gonal symmetry. The form of the integral in (6.65) is very well suited to rapid and

1 See, for example, Jones [175], p. 254.
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accurate numerical integration by standard Romberg procedures and has been
successfully used by Barnett and Swanger [15] for calculations of the energy of
straight dislocations in anisotropic media. Moreover, Barnett [16] has shown that
the first two derivatives of the Green’s tensor function can be calculated by similar
integrals, namely

1

4r2r?

Gy () = S &F,y — p:D7) dv, (6.66)
0

Gi smlX) =
pom(X) 4n2r3

S“[zpsp,.,u,-;l — U sp + EnpIFsy + Endi] A, (6.67)
0

where
F"P = cffani—le;l_pl(grpq + éqpr s

Aip = jrnq[(érpq + éqpr)(FijDerl + anijl) - D;an_plpqpr]

As pointed out by Willis [381] and Barnett [16], Fredholm’s formula (6.46)
can be obtained from (6.65) by the substitution y==e¥, which converts the integrals
over Y into line integrals about the circle |y| = 1, and by using subsequently the
residue theorem to evaluate the line integrals in terms of the roots of a sextic poly-
nomial occurring in the integrand. Formula (6.65) has the advantage that it holds
even when this polynomial has multiple roots, e.g. in the isotropic case. Moreover,
the integrands in (6.65—67) have no singularities, and hence Green’s tensor function
and its partial derivatives of the first and second orders can be easily calculated
using standard numerical techniques. Thus, the errors occurring in former variants
of Fredholm’s method when differentiating truncated double Fourier series are
completely avoided. Equations (6.65—67) have been applied by Barnett [16] to
Cu and by Meissner [244] to a—U. The accuracy obtained by using a Romberg
integration scheme was in both cases between 0.1 and 0.019.

The considerations above show that the numerical calculation of the Green’s
tensor function of an infinite elastic medium with general anisotropy by Fredholm’s
method, as well as by the Fourier transform method, has been reduced at present
to the application of some standard programmes.

Finally, we mention that for boundary-value elastic problems that are inde-
pendent of one co-ordinate, Green’s tensor function is known in finite form for the
general anisotropic case (Eshelby, Read, and Shockley [109], Stroh [324]). This
stimulated a series of investigations concerning the expression of three-dimensional
Green’s tensor functions in terms of the angular derivatives of two-dimensional
Green’s tensor functions (Indenbom and Orlov [169], [170], Malén [224], Malén
and Lothe [225]).

6.5. Concentrated loads. Integral representation
of solutions to concentrated load problems

In the previous subsection we have introduced the notions of concentrated force
and associated singular elastic state for an infinite elastic medium. We will consider
now the concepts of concentrated force and Green’s tensor function in the case
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of a finite elastic body ¥~, bounded by a surface &. Let P be a vector-valued

function whose domain 9 is a finite set of points of ¥ =¥ U &. Interpreting P
as a system of concentrated loads we say that [u, E, T] is a singular elastic state
corresponding to the external force system [f, t, P] if

(i) [u, E, T] is a (regular) elastic state on ?\D corresponding to the external
force system [f, t].

(ii) For each x'€ 9, we have
ux) =001, TX)=00r? asr=|x—x'||>0. (6.68)

(iii) For each x’'€ 9,

lim S Tn ds = P(x), (6.69)
n-0 ¥ nz'”(x')
where X,(x’) is the sphere of radius # and centre at X', and n is the inward unit
normal to Z,(x’).

For singular elastic states holds the following generalization of Betti’s theorem,
due to Turteltaub and Sternberg [362].

Reciprocal theorem for singular elastic states. Let P and P* be systems of
concentrated loads with disjoint domains @ and 2*. If [u, E, T] and [u*, E*, T*]
are singular elastic states corresponding to the external force systems [f,t, P] and
[£*, t*, P*], respectively, then

X' €g

ST-E*dv:S t-u*ds—}—Sf-u*dv—i— Y, P(x) - w*(x) =
v 24 v
(6.70)
=ST*-Edu=S t*-uds+Sf*-udv+ Y P -ux).
v & v x' eg*

The proof of this theorem is based on the application of Betti’s reciprocal
theorem for a domain that is obtained from ¥~ by eliminating disjoint balls centred
at the points of 2 and 2%, and of a sufficiently small radius #. Then, letting n — 0
and making use of the propertics (i)—(iii) in the definition above yields (6.70).
When some of the points of £ and/or 2* belong to &, the surface integrals in (6.70)
are to be interpreted as Cauchy principal values.

The reciprocal theorem for singular elastic states is still valid in the case of
an infinite media with finite boundary provided that

u(x), w¥(x) = 0(r™); T(x), T*(x) = O¢™®); f(x), f*(x) = 0(™%)  (6.71)

as r = |x|| = oo.

Next, we introduce after Turteltaub and Sternberg [362] the notion of
Green’s tensor function for the boundary-value problems corresponding to the
boundary conditions (6.18—20) in the presence of concentrated loads. To this end
we need the following
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Lemma (Gurtin [150], p. 185). Let f and m be two vectors. Then there exists
a unique rigid displacement field w(x) that satisfies the system of equations

Swds:f, S(x—c)xwds=m, 6.72)
4 L4

where c is the position véctor of the centroid of &. This solution is given by

wWX) =W + @°X(x —¢), W = ! f, o°=I"m, 6.73)

@

where « is the area of &, and 1 is the centroidal inertia tensor, whose components
are the moments of inertia of & with respect to the principal axes of & passing through
its centroid.

A second-order tensor field with components denoted by Gy ,(x; x') is called
Green’s tensor function of the region ¥ provided

(i) The elastic displacement
AP X) = Gy X) (6.74)

and the corresponding stress tensor
- 2 ! -
T,{ﬁ-’)(x; X') = ¢ 1Gyp,(X; X) (6.75)

represent the singular elastic state corresponding to vanishing body forces and to
a concentrated load e, acting at x’.

(i) If &, is not empty (displacement or mixed boundary-value problem),
then

P =0 on &, TPn=0on ,; (6.76)

if &, is empty (traction boundary-value problem), then

'f‘(l’)n =W on &, 6.77)

where w is given by (6.73) with f = —e,and m = —(x’ — ¢)Xe,.

Substituting (6.77) into (6.72) it may be easily shown that the boundary condi-
tion (6.77) insures that balance of forces and moments are satisfied when &, is
empty.

The Green’s tensor function defined above depends not only on the material,
as in the case of the infinite elastic medium, but also on the region occupied by the
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elastic body, as well on the boundary conditions. On the other hand it is obvious
that it admits the decomposition

Gip(X; X') = Giylx — X') + u(x; X)), 6.78)

where G(x — x') is the Green’s tensor function of the infinite elastic medium, and
u®(x; x’) is the (regular) displacement field corresponding to vanishing body and
concentrated forces and such that G(x; x’) satisfies the boundary conditions (6.76)
or (6.77).

We say that an integrable vector field u(x) on & is normalized if
Suds:(l, S (x—c¢)Xuds=0. 6.79)
& I

Given a solution u of the traction problem, the field u + w with w rigid is also a
solution. On the other hand, according to the above lemma, there exists a unique
rigid displacement w such that u 4 w is normalized. Therefore, we may always
assume, without loss in generality, that the solutions of the traction problem are
normalized.

The following theorem gives an integral representation of the solution to
boundary-value problems of linear elastostatics in terms of Green’s tensor function.

Integral representation theorem . Ler u(x) be the solution of one of the
boundary-value problems (6.18—20) corresponding to the external force system
If, t, Pl, and assume that u is normalized if &, is empty. Then for any x'€ ¥\ 2

u(x) = — S (’f(P’n) ~u®ds S

1

ul® - ds +S u® - fdo +
L v

(6.80)
+ % u0(x; x) - P(x),

XE€Eg

where 4® and T® are given by (6.74) and (6.75).

Proof. First assume that &, is not empty. By making use of the reciprocal
theorem (6.70) and taking into accouat (6.76), we obtain

S (T®n) - wds + u,(x’) =S t° -u®ds + S £4® dv + Y] P(x)- WP(x; x),
L1 v

P2 X€g

1 This theorem was given in the isofropic case by Lauricella [209] for the displacement and
traction boundary-value problems without concentrated loads and by Turteltaub and Sternberg
[362] for the traction problem with concentrated loads. Fredholm [123] derived the representation
formula (6.80) in the anisotropic case for the displacement and mixed boundary-value problems
without concentrated loads.
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and the theorem is proved. On the other -hand, if &, is empty, then from (6.77),
(6.73), and (6.79), we find that

S ('f(p)n)-uds=w°-s uds+c)°-S (x—c)Xuds=0, (6.81)
&

7 i4
and the reciprocal theorem leads again to (6.80).

The advantage of using Green’s tensor functions is that, after solving the
particular boundary-value problem whose solution is u®(x; x'), the general solu-
tion corresponding to any other boundary-value problem may be obtained by
quadratures, provided that the subboundaries &; and &, remain unchanged.

By applying the integral representation formula (6.80) to the singular elastic
state corresponding to the displacement fzg‘)(x’; X), it results that Green’s tensor
function has the symmetry property

Grp(X; X)= Gy p(X'; X). (6.82)

Finally, by taking into account (6.74) and (6.82), it can be shown that the repre-
sentation formula (6.80) generalizes the relations (6.32) and (6.38) established above
for the infinite elastic medium.

7-—120



CHAPTER II

THE LINEAR ELASTIC FIELD
OF SINGLE DISLOCATIONS

7. The elastic model of a single dislocation

7.1. Introduction of the dislocation concept

The X-rays experiments made by Max von Laue in 1912 have definitely proved
the atomistic and periodic nature of crystalline substances. It was reckoned by
then that the structure plays a determining part in the physical and mechanical
behaviour of such materials. However, most of the natural and artificial crystalline
materials are polycrystals, i.e. they consist of randomly oriented single crystals
and have isotropic macroscopic properties. This fact has somehow delayed the
interpretation of the behaviour of polycrystalline materials in terms of the pheno-
mena taking place inside the individual grains. It was the artificial growth of single
crystals that has opened new prospects to the understanding of the correlation
between the structure and the properties of crystalline materials. It has subsequently
been proved for instance that the plastic deformation of metals takes place along
certain preferred planes, called glide planes, and along certain preferred directions
within these planes, called glide directions. As a rule, the glide planes have the
maximum atomic density, and the glide directions have the closest atomic package,

One of the problems the physicists have been most concerned with from the
very beginning of their studies on single crystals has been the explanation of the
experimental value of the yield stress, i.e. of the stress level at which plastic defor-
mation begins. Indeed, lattice calculations done by Frenkel, Polanyi, and Schmid
between 1926 and 1929 led to theoretical values of the yield stress 100 to 1000
times higher than the experimental ones. However, these calculations assumed the
crystalline structure to be perfect and the crystalline planes to glide along each
other as a whole, like playing cards, hypotheses which proved later to be unsuitable
to real materials. Almost in the same period it has been recognized that crystalline
defects play a fundamental role in all phenomena taking place with material trans-
port, e.g. in plastic deformation. Thus, Prandtl and Dehlinger succeeded as early
as 1928 in explaining anelastic and recrystallization phenomena by using defect
models very similar to what is presently called a dislocation.

In 1934, Orowan [262], Taylor [330], and Polanyi [271] imagined for the
first time, independently of each other, the model of a linear crystalline defect
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called edge dislocation. Here is the explanation given by Taylor for the formation
of an edge dislocation in an ideal crystal acted on by a shear stress (Fig. 7.1 a).
When the shear stress attains a certain critical value, a glide step appears at the
surface of the crystal, while a supplementary atomic half-plane, whose boundary
is the dislocation line, occurs inside the crystal (Fig. 7.1. b). The subsequent glide
propagation may be conceived as the dislocation motion through the crystal. At
each stage of the plastic deformation, the dislocation line separates the region of

{a) (b) (e)

Fig. 7.1. Taylor’s model of the atomic positions (a) be-
fore, (b) during, and (c¢) after the passage of an edge dis-
location across a cubic lattice.

the glide plane on which the glide already took place from the one on which glide
has not yet occurred. When the dislocation leaves the crystal, the crystalline struc-
ture resumes its initial regularity, but the two parts of the crystal separated by
the glide plane preserve a relative displacement equal to one atomic spacing (Fig.
7.1 ¢). The glide lines occurring at the surface of a deformed single crystal are the
result of a large number of dislocations emerging at the crystal surface along the
boundary of the same glide plane.

Assuming that every crystal contains a large number of grown-in dislocations,
Taylor was able to calculate the yield stress as the necessary stress to move a dislo-
cation through the elastic field of all other dislocations, thus obtaining an evaluation
in satisfactory agreement with the experimental result. On the other hand, Taylor
noticed that the elastic field of the dislocations immobilized inside the crystal by
various obstacles hinders the further motion of the gliding dislocations. Thus,
the slip can proceed only under the action of an increasing applied stress, a phe-
nomenon called work-hardening or strain-hardening. Moreover, by assuming that
the number of the immobilized dislocations increases proportionally to the amount
of glide, Taylor inferred that the flow stress should increase after a parabolic law,
in agreement with the general aspect of the stress-plastic strain curve for an f.c.c.
metal and a sufficiently high initial dislocation density.

Taylor’s theory, based upon the hypothesis of the step-by-step propagation
of plastic glide, succeeded in giving a first qualitative as well as quantitative expla-
nation of the process of plastic deformation by means of the motion and interaction
of dislocations. Subsequently, several other aspects concerning the origin of disloca-
tions, the mechanism of their multiplication during plastic deformation, and the
characteristic stages of work-hardening for various types of single crystals have
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been elucidated. It is interesting to note that most of these studies were of theoretical
and predictive nature; it was only by 1950 that dislocation lines could be directly
observed by making use of the electron microscope ™.

7.2. The Burgers vector

In a real crystal, dislocations generally occur as closed lines called dislocation loops,
or as lines ending at the surface of the crystal.

A dislocation is characterized by its line and by the elementary glide vector
associated with the dislocation, the so-called Burgers vector. The first correct defi-
nition of the Burgers vector was given by Frank [122] in 1951. We shall explain
this definition in the case of an edge dislocation in a crystal with primitive cubic
lattice; however, it is valid for an arbitrary curvilinear dislocation line and for an
arbitrary crystalline lattice. The left side of Fig. 7.2 shows a perfect crystal and
the right side a distorted crystal containing an edge dislocation. To define the Burgers
vector we proceed as follows. Choose an arbitrary positive sense on the dislocation
line L and denote by 1 the unit vector tangent to L at a current point and pointing
in the positive direction. Describe within the distorted crystal a closed atomic circuit
PQ, called the Burgers circuit, directed clockwise when looking down along the

Fig. 7.2. Burgers circuits used to define the true Burgers
vector b in a crystal. (a) Perfect lattice. (b) Crystal with
an edge dislocation.

positive sense on L (Fig. 7.2 b). Then, repeat the atomic circuit in the same sense
within the perfect crystal, thus obtaining a closure failure (Fig. 7.2 a). The vector
closing the last circuit and directed from the starting point P’ to the final point
Q' of the circuit is called the true Burgers vector 2 and is denoted by b. From this

! For various theories of plastic deformation based on the laws of motion, multiplication,
and interaction of crystal defects see Cottrell [84], Seeger [2861, Kronmiiller [196], Zarka [387—
389], Teodosiu [335, 344], Bullough [50], Perzyna [268, 2691, Teodosiu and Sidoroff [345],
where further references on this subject can be also found.

2 There is no generally accepted convention for the sense of b. The convention adopted by
us is known as the SF/RH rule, since b is directed from the starting point of the Burgers circuit to
its finish whereas the Burgers circuit appears right-handed with respect to the positive sense chosen
on the dislocation line. The same convention has been used for instance by Burgers [54], Read
[2751, Seeger [286], J. Weertman and J. R. Weertman [379], Nabarro [2581], and more recently
by Kosevich [440] and Gairola [418]. For further comments concerning the conventions used in
various standard books on dislocation theory see de Wit [384] and Hirth and Lothe [162], p. 22.
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definition it follows that b is always a vector of the perfect lattice. Moreover, it
is easily seen that the true Burgers vector does not depend on the point chosen along
the dislocation line 1, and hence it can be really considered as a characteristic of
the dislocation.

Fig. 7.3. Burgers circuits used to define the local Burgers vector b* in a crystal.
(a) Perfect lattice. (b) Crystal with anedge dislocation. (c) Crystal with a screw dislocation.

To define the Burgers vector we may proceed the other way round. Namely,
we can choose a closed atomic circuit P;Q, within the perfect crystal (Fig. 7.3 a),
such that the corresponding circuit in the distorted crystal encircle the dislocation
line in a clockwise sense when looking down along the positive sense on L. The
final point Q; and the starting point P] of the circuit in the distorted crystal do no

—_—
longer coincide, and the vector b* = Q;P;, called the local Burgers vector, defines
now the lattice defect. It is obvious from Fig. 7.3 b that, due to the lattice distortio n
in the neighbourhood of the dislocation, the local Burgers vector does depend on
the choice of the starting point P, of the circuit, which explains its name 2.

If the Burgers vector is perpendicular to the dislocation line (b _L 1), as
shown in Fig. 7.2, the dislocation is called an edge dislocation. Inspection of Fig.
7.2 b reveals that this type of dislocation is characterized by the presence of a supple-
mentary atomic half-plane. The vectors b and 1 determine the glide plane, whereas
the vector b defines the glide direction associated with the dislocation motion. The
position of the edge dislocation is marked by the symbol L or T, the horizontal
line showing the direction of the glide plane and the vertical one the position of the
supplementary atomic half-plane situated above or below the glide plane, res-
pectively.

If the Burgers vector is parallel to the dislocation line (b{ll), the dislocation
is called a screw dislocation, due to the resemblance of the atomic planes distorted
by the dislocation to the spiral ridge of a screw of axis I and pitch |b{|. This type of
lattice defect has been first imagined by Burgers [54] in 1939. Fig. 7.3 ¢ shows a

1 More precisely, b does not depend on the choice of the Burgers circuit as long as it sur-
rounds the same dislocation line. In particular, the true Burgers vector is independent of the lattice
distortion.

2 Inspection of Figs. 7.3 b and 7.2 a reveals that the local Burgers vector b* may be con-
sidered as the true Burgers vector applied at P; and deformed together with the lattice. This rela-
tion will be given a more quantitative form in the following subsection.
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Burgers circuit and the corresponding local Burgers vector in the case of a screw
dislocation. The position of a screw dislocation is marked by the symbol ®, res-
pectively ©, according as the Burgers vector is directed towards or out of the figure,
that is according as the crystal planes build a right-handed or a left-handed screw
with respect to the positive sense chosen on the dislocation line.

The edge and the screw dislocations are merely special types of dislocations.
In the general case of a curvilinear dislocation, the vector b is still constant, but 1
varies along the dislocation line, which means that various segments of the dislo~
cation line may be of different type. If the angle between b and 1 is not 0° or 90° the
dislocation segment is said to be of a mixed type.

Since a dislocation line is the boundary between a region which has slipped
and another region which has not slipped, it is intuitively obvious that it cannot
end within an otherwise perfect crystal region. Thus, a dislocation line must be
either a closed line, or a line terminated at a free surface, another dislocation line,
an inclusion, a grain boundary, or some other defect. For instance, if one attempts
to end the dislocation shown in Fig. 7.2 b by completing the supplementary lower
lattice half-plane of the edge dislocation by an upper half-plane, one finds that
this is possible only with the introduction of another edge dislocation with its line
perpendicular to the initial dislocation (Hirth and Lothe [162], p. 23).

If the Burgers circuit surrounds more than one dislocation, and if it appears
clockwise when looking down the positive sense chosen on each dislocation line,
then the corresponding Burgers vector equals the sum of the Burgers vectors of
all dislocations encircled by the circuit. Thus, the Burgers vectors of the individual
dislocations can be summed up to obtain the resultant Burgers vector of a group
of dislocations. This property will be used in Sect. 17 in order to extend the concept
of Burgers vector to continuous distributions of dislocations.

7.3. Simulation of crystal dislocations
by Volterra dislocations

As shown in Figs. 7.2 and 7.3, any dislocation produces a lattice deformation, which
decreases with increasing distance from the dislocation line. In order to evaluate
the deformation of a dislocated crystal it is advantageous to consider the crystal
as a linear elastic continuum, at least at sufficiently large distances from the dislo-
cation line. This approach must be given up, however, when considering the region
of the crystal close to the dislocation line; indeed, in this highly distorted region,
which is called the dislocation core and amounts to a few atomic spacings around
the dislocation line, even the non-linear elasticity theory proves to be inappro-
priate 1,

Since dislocations and the accompanying lattice deformations can persist
in the unloaded state of a body, the stresses produced by dislocations are called
self-stresses or residual stresses.

1 We shall come back to this point in Sect. 16, where several methods will be presented for
studying the dislocation core by combining the continuum elastic model with the atomic model
of the dislocation.



104 II. Linear elastic field of single dislocations

In his pioneering work, Taylor [330] realized the possibility of evaluating
such self-stresses by the linear elasticity theory and approximated the long-range
stress field of an edge dislocation by the linear elastic stress field corresponding
to a Volterra dislocation in an isotropic hollow cylinder. Actually, this solution was
available ever since 1907, long before the dislocation was considered as a crystal
defect. Indeed, Volterra [373] determined the elastic state that occurs in a hollow
circular isotropic cylinder when this is subjected to the following operations (cf.

) {b] (c)

Fig. 7.4. Volterra dislocations of translational type in a hollow
cylinder.

Sect. 2.8). First, the doubly-connected region occupied by the elastic body is rendered
simply-connected by cutting it along a smooth surface joining the bounding cylin-
drical surfaces, e.g. a plane passing through the axis of the cylinder, and having
that axis for an edge (Fig. 7.4). Next, one face of the cut is displaced with respect
to the other by a small rigid displacement. Then, the opposing faces of the cut are
joined, by removing or inserting, if necessary, a thin layer of material of the same
kind as that of the cylinder. Finally, the external forces that have acted on the
cylinder during these operations are removed. The body thus deformed will be,
in general, in a state of self-stress 1.

Let us choose a Cartesian system of co-ordinates as shown in Fig. 7.4, with
the cut taken as the x;xj;-plane. The rigid relative displacement of the opposite
faces of the cut may be decomposed into three translations along and three rotations
around the axes of co-ordinates. It is easily seen that the deformation resulted after
a rigid translation of the cut faces can be used to simulate a crystal dislocation (Fig.
7.4 a, b, ¢). Indeed, by removing a thin cylinder corresponding to the core of the
edge dislocation shown in Fig. 7.3 b one obtains a configuration of the crystal
which is similar to that of the dislocated cylinder in Fig. 7.4 a. Analogously, the
screw dislocation in Fig. 7.3 ¢ corresponds to the Volterra dislocation of the cylinder
shown in Fig. 7.4 c. Finally, the deformation of the cylinder in Fig. 7.4 b can be
produced in a crystal by inserting a supplementary atomic half-plane x,x,, and hence
corresponds to an edge dislocation with the glide plane x,x;.

A Volterra dislocation obtained after rigidly rotating the faces of the cut
corresponds to a defect which is presently named a disclination. It seems, however,

1 Such deformations of multiply-connected bodies, which are presently called Volterra dis-
locations, have been named by Volterra “distorsioni”’. The name ‘dislocation’ is due to Love
[222], Sect. 156 A.
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that no disclination can appear in a crystalline lattice, on account of the high
self-energy required . Therefore, we shall limit ourselves in the following to consi-
dering only Volterra dislocations of translational type.

The simulation of crystal dislocations by means of Volterra dislocations in
an elastic continuum may be easily generalized to arbitrary dislocation loops. Assume

that an elastic body # occupies a simply-connected region ¥~ of boundary & in

Fig. 7.5. Simulation of a dislocation loop L by a Volterra
dislocation.

the natural state, and let L be a smooth closed line in ¥ and S a smooth and two-
sided surface bounded by L (Fig. 7. 5) Arbitrarily choose a positive sense on L
and denote by n the unit normal to S directed according to the rlght-hand rule
with respect to the positive sense on L. Exclude a thin tube of boundary E around
the dislocation line and cut the elastic body along the surface S, so as to render
it again simply-connected. Translate the positive cut face S*, into which & points,

by a vector b with respect to the negative face S~ Finally, add or remove material,
and join the two faces of the cut, thus re-establishing the continuity of the body.
The result is a dislocation loop of line L and true Burgers vector b, the tube inside
2, playing the role of the dislocation core. The only difference against the case
of the straight dislocation considered above is that now the surface S may be closed
within the elastic body, as a consequence of the line L being also closed inside
the body.

As already mentioned, dislocations cannot end within an otherwise perfect
region of a crystal. This property becomes obvious when simulating crystal dislo-
cations by Volterra dislocations. Indeed, assume that a simply-connected body
contains a finite dislocation line terminating within the body. Clearly, by cutting
out a thin tube corresponding to the dislocation core the connectivity of the body
does not change. On the other hand, cf. Sect. 2.8, Volterra dislocations are not
possible in a simply-connected body and this indirectly proves that crystal disloca-
tions cannot end within a perfect crystal region (cf. also Nabarro [258], p. 13).

1 In exchange, disclinations may be used for modelling defects occurring in polymers, in
inhomogeneous magnetoelastic fields, or in the flux lines of the magnetic field within a superconduct-
ing material (see, e.g. Anthony [5], Anthony and Kr6ner [393], Kroner and Anthony [444])).
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For the dislocation lines ending at the free surface of the body, we shall use
the following convention for the orientation of the cut surface. We consider the

dislocation line L and the cut surface as imaginarily continued outside the body
until Z becomes a closed line. Then, the choice of the unit normal &, of the positive

and negative sides of S~, and the generation of the corresponding Volterra dislo-
cation may proceed like in the case of a dislocation loop. This convention is illus-
trated in Fig. 7.6 for an edge dislocation lying in the axis of a circular cylinder.

Fig. 7.6. lllustration of the convention used for the orientation
of the cut surface of a Volterra dislocation, when the corres-
ponding crystal dislocation ends at the free surface
of the crystal.

The connection between crystal dislocations and Volterra dislocations is
rendered more explicit by defining Burgers vectors of the latter with the help of
line integrals whose integration paths are similar to Burgers circuits in a crystal.
Let us denote by (K) and (k) the configurations of a simply-connected body %
in the natural and the dislocated state, and let X and x be the position vectors of
a current material point in the configurations (K) and (k), respectively. Denote by

¥ the reglon occupled by the elastic body in the configuration (K), by & the boun-
dary of ¥, and by ¥ o the doubly-connected region obtained after excluding the
dlslocatlon core by cutting out a thin tube of boundary 27 around the dlslocatlon
line. Let S be a_smooth and two-sided barrier connecting the surfaces Z and &
and rendering v "o simply-connected. To simplify the following discussion, we w111
again think of L as being an edge dislocation lying in the axis of a cylinder "//'

moreover, we shall assume that S is a plane cut passing through L, the positive
and negative faces of which are defined as shown in Fig. 7.6. However, the basic
relations given below are general, not restricted to this particular example.

In the simply-connected reglon ' o\ & the deformation is uniquely defined.
Let ¥, and & be the images of ¥ o and 7 respectlvely, in the configuration (k).

Assuming as usual that the deformation 7: V4 o\ = ¥, \.S is one-to-one and of
class C3, we can write, with the notation in Sect. 2.5,

x = ¥(X) = X + u(X), 7.1)
F=1+H, (1.2)
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where u(X) is the displacement field, and
F(X) = Grad y4(X), H(X) = Grad u(X). (7.3

Alternatively, we may describe the deformation in terms of the positions
assumed by the materlal points in the deformed configuration (k). Denoting by

Y oN\S > ' O\S the inverse of the mapping (7.1), we have

X =9¢1(x) =x—u(x), (7.4)
F(x) =1 — grad u(x), (7.5)

where
F1(x) = grad ¥ 4(x). (7.6)

Clearly, u(X) and u(x) must be considered as different functions, expressing the
displacement vector field in terms of the positions of the material points in the con-
figurations (K) and (k), respectively, which are related in their turn by (7.1) and (7.4).

Let now C be a closed curve in ¥",, which encircles the dislocation line L
in a right-handed sense and intersects S™ and S~ in the points P and Q, respectively

(Fig. 7.7 b). Then, the curve C’ corresponding to C through (7.4) will encircle %,

(K} (k)

la) (b)

Fig. 7.7. Burgers circuits used to define the true Burgers vector b

of an edge dislocation lying in the axis of an elastic hollow cylinder.

(a) Cross-section of the cylinder in the natural state. (b) Cross-sec-
tion of the dislocated cylinder.

from a point, say P'€ S*, to a point Q'€ S~ (Fig. 7.8 a). By analogy with the
definition adopted for the crystal lattice and illustrated in Fig. 7.2, we define the
true Burgers vector b as the sum of the infinitesimal vectors dX that correspond
through the mapping (7.4) to the infinitesimal vectors dx taken along C. Thus

—_—
b=PQ =3§ i) = — jﬁ du(x) = u(P) — u(Q),
C C
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since fl; dx = 0. This relation may be rewritten as
c
u'(x) —u (x)=b on §, 1.7y

where x is the position vector of a current point on S, whereas u*(x) and u™ (x)
denote the limiting values of the displacement field u(x) on $* and S~, respectively.

Since the faces of the undeformed cut S have been relatively displaced by a rigid
translation, the true Burgers vectorb is independent of the choice of P, as it should be.

(K} (k)

C O

la) (b}

Fig. 7.8. Burgers circuits used to define the local Burgers vector b* of an

edge dislocation lying in the axis of an elastic hollow cylinder. (a) Cross-

section of the cylinder in the natural state. (b) Cross-section of the dis-
located cylinder.

Next, let C, be a closed curve in the configuration (K), cutting S* and S~
in the points P; and Q,, respectively (Fig. 7.8 a), and such that its image Cj in (k)
encircle the dislocation line from a point, say P; € S*, to a point Q;€ S~ (Fig. 7.8 b).
Similarly to the definition adopted for the crystal lattice and illustrated in Fig. 7.3,
we define the local Burgers vector b* as the opposite of the sum of the infinitesimal
vectors dx that correspond by the mapping (7.1) to the infinitesimal vectors dX
on C;. Thus

—
w=mm=—§

since f[; dX = 0. This equation may be rewritten as
G

wmﬁ:—§dmm=mwo—ng

G G

u'(X) —u (X) =b*(X) on S, (7.8)

where X is the position vector of a current point on S, whereas ‘1+(X) and u~ (X)
denote the limiting values of the displacement field u(X) on S* and S~, respectively.
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Clearly, the local Burgers vector b* depends on the strain around P,, since both
P, and Q, lie on the deformed surface of the cut.

It is now easy to establish the relation between the true and local Burgers
vectors associated with a Volterra dislocation. To this end, let us denote by X
and X - b the position vectors of the points P’ and Q’, respectively. Since their
images P and Q in (k) coincide, we have

X =1 (X+b) onS, (7.9)
whence, by (7.1),
u(X) —u (X+b)=b on S. (7.10)

Next, neglecting terms of the order O(b?), where b = ||b|| is the magnitude
of the true Burgers vector, and taking into account (7.3),, we may write

w(X) —u(X)—H X)b=b on S.
Finally, by making use of (7.8) and (7.2), we deduce that
b*(X) = F~ (X)b, (7.11)

which is the desired result (Teodosiu [337], vol. 1). Alternatively, by replacing X
with X —b in (7.9) and using a similar reasoning as above, it may be shown that,
to within terms of second order in b, we have

b*(X) = F* (X)b, (7.12)

and hence !
[F{(X) — F~ (X)]b = O(b?). (7.13)

We have already remarked that the local Burgers vector depends on the lattice
-deformation, and hence on the choice of the starting point of the Burgers circuit.
Equations (7.11) and (7.12) give now a quantitative form to this dependence.
Actually, they show that the local Burgers vector at X results by deforming together
with the elastic body a material vector equal to the true Burgers vector b and applied
at X.

In the particular example considered above the cut S was straight and its
faces were rigidly displaced in their own plane. Consequently, it was possible to
assume that they are rejoined with perfect fit, i.e. without adding or removing mate-
rial. When this is not the case, the correct definition of the mapping ¥ requires a
more sophisticated discussion. However, it may be shown (Teodosiu and Sods
{479]) that the basic relations (7.7), (7.8), (7.10), and (7.11) derived above are still
valid in the general case of an arbitrary dislocation loop and of an arbitrary cut.

1 Generally, one assumes a priori that F is of class C! in . Then, of course, the
left-hand side of (7.13) vanishes identically on any cut surface S [479].
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7.4. Linear elastostatics of single dislocations

At sufficiently large distances from the dislocation line, say 5 to 10 atomic spacings,
it may be assumed that |[H]| < 1 and thus one may apply the linear theory of elasti-
city. Then, by virtue of (7.2) and (7.11), we may identify the local Burgers vector
b* with the true Burgers vector b and the position vectors of the material points
in the configuration (k) with those in the reference configuration (K). Consequently,
neglecting terms of the order O(b?) or higher, (7.7) and (7.11) yield

ut (x) — u (X) = b = b*, (7.14)

where x denotes the position vector of a current point on a cut S = S transforming
Vo =¥, into a simply-connected region, whereas u* (x) and u™ (x) are the limiting
values of the displacement vector field u(x) on the positive and negative face of the
cut, respectively *.

The basic field equations are (cf. Sect. 6.1)

E = sym grad u, Eim = % (uk;m + um,k)’ (715)
divT =o, Tomm =0, (7.16)
Tia = Chimn Emns (7.17)

where E is the strain tensor, T is the Cauchy stress tensor, and ¢ is the tensor of the
second-order elastic constants. According to the theory of Volterra dislocations
(Sect. 2.8), we shall assume that the strain field E is continuous across S and its
extension (by continuity) to ¥7, is of class C2

The solution of the above field equations must also fulfil certain boundary
conditions. For instance, when the surface tractions are prescribed on the external
boundary & of ¥, and on the boundary X, of the dislocation core, the boundary
condition reads

T n = t¥, Tihm=1tFf on & U X, (7.18)

where t* is the surface traction and n is the outward unit normal to the boundary
of ¥",. More sophisticated boundary conditions can be also considered, e.g. the
tractions prescribed on & and the displacements on X,. The uniqueness of the
solution of such boundary-value problems is generally covered by Volterra’s uni-
queness theorem for multiply-connected regions (see Sect. 6.2).

1 As shown in Sect. 2.8, it is open to us to consider the displacement field either as single-
valued and discontinuous in the simply-connected region ¥, \ .S, with a jump equal to b across the
barrier S, or as multiple-valued and continuous in the doubly-connected region V,, with a vector
cyclic constant b. However, the former point of view will be constantly adopted throughout this
book, since it corresponds better to the physical way crystal dislocations are generated.
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If we are interested merely in calculating the self-stresses produced by dislo-
cations, we can take t* = 0 on the external boundary & of the body?. On the
contrary, the boundary X, of the tube used to isolate the dislocation line is acted
on by forces arising from the dislocation core, which can be determined only
by a combined continuum and atomistic calculation (see Sect. 16). It may be shown,
however, that terms corresponding to these forces in the stress field decay much
more rapidly with increasing distance from the dislocation line than those depending
only on L and b, the latter characterizing thus the long-range stress field of the dislo-
cation. That is why, many of the calculations done in the elastic theory of disloca-
tions assume in general that t* = 0 on X, or even ignore altogether the boundary
conditions on X,

We shall devote the remaining part of this chapter to the calculation of the
linear elastic field and of the linear elastic interactions of stationary and moving
dislocations: Non-linear effects in the elastic field of dislocations will be considered
in Chapters III and IV.

7.5. Somigliana dislocations

Volterra dislocations require the continuity of the strain components and of their partial deriva-
tives of first and second orders across the dislocation cut. We have seen that this condition implies
that the relative displacement of the cut faces be rigid; moreover, as shown in Sect. 2.8, Volterra
dislocations are possible only in multiply-connected bodies.

However, in order to re-establish the continuity of a cut body it is not even necessary to
require the continuity of the strain or stress tensor across the cut. Actually, as shown by Somi-
gliana [475, 4761, it is sufficient that the tractions acting on the cut faces be in equilibrium at any
point of the cut.

Let & be an elastic body of arbitrary connectivity, occupying a region ¥ of boundary &, and
let S denote a regular surface, which is contained in ¥ or has a part of its boundary on &. Assume
that & is cut along S, then a thin sheet of material of the same kind as that of & is introduced
or removed, and the continuity of the body is re-established, leaving an arbitrary discontinuity
of the displacement across S, restricted only by the equilibrium and boundary conditions. The
resulted state of self-strain is called a Somigliana dislocation 2.

Suppose that the displacement discontinuity across .S is sufficiently small to allow the appli-
cation of linear elasticity. Then, arbitrarily choosing a positive and a negative face of S, we may
write the jump conditions across the cut under the form

ut(x) — u(x) = g(x), (7.19)
t'x) + t(x) =0, (7.20)

where the superscripts 4 and — denote the limiting values of the corresponding fields on the posi-
tive and negative face of S, respectively, x is the position vector of an arbitrary point of S, and
g(x) denotes the prescribed jump of u across S.

The boundary-value problem associated with conditions (7.19) and (7.20) is slightly more
complicated than the mixed boundary-value problem of linear elasticity. Indeed, while the cut is
open, the tractions or the displacements may be prescribed at all points of the boundary, including
the faces of the cut. On the other hand, when the cut is closed, the six scalar equations correspond-
ing to (7.19) and (7.20) replace a set of three equations on each side of the cut.

1 For a straight dislocation lying in an infinite elastic medium we shall require that stresses
vanish as r as r — oo, where r is the distance from the dislocation line.

2 The possibility of such states of self-strain has been recognized by Somigliana as early
as 1905, i.e. immediately after the publication of the first notes by Volterra (cf. V. Volterra and
E. Volterra [485], p. 13).
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Somigliana dislocations in an isotropic hollow cylinder have been thoroughly studied by
Yoffe [448, 489], who also applied them to discuss the structure of the dislocation core by a phy-
sically realistic non-linear model . Bogdanoff [400] pointed out the contribution of the disconti-
nuities allowed in the first-order derivatives of the strain field, whereas Ju [434] treated plane pro-
blems corresponding to Somigliana dislocations with straight or logarithmic spiral cuts by means
of complex variable techniques. Somigliana dislocations in an anisotropic elastic medium and their
application to the determination of second-order effects in the elastic field of dislocations have
been recently considered by Teodosiu [478] and by Teodosiu and Sods [479] (see also Sects. 10.6
and 14).

8. Straight dislocations in isotropic media

Even in polycrystalline materials, the influence of the elastic field of dislocations is
significant mostly within the grains, which frequently exhibit a high anisotropy,
thus limiting the applicability of the isotropic approximation. However, owing to
the extreme simplicity of the solutions of isotropic elasticity, they have been almost
exclusively used in the first thirty years of dislocation theory and are still being widely
employed.

That is why we will consider in this section the case of straight dislocations
lying in isotropic elastic cylinders or in an infinite isotropic elastic medium. We
shall make use almost exclusively of complex-variable techniques, which allow a
unitary and systematic solution of boundary-value problems.

8.1. Edge dislocation in an elastic cylinder

Consider an edge dislocation whose line L has infinite length and coincides with
the axis of an isotropic elastic circular cylinder of radius R. Choose the dislocation

X2
r . .

Fig. 8.1. Cut along the strip x, = 0>
Q R —R<x, < —ry used to define a
Ix..0% 0 single-valued displacement field around
X1, 0 a straight dislocation lying along the
= G X axis of an elastic cylinder, taken as

{x,,07) Xj-axis.

%3

line as xg-axis, and the direction of the Burgers vector as x;-axis of a rectangular
Cartesian system of co-ordinates (Fig. 8.1).

Let us apply the linear theory of elasticity outside an infinite circular cylindrical
surface X, of axis x; and radius r, < R. We assume that the surface tractions acting



8. Straight dislocations in isotropic media 113

on X, and on the outer boundary of the cylinder are known ! and do not depend
on x;. Then the displacement vector field must be also independent of x; and its
direction must be parallel to the x,x,-plane, i.e.

Uy = (X, X2), Uy = Us(Xy, X3), u; = 0. 3.1

The elastic state of the cylinder, characterized by (8.1), is said to be a state of plane
strain.

We shall also make use of the cylindrical co-ordinates p, 6, z related to the
Cartesian co-ordinates x;, X,, X3 by

x; = pcos 0, X, = p sin 0, X3 = z, 8.2)

where 0 € (—n, ] is the polar angle in the x;x,-plane, measured in a clockwise
sense when looking down along the xs-axis.

Let I, and I be the circles situated in the x,x,-plane, with centre at the origin
and of radius r,, and respectively R, and let A be the region between I'y and I.
We consider u as being single-valued and of class C® in the simply-connected region
obtained from A4 by eliminating its points belonging to the negative x;-axis (Fig. 8.1).
Then the component u, of the displacement vector will be continuous across the
cut x, =0, —R < x; < —r,y, while the component », will have a jump across this
cut, given by

u(x, 09) — (%, 0°) = —b, —R <X < — 1y 8.3)

where b is the magnitude of the true Burgers vector.
Substituting (8.1) into (7.15),, it follows that the infinitesimal strain tensor
has the non-zero components

oy Ju, 1 { 0wy Ou,
E, = S E,, = . E,=— -+ , 8.4
1T ex, = ox BT ( dm,  0x ) ®.4)

whereas E;; = E,; = E;; = 0. Next, by introducing (8.4) into (6.5), we find that
the non-zero components of the stress tensor are

ou Ju ou
Ty — 420y 2o ) + o4
- ( ox,  0x, H ox,
Ty = 2 ( %t a—u) oue | 8.5)
xl axg ax2
ou ou
Ii,=u ( : 2 )’
0xy 0x,
Juy Ju,
Tos =4 + = W(Ty + Ta), (8.6)
0x, 0x,

1 As already mentioned above, the surface forces exerted on X, from tl}e glislocation core
may be obtained only by a combined atomic and continuum calculation, which in its turn requires
the solving of the boundary-value problem formulated below.

8—120
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whereas T3 = T,3 = 0. Since the components of the stress tensor are also indepen-
dent of x;, the first two equilibrium equations (7.16). assume the reduced
form

0Ty + 0Ty, =0, 2’_11_1_2__}_ 0T g

=0, 3.7
0x, 0x, O0x; O0x,

and the third one is identically satisfied.

Since we have assumed that ¢t¥ =¢*¥ =0 for p =r, and p = R, we shall
consider only the physical components ¢% and #y* of the surface tractions acting on
the bounding cylindrical surfaces of the elastic body. In addition, we shall suppose

that these components may be expanded in complex Fourier series of the polar
angle 6, i.e.!

had -
Y, ekl for p=r,

k=—o00
ty +it§ = (8.8)
Yy, P e for p = R.
k=—00

Since both the dislocation core and the remaining part of the elastic cylinder
are in equilibrium, the total force and the total couple acting on each of the surfaces
p = ry and p = R vanish, and this implies that

27 2
S (1% cos 0 — 1 sin 6) dO = 0, S (¢2 sin 0 -+ 1§ cos 6) d6 = 0,
0

0

(8.9)

2n
S 1t do = 0.
0

The first two of these conditions may be written in the equivalent complex form

2n
S (t* + ir$) ei?d0 = 0. (8.10)
0

Introducing (8.8) into (8.9) and (8.10), yields

9 =19 =0, ImtP=ImtP=0. (8.11)

1 For more generality we have assumed in (8.8) that the outer cylindrical surface is acted
by surface tractions, too. When this is not the case, one should take t,(f) = 0 for all integers k.
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On the other hand, by making use of (1.64), and (1.73), it may be shown that
Tpp + iTpg = 5 [T + Too + i (T — T + 2i Ty)e21],

and hence the boundary conditions (7.18) can be written in the equivalent complex
form

%‘ [Ty + Too + i(Tyy — Too + 2i Trp)e~29] =t} + ity

(8.12)
for p=1r, and p = R,

the right-hand side of this equation being given by (8.8).

The easiest way to solve the above formulated boundary-value problem is
based on the representation of the elastic solution with the aid of complex poten-
tials (see also Muskhelishvili [254], Sect. 30-—32 and 45, and Gurtin [150], Sect. 47).
Let us first introduce the complex variables

Z=X,FiXy Z=2Xx;— IXy (8.13)

the complex displacement
U Ead u1 + iu2, (8.14)

and the complex stresses
@: T11 + ng, Q = Tll - T22 + 2iT12. (8.15)

By using the relations
i_=_1«( o _; 0 —'2_~=—1—( 9 . a)’ (8.16)
0z 2\ ox Ox,y 0z 2 \ oxy 0x,y

we deduce from (8.14) that

a_U—L ji‘l_+ Ouy _i(,_a_ul_ ___a_u&)]
0z 2 L oxy 0x, 0x, 0x, ’

6_(_J=_1_[ Ouy Ouy +t,( Juy I Ju, )]
aZ 2 (7x1 axZ (3x2 axl
Next, by using (8.13—17), we derive the equivalent complex form of the jump
condition (8.3)
U(x;, 0 —U(x,07)= —b, —R<x < ~1y, (8.18)
of the constitutive equations (8.5)

ouU ou ouU
@'—_2('14'#)(—6“2—4"—52—), 45:4#-32—, (8.19)

(8.17)
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of the equilibrium equations (8.7)

00 0P
-+ —=0, 8.20
0z 0z (8.20)
and of the boundary conditions (8.12)
5 (O + Pe—20) = 1* 1 it} for p=r, and p = R. 8.21)

Equation (8.20) may be identically satisfied by putting

’ ==

oz 0207

2 2
0*F o 45F

d=—4 (8.22)

where F is a real-valued function of class C%, which is called Airy’s stress function.
The function F must also satisfy the Beltrami-Michell compatibility equations (6.25).
To derive their complex equivalent for the state of plane strain, we directly elimi-
nate U between equations (8.19), thus obtaining

020 PP e
A+ 155 ‘2"( o T m ) =0,
wherefrom, by (8.22), it results that?!
0'F .
Py 0 in 4,. (8.23)

By successively integrating this equation with respect to z and Z, and taking into
2

account that F and are real-valued functions, we obtain

z 0Z

2 . e
—j FooReo@, - elion+0+9@) (624
z 0Z 0z

F(z,z) = Re{z9(z) + x(2)}, (8.25)

1 1t is easily seen from (8.16) that
02 02 9

0z0z  0x3  ox3’

and hence (8.23) implies that F is a biharmonic function in 4,.
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where ¢(z) and ¥(z) are arbitrary analytic functions of z in 4, and x(z) = zlp(z)dz.
0

Substituting (8.24), into (8.22) yields the representation of complex stresses in
terms of the complex potentials ¢(z) and Y(z)

Ty + T2 = © = 4Re ¢'(2),

(8.26)
Ty— Ty + 2iTy, = @ = —2{z9"(z) + ¥'(@2)}
Next, we have from (8.19) and (8.26)
au w7y Wy
2p——=—2¢"(2) —¥'(2),
0z
8.27)
oU oU 1 ., —
0z + 0z~ A+u {0'@ + ¢'(2)}.
Integrating the first of these equations with respect to z gives
2u UG, 2) = 20'(2) — ¥(2) + 1(2), (8.28)

where #n(z) is an arbitrary analytic function of z. Introducing (8.28) into (8.27),
and making use of (6.9), we find

A+ 3u

1@ + 1@ = “—F (0'@) + ¢'@)} = B— {0’ @) + 9@},
A4t

wherefrom, by integration, it results that !

nz) = (3 — W)e(2) + 2u(wyiz + uy + ivy), (8.29)

where g, u,, and v, are arbitrary real constants. Finally, by substituting (8.29)
into (8.28), we obtain

20Uz, %) = (3 — 4)9(2) — 290'(2) — Y(2) + 2u(@iz + 4y + ivy).  (8.30)
The expression wyiz + u, - iv, is an infinitesimal complex rigid displacement,

composed of an infinitesimal translation of components u,, v, and of an infinitesimal
rotation of angle w, around the x-axis. Clearly, this expression could be included

1 In deriving (8.29) we have taken into account that the imaginary part of an analytic func-
tion whose real part vanishes must be a constant.
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in the arbitrary functions ¢(z) and y(z). However, we prefer to preserve the form
(8.30) of the complex displacement and to impose the supplementary conditions

¢(0) =0, y(0) =0, Ime’(0) =0, (8.31)

which exhaust the arbitrariness in the choice of the functions ¢(z) and y/(z) corres-
ponding to a given elastic state [254).

We also notice that from (2.39),, (8.1), (8.17),, and (8.30) it follows that the
only non-zero component of the elastic rotation vector is

©; =_~1_( Om _ Oy _ yy 0U _20—V) Img'(z) + @,  (8.32)
dxy 0x, 0z U

The relations (8.26) and (8.30) give Kolosov's representation of the solution
of the plane strain problem of linear elasticity in terms of the complex potentials

¢(2) and Y(2).
Substituting (8.26) and (8.8) into (8.21) yields

0
Y e for z=r,e?

5 - k==—o00
¢'(2) + ¢'(2) —e 2 {z90"(2) + Y'(2)} = (8.33)
§ tiPe*®  for z = Re',
| k=—00

The boundary-value problem may be given now the following formulation: Find
the functions @(z) and Y(2) that are analytic in A, and continuous in 4y = 4, U I'yu '
and that satisfy the jump condition (8.18) and the boundary conditions (8.33).

Since the stress components and the elastic rotation are continuous across
the negative x,-axis, equations (8.26) and (8.32) imply that the analytic functions
@'(z) and ¥'(z) must be continuous and single-valued in 4 and hence they can be
expanded in Laurent power series of z

D= ¥ aF Y@= Y b (8.34)

k=—00 k=—00

Termwise integration of these series gives

I 0o a, zk+1 ll,( ) b 1 + oo bkzkﬂ
z)=a_Ilnz+ ’ z) = b_4Inz
(p() ! k=z—ook"}‘1 ! k=Z—ook'*‘1

k£—1 k#—1

, (8.35)

the constants of integration being zero owing to the first two conditions (8.31).
It is well known (see, e.g. Knopp [436]) that one may choose a single-valued deter-
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mination of the multiple-valued function In z by introducing a suitable cut in the
z-plane. For example, by choosing the cut x, = 0, x; < 0, we can take

In z = In|z| + i argz, (8.36)
where !

lzl=P=Vx§+x§,

cotan™1(x;/x,) for x, >0
argz=0={0 for x,=0,x, >0 (8.37
cotan™I(x,/x,) — @ for x, < 0.

According to this definition, the limiting values of argz on the upper and lower
faces of the cut are = and —m, respectively. Consequently, by introducing (8.34)
and (8.35) into (8.30), and the result obtained into the jump condition (8.18), it
follows that

(3 —4v)a_, + by = — iub/x. (8.38)

Next, by substituting (8.34) into (8.33) and equating coefficients of e/*® for
k=0, +1,4+2,..., we obtain for k=0:

2a, — b_yri? =1, 2a, — bR =1Q, (8.39)
since Im a, = 0 on account of (8.31);; for k = —1, considering also (8.11),:
ay,—b=0; (8.40)

for k= 1:
alro + 25__1"6_1 ha -b_3ro_3 = tgl), alR + 2E_IR_1 - E_3R—3 - tg.z); (8-4 1)

for k= 12, +3,...:
ayrk + a_ra* (L + k) — b arg* 2 =1,

(8.42)
akRk'l'-d_kR—k(l + k) ""—B_k_zR_k_z = tl(c2)'

1 This definition of the logarithm has the advantage of being also valid for real values of
the argument and of giving arg z = —arg z. In addition, the cut chosen for In z coincides with
that adopted above to make the displacement single-valued.
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From (8.38—40) we deduce that

g RO - o RRGE =) g b
0 2(R® —r?) -2 R — 12 A 4n(1 —v)
(8.43)

Next, introducing (8.43); into (8.41} yields

4y = ipb Rt — rjr{V ,
2rn(1 — v)(R® +rd) R —rd
(8.44)
by iubRr? R3rd(rot® — Rt{Y) i
271 — VR + ) R — 1t

and from (8.42) it results that

_ (R — )RR — ) — (LK) (R —r)(RE TG —r 1)
4 = (R2k+2 . r(‘.;k-l-Z)(Rz—zk _ ’.(2)-2k) -1 - kz)(Rz _ r§)2 s

b= rét2a, + (1 + Krja_, — "'5”7};1),

(8.45)

for k = 4-2,4-3, ... Equations (8.43—45) determine all coefficients occurring
in the expansions (8.35) of the complex potentials ¢(z) and y(z). Thus, the boundary-
value problem formulated above is completely solved. Indeed, (8.26) and (8.30)
give now the stress and the displacement components, the latter being determined,
as was to be expected, to within an infinitesimal rigid displacement.

It should be noticed that in obtaining the solution for an elastic cylinder of
infinite length, it was tacitly assumed that the state of plane strain is maintained by
the surface tractions

t;lk = :{: T33(x1, xz), (846)

with T given by (8.6), acting on the bases x; = -+00, respectively x; = —oo0, of
the cylinder. In order to use this solution for an elastic cylinder whose length, although
finite, is large with respect to the radius of its cross section and whose bases are free
of surface tractions, some correcting terms, arising from the condition that the
resultant force and couple acting on the bases be zero, must be introduced. This
procedure will be detailed in the next subsection for the case of a screw dislocation.
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When both surfaces p = r, and p = R are free of traction, i.e. 1) =2 =0
for all k, (8.43); and (8.44) yield

iub o — iub
4n(l — v) Y2l ~ W(RE+ )

a,=5%,=

(8.47)
inbR2r}

Tl — R+

and all other coefficients a,, b, vanish. It results then from (8.35), (8.26), and (8.30),
by putting u, = v, = 0, = 0, that

A b
1 ’ III(Z) = b~1 Inz — 2_32 s

z

oZ)=a_lnz+

2
2ﬂU - (3 B 4V) (a_llnz T = — 6_1 *f-‘ - 512?— 3_11n? + bs s
2 z 2z

Tu + ng = 4Re(~a*;1—+ GIZ),

z

Ty — Ty + 2iTyy = — 2(512—— ailz +%+£_)

z? z 2z2
Finally, by taking into account that
T,, + Top = T11 + T, T,, — Top + 2iT,5 = (Tyy — Top + 2iTy5)e 9,

we obtain from the above relations and (8.47) the displacement components

—_— 2 2.2 9
ulz—_l’—{0+ 1 [1+(3 avp R ]sinze},

2n 41 —v) R® + 1} PHRE + 1)
b 2p?
=121 —2W)lnp + ——— + 8.48
“ 87:(1—v){( et (349

- 2 2
+[1+(3 et R ]cosZO ,
Rtr PR+
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and the physical components in cylindrical co-ordinates of the stress tensor

22
T, = —H (—1—_ P Rn —1—)sin0,
2l — v \p R +ri R:24r: p®
242
Ty = —-—-——————”b (—1— —_ 3 + Rrs ; —1“) sin6,
2r(1 —v) \ p R+ R4 pB

[ (8.49)

2.2
Ty= _# ( _1 + P R'ro —-L) cos 0,
2r(l — v) p R 4r: RArE p?

Tzz=v(Tpp+T00), szszp:()’

It is generally admitted that the linear dimensions of the body containing the
dislocations are much larger than the range of the elastic field produced by dislo-
cations; this assumption comes in our case to letting R — co. Moreover, since the
boundary conditions on the surface p = r, of the dislocation core are unknown
without a simultaneous atomic calculation, the terms of order O(p~3) in the stress
components and of order O(p™2) in the displacement components, which arise
from satisfying these boundary conditions, are frequently neglected as p — oco. With
these approximations, (8.48) and (8.49) yield the simplified relations

b sin 20
=2 |gy 0V
“ 2n[ Ty ]’
(8.50)
b
= [2(1 — 2v)1 20],
sl — %) [2( v)Inp + cos 20]
TPP = T00 = - ! zz ”b sinf ’
2 2n(1 — v) p
, ) (8.51)
u cos
- ’ Tz = Tz =0,
o0 211 —v)  p , g

which are used, especially when looking for a rough evaluation of the effects
produced by the elastic field of an edge dislocation. Equations (8.51) show that
the stress field has a rather long range, for its components decrease merely as pt
as p — oo. This is one of the reasons why the theory of elasticity has been so
successful in modelling crystal dislocations.
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Substituting (8.51) into (6.8), we obtain the physical components of the strain
tensor in cylindrical co-ordinates

_ b(1 — 2v) sind
4n(l —v)

ep = L0

b cos 6 g 8.52)
H

E,— —
w0 4n(1 — v) p

E,=E, =E,=0.

Finally, from (8.51), (8.52), and (6.13),, it follows that the strain energy density
produced by the edge dislocation is

ub? 1 — 2vsin%0
872 (1 — v)? pt

(8.53)

Consequently, the strain energy stored per unit length of the edge dislocation in an
infinite elastic medium between the surfaces p =r;,and p = R is

1 R 27 2
w=N\ dz\ pdp\ wao =+ R, (8.54)
b 47(1 — v) ry

To

‘When the energy per unit dislocation length of the dislocation core, say w,, is also
taken into account, the fotal energy per unit length of the edge dislocation is given by

2
wo—— R, (8.55)
47(1 — v) ro

In passing from (8.54) to (8.55) we have neglected the contribution of the tractions
acting on the surface X, to the elastic strain energy density W, since it decreases
at least as p~2 when p — oo.

It is apparent from (8.54) that the strain energy grows to infinity as R — oo;
this shows once again how important is the strain energy to the total free energy of
the dislocation. Although R takes a finite value for any crystal, the strain energy is
relatively high. So, for metals, (8.54) yields values of about 5 to 10 eV for the strain
energy wb per atomic plane crossing an edge dislocation. This result completely
eliminates the possibility of thermal generation of dislocations; in other words,
dislocations do not correspond to a state of thermodynamic equilibrium of the
crystal [50].
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8.2. Screw dislocation in an elastic cylinder

Let us consider now a screw dislocation whose line L is infinite and coincides with
the axis of an isotropic elastic circular cylinder of radius R (Fig. 8.1). We make use
of the same notation as for the edge dislocation, but we introduce from the very
beginning the cylindrical co-ordinates p, 8, z defined by (8.2). Due to the symmetry
of the problem, the strain and stress components must be independent of z and 6,
and the displacement vector must be parallel to the dislocation line and independent
of z, ie.

u, = uyp, 0), u,=uyg=0. (8.56)

On the same symmetry grounds, the tractions exerted by the dislocation core must
reduce to a radial pressure that is independent of z. For the sake of simplicity we
shall assume, however, that both cylindrical surfaces p = r, and p = R are free of
tractions 1, i.e.

T,y=Typ=1T,,=0 for p=r, and p = R. 8.57)

In contradistinction to the case of the edge dislocation, the displacement
components u, and u, are now continuous across thecut  =n, —R< p < —r,,
while u, has a jump across this cut, given by

uz(p9 ﬂ) - uz(pa —7'[) = '—b9 —R < P < — o, (858)

where b is the magnitude of the true Burgers vector. Clearly, this condition is satis-
fied if we take in (8.56)
b0

2n
Introducing (8.59) into (1.75) and (1.76), and then the result obtained into

(6.5), we deduce that the only non-zero components of the displacement gradient
H, of the infinitesimal strain tensor E, and of the stress tensor T are

’ € (—m, ). (8.59)

uzz_.

H,p = — b y Ey=Ep= — b ’ T02=T29="“_#b—_'(8'60)
2np 47p 2np

By taking into consideration (1.77), it may be seen that the equilibrium equations
(7.16) and the boundary conditions (8.57) are identically satisfied. Consequently,
by virtue of Volterra’s uniqueness theorem, we conclude that (8.59) and (8.60) give
the desired solution of the boundary-value problem.

By (6.13),, the strain energy density produced by the screw dislocation is

uo*
8n2p?

W = 3 (Ey; Toz + Egy Tog) = (8.61)

1 The solution corresponding to a non-zero pressure acting from the dislocation core will
be derived in Sect. 14.3 by superposing effects.
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By substituting (8.61) into (8.54),, we find that the strain energy stored per unit
length of the screw dislocation in the elastic cylinder of radii r, and R is

2
w = _&ln R
4r I

, (8.62)

while the total energy per unit length of the screw dislocation is w, = w + w,, where
w, denotes as above the contribution of the dislocation core. As 0 < v < 0.5, it
is easily seen, by comparing (8.62) to (8.54),, that the strain energy of a screw dis-
location is smaller than that of an edge dislocation.

When the screw dislocation lies along the axis of an elastic cylinder of finite
length /, the above solution should be corrected in order to assure that the bases
of the cylinder are free of tractions. However, we shall content ourselves to require
the vanishing of the resultant force and couple of the surface forces acting on the
ends of the cylinder. According to Saint-Venant’s principle !, the solution obtained
in this way will be correct at distances larger than about 2R from each basis, which
is quite satisfactory when / > R.

It is easily verified that the tractions corresponding to the shear stress (8.60);
on the bases of the cylinder, namely

/
tzq:-—”?—eg for z=+4+-— pE€ [ry, R],
2np 2

have a vanishing resultant force on each basis, but produce the torque

22 R 2 2
M’:S ng ,opzdp:__“M (8.63)

0 ry 2

on the upper basis, and —M, on the lower basis of the cylinder. As long as the
shear stresses acting on the ends of the dislocation core are not known, we can
extend the distribution of shear stresses (8.60); up to the dislocation line, which
comes to take r, = 0 in (8.63). Consequently, we shall superimpose on the elastic
state (8.59), (8.60) obtained for the infinite cylinder the elastic state produced by the
torques --ub R%/2 acting on the bases z = J-//2 of acylinder of finite length /,
namely 2

bpz g bP o bR (8.64)
nR? 2nR? nR?

u9:

1 Saint-Venant’s principle asserts that a system of loads acting on the plane ends of a
cylindrical body and having zero resultant force and couple at each end produces a stress field
that is negligibly small away from the ends. For an analytic substantiation of this principle,
see Toupin [356] or Gurtin [150], Sects. 54—56a.

2 This elementary solution may be found in any standard book on linear elasticity (see,
€.g. Timoshenko and Goodier [353], or Solomon [314], p. 239).
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By superposing the elastic states (8.59), (8.60), and (8.64), we find that

bpz b0
Ug = H U, = — ’
nR? 2r
(8.65)
2 2
By — ——2 (1— 2 ) T, — — (1— 2.
4np R? 2np R

It is interesting to note that the correction (8.64) leads to a twist per unit length
equal to b/nR? This is the so-called Eshelby twist, which has been observed in thin,
long whiskers containing a single screw dislocation (Hirth and Lothe [162], p. 61),

Finally, we notice that the elastic states corresponding to edge and screw
dislocations in an infinite isotropic elastic medium are ‘“‘uncoupled”, in the sense
that the components of the fields u, E, and T which are non-zero for an edge dislo-
cation vanish for the screw dislocation and conversely. This remark allows to derive
at once the elastic state produced by a mixed dislocation whose Burgers vector makes
an angle f with the positive direction of the dislocation line, by simply replacing
b with b sin § in the elastic state produced by an edge dislocation, with b cos
in that produced by a screw dislocation, and summing up the results thus obtained.
In particular, we deduce from (8.54) and (8.62) that the strain energy stored per unit
length of a mixed dislocation between the cylindrical surfaces p =r, and p = R
in an infinite isotropic elastic medium is

2 2
o=t (coszﬂ + %ﬁ-) -2 (8.66)

T —v ry

8.3. Influence of the boundaries on the
isotropic elastic field of straight dislocations

We have considered so far only dislocations lying in the axis of a circular elastic
cylinder. Edge and screw dislocations whose lines are parallel to but do not coincide
with the axis of an elastic cylinder have been studied by Dietze [88], who determined
also the elastic field of straight dislocations parallel to the boundary of an elastic
hali-space or to the faces of an infinite elastic plate (cf. Seeger [286], Sect. 66).

A problem frequently encountered in various applications is the determination
of the elastic state produced by a dislocation near a free boundary, a grain boundary,
or a bimetallic interface. In order to fulfil the boundary conditions on such surfaces
one has to supplement the solution corresponding to the infinite elastic medium
by additional terms whose weight increases with decreasing the distance separating
the dislocation from the boundary. The derivative of the dislocation strain energy
with respect to the distance between the dislocation and the boundary, taken with
opposite sign, is by definition the (attractive or repulsive) force exerted by the boun-
dary on the dislocation.
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Head [154, 156] has shown that an edge dislocation situated near the interface
between two semi-infinite media with different elastic properties will be attracted by
the interface when it lies within the more rigid half-space.

Special attention has been also given to the interaction between the surface
coating of an elastic half-space and an edge (Conners [80], Weeks, Dundurs, and
Stippes [375]) or screw dislocation (Head [155], Chou [71]), as well as to the inte-
raction between a straight dislocation and a partially bonded bimetallic interface
(Tamate [328], Tamate and Kurihara [329]). The elastic field of an edge dislocation
situated near or inside a circular inclusion has been obtained by Dundurs and Mura
[98] and, respectively, by Dundurs and Sendecky [99]; Dundurs [412] has given a
general review of this and related work, while List [446] succeeded to give a unified
treatment of these problems by making use of complex-variable techniques.

Finally, the stress field of an edge dislocation near an elliptical hole in an iso-
tropic medium has been investigated by Vitek [482], who has considered also the
important limiting case when one axis of the ellipse is reduced to zero, leaving a
dislocation in the neighbourhood of a crack [483]. This last problem has been also
treated for a straight dislocation of mixed type by Hirth and Wagoner [428] and
by Rice and Thompson [464].

For a comprehensive and critical review of the solutions to boundary problems
associated with the elastic field of dislocations, we refer to a recent article by Eshelby
[416].

9. Dislocation loops in isotropic media

9.1. Displacements and stresses produced by dislocation loops
in an infinite isotropic elastic medium

As shown in Sect. 7.3, a dislocation loop of line L and true Burgers vector b can be
simulated in a linear elastic body by a Volterra dislocation in the following way.
First eliminate the dislocation core by surrounding the dislocation line with a toroidal
hole of boundary %,, and cut the body along a smooth and two-sided surface S
bounded by L. Arbitrarily choose a positive sense on L and denote by mn the unit
normal to S that is right-handed with respect to this positive sense (Fig. 9.1). Translate
the positive face S* of the cut (into which points n) by a vector b relatively to the
negative face S~. Finally, add or remove material, if necessary, and re-establish
the continuity of the body by joining the faces of the cut. Denoting by u*(x), and
respectively uw™(x), the limiting values of the displacement vector field on S* and
S, we have

ut(x) —u (x) =h. .1

Let us first suppose that the elastic continuum is infinite and let G be Green’s
tensor function of the elastic medium (cf. Sect. 6.5). Denote by u(x) the displacement
field and by T(x) the stress field produced by the dislocation. By making use of the
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reciprocal theorem (6.70) for the singular elastic state produced by the unit force
e, acting at x and the elastic state generated by the dislocation, we obtain

& (Tm)-u® ds — S (Tn)-u® ds = S (T®@n).u~ ds —
s~ st -

S

o

— S (T®n) -u*ds + u,(x).
st

In deriving this relation we have neglected the tractions acting on X, from the dis-
location core and we have also taken into account that the outward unit normal to
the boundary of the elastic medium is —n on S* and n on S”. Since u® is conti-
nuous across S, the left-hand side of the last relation vanishes and we find, by virtue

of (9.1,

st

up(X) = S b.[TP(x" — x) n(x)] ds". 9.2)

Finally, by putting n;(x’) ds = ds; and taking into consideration that
THX —x) = CijaGip (X' — X) = —C4jiGyp(x — X'),

we may rewrite (9.2) as

up(x) = - S +bicijkl ka,l(x - X’) dS;. (9.3)

N

The formula (9.3) has been obtained by Volterra [373] in the isotropic case and by
Burgers [54] in the anisotropic case.

When the elastic medium occupies a finite region ¥~ and we are interested
to determine the elastic state produced by a dislocation, we must add to the displa-
cement field (9.3) a regular elastic displacement field corresponding to the tractions

—Tn applied on the boundary of the body. In case Green’s tensor function é(x; x')

for the region ¥ is known, the normalized displacement field produced by the
dislocation may be directly derived, according to Sect. 6.5, by the formula

up(x) = SS+ bic,-jk, ka,l'(x’: X) ds;- (9.4)

Resuming now the case of the infinite medium, we notice that, if we choose

another surface S passing through L (Fig. 9.1) and repeat the operations already
used for generating the dislocation loop, then, denoting the corresponding elastic
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displacement components by 'itp(x) and making use of (1.53), it results from (9.3)
that

u,(x) — ﬁp(X) = — S +bicijlekp,l(x —x')ds; +

S

+S§+bi Cijir Gipa(x — X') dsj = — S LA bi¢iji1 Gipa(x — X') dsj
ST usT

=S bicijlekp,lj(x —x)dV’,
v

n .
~S
v
Fig. ?\.1. Two different cuts, S
and S, used to generate the same
dislocation loop L.
where ¥V is the region between S and S. Hence, by (6.34),
A —b if xeV
u(x) — u(x) = . 9.5
0 if x¢V.

This result may be easily undersf\ood on taking into account that the jump condition
(9.1) is satisfied on both S and S. Moreover, as noted by Leibfried [213], the displace-
ment fields u(x) and #(x) differ by a rigid translation that vanishes outside V.
Consequently, the strains and stresses corresponding to these fields and extended

by continuity to S and S coincide in the whole space.

From the reasoning above it follows that the strains and stresses produced
by a dislocation are independent of the choice of the cut, being fully determined
by the line L and the Burgers vector b. We shall give this statement a more mathe-
matical form by expressing the dislocation strains and stresses as line integrals taken
along L. To this end, we first derive the gradient of the displacement field (9.3),
which has the components

1,00 = =\ b tx =145, ©.)
N

9-120
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In order to transform the surface integral in the right-hand side of (9.6) into a line
integral, we note that, in view of (6.39), we may write

Hpr(x) = - S +bicijkl[ka,lr(x —x')ds; — ka,lj(x — x')ds/] .7
s

for any x ¢ S. On the other hand, by applying Stokes’ formula to the Cartesian
components of an arbitrary vector or tensor field A(x), we obtain

S Enqt A...,q dS‘ = —§ A dxm (98)
st L

where the integration sense on L is chosen clockwise when looking down along n.
Multiplying both sides of this equation by €,,;, summing with respect to n, and
considering (1.11), it follows that

|, e = @) =§ . 0, ©9)

Next, by making use of this integral identity, and taking into account that G (X —x") =
= —G,,(x—x'), we infer from (9.7) that

H,®x) = (JQ €110 Bs i1 Gepu(X — X) dx,, 9.10)
L

This formula has been derived for the general anisotropic case by Mura {253] in 1963.

Finally, remembering that the infinitesimal strain tensor E is the symmetric
part of the displacement gradient H, we deduce from (9.10) and (7.17) the stresses
produced by the dislocation loop:

Tij(x) = ﬂ; Cijpr Emer b, Cotkl ka,z(x — x') dxp,. 9.11)
L

The remaining part of this subsection will be devoted to the isotropic case.

9.2. Burgers’ formula
For isotropic media we see from (6.58) that

n 1 — _
Gipx — X)) = Toma = 2(1 = ) 64 Rm — Ry,), ©.12)
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where R = ||x — x'|. Next, by (5.26) and (6.9), we obtain after some calculation

1
bicijiGyp (X — X') = ————— [vb; R yp +
jki~kp l( ) 8 (1 '—V) [ P

+ (1 —v) (pr,mmi + biéij.mmi) - biR,ijp]- (9.13)

Substituting this result into (9.3) and rearranging terms yields

1 ’ 1 ’ r
up(x) = — —Et-** SS+ bp R,mmj de _— ';T;— SS+ (bJ R,mmj dSp —_ bj R,mmp de) i

1

—ms (b; R, pmm 48] — b; R pmj dsp)- ©.14)

Next, by transforming the last two integrals in the right-hand side with the aid of
9.9), we find that

i3

@)= ——\ b R,mm,.ds;_—l—f‘; €150 bR A} —
8 st 8t Jo

1
——— b €imb; R, dx
8n(l — v) i S Tme

Finally, by taking into account that

R, _X Ry, = Omp _ XuX, R = 2, 9.15)
R R R3 R
Romyds; = —2{ K99 _ 29 9.16)
s+ st R®

where X; = x; — x;, and Q denotes the solid angle under which S* is seen from
the point with position vector x, we deduce from the last relation that

p(x)—i——+—13‘; Cpiibidri L (jﬁ e"’"”b"X"'d":') - 9.17)
7! L P

4r R 87(1 —v) R
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This formula, which may be rewritten in direct notation as

b2 1 [ bXxdx 1 (b x R)-dx’ ,
u(x) = —{— fi; + Sl — v grad(%}ﬁ ————-R ) (9.18)

has been obtained by Burgers [54] in 1939.

Since the magnitude of the solid angle under which is seen the surface S+
depends only on the boundary L of the surface, it results from (9.18) that the dis-
placement field u(x) is completely determined by the dislocation line L and the Bur-
gers vector b. Moreover, since the integrals in (9.18) are single-valued functions of x,
and the solid angle varies by —4n when the point x encircles the dislocation line
in the positive sense of C (Fig. 9.1), it follows that the displacement field (9.18)
satisfies indeed the required jump condition (9.1).

9.3. The formula of Peach and Koehler

To obtain the displacement gradient and the stresses produced by a dislocation
loop in an isotropic medium, we first replace (9.13) into (9.10) and obtain after
rearranging terms

b
Hpr(x) = —Eﬂ—ﬂ; Enjr [(bp R,j - bjR,p).mm + biajp R,mmi +
L

1 ,
T iR = bR ) gl dx;.

On the other hand, by virtue of (1.11), we have
Enjr (pr,j - bjR,p) = Enjrekp'j EkstbsRyt
=Ekst(5rk6np nk)b R = (Erst6 Enst pr)b R

and an analogous calculation gives

fF Enjr(bjR,m - me,j),mp dx,’, = fﬁ[‘ bs(enstR, tpr — erstR,npt) dxr,I
L

""‘J) bs nstR.tprdxr,t ‘“§ d(bs rst ,pt)zﬂ; bsenstR,tprdxr’t'
L L
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By taking into account these transformations, the expression of the displacement
gradient becomes

1
Hpr(x) = 'g;% bs[(ersténp - enst 6pr + enpr‘sst) R,mmt +
L

1

+ €5t R, 1pr] dixy. 9.19)

Substituting now (9.19) into (7.15), we obtain the components of the infinitesimal
strain tensor

1
Epr(x) = _874; bs [(% Crst 5np + % Epsténr - enstapr) R,mmr +
L

1
1 —v

+ € Ry ]dx:,,

where from, by contraction, we derive the dilatation
1 — 2
E,(X) = ——————d& b,€,5; Ry X5
pp ) 87'[(1 - V) fi;L nst mmt n

Finally, by introducing the last two relations into (6.5) and considering (6.9),
we find the stresses generated by the dislocation loop

b
e L e

L

1
1 —v

+ €net Rorpr — S0 Romd) dx;]- 9.20)

Formula (9.20) has been derived by Peach and Koehler [265] in 1950, by
differentiating Burgers’ formula (see also de Wit [385]), in a somewhat more explicit
form than that given above and which could be found by substituting (9.15) into
(9.20).

9.4, Planar dislocation loops

Most of the results available in the literature on curved dislocations concern planar
dislocation loops. If n denotes the unit normal to the loop plane, then the dislocation
loop is said to be a glide loop or a prismatic loop, according as the Burgers vector
b is parallel or perpendicular to m. Irregular-shaped glide loops are frequently
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generated during plastic deformation, by gradual expansion of small loops origi-
nated, e.g. by a Frank-Read mechanism. Loops of prismatic type may be formed
by precipitation of vacancies or interstitial atoms which arise as a result of quenching
or irradiation.

The elastic field of a circular glide dislocation loop has been calculated by
Keller and quoted by Krdner [190], and that of a circular prismatic loop has been
deduced by Kroupa [200]. Their results have been re-analyzed by Marcinkowski
and Sree Harsha [232], who corrected some errors in [190] and undertook a detailed
numerical analysis of the variation of the stress field around a circular dislocation
glide loop. The stress field of a planar elliptical dislocation loop of arbitrary Burgers
vector has been recently determined by Mastrojannis, Mura, and Keer [451], who
published the explicit expressions of the in-plane values of the dislocation
stress field.

A very efficient method for determining the elastic field of planar dislocation
loops is to first calculate the solution corresponding to an infinitesimal rectangular
dislocation loop and then to integrate the result obtained over the surface bounded
by the loop. This method has been largely used by Kroupa [200—202] (see also
Hirth and Lothe [162], p. 128). The elastic field of an infinitesimal dislocation loop
is also of intrinsic interest, for it provides a good approximation to the long-range
elastic field of a finite dislocation loop of arbitrary shape at sufficiently large distances
from the loop.

There exists an extensive literature concerning the dislocation loops lying
in an isotropic elastic half-space. Thus, Steketee [318] has expressed in an integral
form the displacements produced by a dislocation loop in an isotropic elastic half-
space, and BasStecka [21] has determined the stresses generated by a circular dislo-
cation prismatic loop lying in a plane parallel to the boundary of the half-space.
The case of an infinitesimal dislocation loop of arbitrary orientation in an elastic
half-space has been independently treated by Tikhonov [352] and by Bacon and
Groves [12]. Their results have been extended by Vagera [363] to dislocation loops
situated near the boundary between two different elastic half-spaces, a configura-
tion used, e.g. for modelling the interaction between a dislocation and a grain
boundary.

10. Straight dislocations in anisotropic media

As already mentioned, even in polycrystalline materials, the elastic field of dislo-
cations plays a significant role mostly within the grains, which are single crystals
and frequently highly anisotropic. This explains the continuously increased interest
in anisotropic elastic solutions to dislocation problems, which has led in the last
ten years to substantial analytic and numerical results. It should be noted that aniso-
tropic elasticity does not provide only quantitative corrections to the isotropic
solutions, but may also change qualitatively the predictions based on isotropic
theory.

Two-dimensional solutions concerning infinite straight dislocations in aniso-
tropic media have been obtained as early as 1953 by Eshelby, Read, and Shockley
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{109], and by Seeger and Schéck [285], their ideas being subsequently developed by
Stroh [323]. It is striking that all these researches completely ignored the essential
developments of the theory of anisotropic elasticity brought about by Lekhnitsky
[210, 211] and later by Green [144, 145]; the ways opened by the results of the last
authors for the elastic simulation of crystal defects are still insufficiently exploited.

10.1. Generalized plane strain
of an anisotropic elastic body

Consider an anisotropic elastic body % referred [to a rectanguiar Cartesian
system of co-ordinates x, and assume that the displacement vector does not depend
on one of the co-ordinates, say x;. Thus

uk = uk(xls x2), k = 1, 2, 3. (10.1)

The elastic state corresponding to this displacement field is called after Lekhnitski
[210] a state of generalized plane strain®.

Assuming that & is free of body forces and taking into account that (10.1)
implies the stress components being also independent of x,, we infer that the equi-
librium equations (7.16) take the reduced form

Tan+ Thee=0, k =123 (10.2)

Substituting (10.1) into (7.15), and using the notation (4.59),, it follows that

Ey=thy, Ey=uy E,=0, E= u3,2,} (10.3)

Es =us,;, Eg=thy+ ts;.

Next, putting E; = 0 in the third equation (4.63),, we have

Ty = — Y, (Sam/533) Tu

M=#3
and, introducing this result into the other five equations (4.63),, we find that
Ey = Sgu Ty, (10.4)

where

Sgm = Skm — SksSus/Sss- (10.5)

Inspection of (4.63), (10.5), and (10.6) reveals that Sy; = Sy, = 0 and that the
5X5 matrix Sgy, K, M = 1, 2, 4, 5, 6 is reciprocal to the matrix obtained by omitting
the third row and the third column of the matrix cgy,.

! Throughout this section small Latin and Greek indices range over the values 1, 2, 3, and
capital Latin indices over the values 1,2, ..., 6. The summation convention over a twice repeated
small or capital Latin index will be always implied, whereas eventual summation over Greek indices
will be explicitly indicated.
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As shown by Lekhnitsky [210], any solution of equations (10.2—4) can be
represented in terms of three complex potentials as!

1

3
U = 2Re Z Alafa(za) — ﬂ)g Xo + ulo,

e=1

3
uy =2 Re Y, Aso fulz.) + %y + u5, ¢ (10.6)

a=1

3
Us = 2 Re Z A3afa(za) + ug’

a=1

3 3
Tkl = — 2Re Z De Lkaf;(za)’ Tkz = 2Re Z Lku fci(za)9 k= 1, 29 3’ (10'7)

a=1 a=1

where 49, 1), u3, and w, are arbitrary real constants, and f,(z,) denotes, for each
o = 1,2, 3, an analytic function of the complex variable

Zy = X1 + PaXe, Imp, > 0.

The quantities A4,,, L,,, and p, depend only on the elastic constants and on the
orientation of the x,-axes. They may be calculated by using the following steps:
(i) Find the reduced elastic compliances Si,, by using (10.5), where sg,,
are the elastic compliances with respect to the x;-axes.
(ii) Determine the polynomials
L(p) = Sssp® — 2S45P + Sus

Iy(p) = Si5P® — (S1a -+ Sse) P2 + (Sa5 + Sse) P — Sass (10.8)
I(p) = Sup* — 2816p° + (2812 + See) P* — Saep + Saa

(iii) Solve the sextic equation

I(p) = L(p) l(p) — Ii(p) = 0, (10.9)
and label the roots with positive imaginary parts, p;, ps, ps, such that 2
I(p) # 0, L(p,) #0, l(ps) #0. (10.10)

1 For a detailed discussion of the completeness of this representation and of its connection
with previous work on dislocation theory see Teodosiu and Nicolae [339]. More general results
concerning the completeness of the solutions of systems of differential equations have been given
by Lopatinsky [218]. . .

2 As shown by Lekhnitsky [210], if the strain energy function is positive definite, equation
(10.9) admits three pairs of complex conjugate roots. We assume throughout that the roots with
positive imaginary parts, p;, p,, ps, are simple. Multiple roots seem to have little physical sig-
nificance, except the isotropic case (p; = p, = p; = i), which is best treated separately. Moreover,
it can be proved (Teodosiu and Nicolae [339]) that conditions (10.10) can always be fulfilled when
Py, P2 and p; are simple.
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(iv) Form the matrix

Ll=1] 1 1 YR B (10.11)
—A —A —1
where
L= — 13(p1) . lz — 13(p2) s )ba — la(Pa) . (10.12)
I(py) I(p2) I(ps)

(v) Calculate the coefficients 4,, by the formulae

Ayy = Sp? — SiPa + Siz + Au(S15P2 — S14)s
Ayy = {Slng — SaePa + Sez + 2a(Sa5ps — S24)}/pa’ (10.13)

Asy = {S14p2 — SsePa + Sea + Ae(SssPs — S1a)} /P

for a=1,2 and

Ayz = A3(Suup3 — SiePs + S12) + SisPs — S
Ayy = {la(sml’% — SasPs + Sa2) + Sesps — 324} [P3s (10.14)

Ass = {)»3(5141)% — SiP3 + Saa) + Sgsps — S44}/Pa-

As shown by Stroh [323], the coefficients 4,, and L,, satisfy the orthogonality
conditions !

Ay Lig 4 Aigly, =0 for any o, f=1,2,3, a0 # ﬁ,} (10.15)

AyaLip + ALy =0 for any «, f=1,2,3.

Equations (10.6) and (10.7), with L,, given by (10.11) and A4,, given by (10.13)
and (10.14), express Lekhnitsky’s representation of the generalized plane strain in
terms of the complex potentials f,(z,), « = 1, 2, 3. Unlike the representation obtained
by Eshelby, Read, and Shockley [109], this representation does not depend on the
solution of algebraic systems and, in this respect, is as explicit as that given by Willis
[383] (see Sect. 11.2). Moreover, it has the advantage over Willis’ representation of
not making use of Green’s functions for infinite media, being thus applicable for
solving boundary-value problems for finite anisotropic bodies as well. Finally, in
comparison with Stroh’s solutions, Lekhnitsky’s representation has the advantage
of being valid for the general anisotropic case.

1 An elegant proof of these relations, based on Betti’s reciprocal theorem, has been given
by Malén and Lothe [225].
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Finally, we notice that the equilibrium equations (10.2) of the generalized
plane strain are identically satisfied [109] if we set

To=—®ps To=0 k=123, (10.16)

where @,, ],, D, are stress functions of class C2. The functions ¢; and @, may be
expressed in terms of Airy’s stress function F as

¢1 = —-F,g, ¢2 - F,l (10.17)

and must satisfy the consistency condition @, o + ®,; = 0.
It may be shown [323, 339] that the stress functions can be represented in terms
of the complex potentials f,(z,) in the form

3
@, =2Re Y, L, fulz), k=123 (10.18)
a=1

Clearly, by introducing (10.18) into (10.16), we recover the expression (10.7) of the
stress components. Equations (10.6) and (10.18) give an equivalent complete repre-
sentation of the generalized plane strain.

10.2. Straight dislocation in an infinite anisotropic elastic medium

There exists an extensive literature concerning the anisotropic elastic field of straight
dislocations for various crystals and dislocation orientations. For a detailed dis-
cussion of the cases when the elastic solution, including the roots of equation (10.4),
may be analytically obtained, we refer to the articles of Eshelby, Read, and Shockley
{109], Seeger and Schdck [285], Head [158], Duncan and Kuhlmann-Wilsdorf [97],
Chou and Michell [74], as well as to the books by Hirth and Lothe [162], Sect. 13,
and Steeds [317], Sect. 3.

In what follows, we shall expound the solution obtained by Teodosiu, Nicolae,
and Paven [342] for an arbitrarily oriented straight dislocation lying in an infinite
anisotropic medium, under consideration of the core boundary conditions. Since
this solution makes use of Lekhnitsky’s representation, no restrictions have to be
imposed either on the anisotropy of the material, or on the dislocation character.
Moreover, the solution is found when either tractions or displacements are prescribed
on the core boundary. At the end of subsection 10.4 we shall give the numerical
values of the parameters A,,, L., p, entering Lekhnitsky’s representation, for some
typical crystals belonging to cubic and hexagonal systems, and for almost all dislo-
cation orientations that are energetically possible in these crystals.

Consider a straight dislocation lying in an infinite anisotropic elastic medium,
and take the positive direction of the dislocation line as xg-axis of a rectangular
Cartesian system of co-ordinates. We apply the linear theory of elasticity outside
a circular cylindrical surface of radius r, and axis x;, say Z,, considered as boundary
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of the dislocation core. Let us denote by I'y the intersection line of X, with the
X1Xo-plane, and by A the region outside I", within this plane (Fig. 10.1).

The elastic medium outside X, is obviously subjected to a state of generalized
plane strain. Consequently, as shown in the previous subsection, the displacement
and stress components may be represented by (10.6) and (10.7), respectively, in

%)

G A

Fig. 10.1. Cut along the half-plane
x,=0, x;< —ry, used to define a single-
valued displacement field around a straight  {x,, 0t o n
dislocation lying along the xj-axis in an 0 8 %

infinite elastic medium. (x.. 0% 1

%4,07)
X3

terms of three complex potentials f,(z,), « = 1, 2, 3, which are analytic functions of
their arguments. As already mentioned, the parameters A4,,, L;,, and p, occurring
in this representation depend only on the elastic constants and on the orientation
of the x;-axes.

In the case of a single dislocation the displacement vector can be considered
as a single-valued function with a prescribed jump on an arbitrary cut connecting
I’y with infinity, or as a continuous but multiple-valued function in A4, with a pre-
scribed cyclic constant around the dislocation line. In the following we adopt the
first approach; more precisely, we assume that the displacement vector is single-
valued and of class C3in the region obtained from A by removing its points belong-
ing to the negative x;-axis (Fig. 10.1), and that it is discontinuous across the cut
Xp =0, x; < —r,, its jump across the cut being given by

U (X1, 0F) — (%, 07) = — by, k=1,2,3, (10.19)

where b is the true Burgers vector of the dislocation.

We shall consider two types of boundary-value problems . In the first case,
we assume that the tractions acting on X, from the dislocation core are prescribed
and that they can be approximated by some smooth functions, say #*(0), where
0 € (—m, m] is the polar angle in the x;x,-plane, measured clockwise when looking

1 The physical significance of these boundary-value problems becomes clear when using
semidiscrete methods to study the dislocation core (see Sect. 16). If the displacements of the atoms
inside 2, are known from an atomistic calculation, then the corresponding “strains’, ‘“‘stresses”,
and ‘“‘tractions’ may be calculated by using an interpolation technique and the stress-strain rela-
tions of linear elasticity. Alternatively, if we use the non-linear theory of elasticity outside Z;, and
find the solution by solving a series of linear problems, then the displacements at X, or the trac-
tions acting on 2 are known at each step from the previous step of approximation.
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down the x,-axis. The stress tensor must then satisfy the boundary conditions
Tklnl -+ Tkgnz = t,‘:(@) on FO’ k= 1, 2, 3, (10.20)

where n is the inward unit normal to I',. Moreover, since the dislocation core is in
equilibrium and is free of body forces, the resultant force of the tractions acting on
Z, must vanish, i.e.

Po=r, S" #©@)do =0, k=1,2,3. (10.21)

-7

We also require, on physical grounds, that the stress and the elastic rotations
vanish at infinity. By (7.17), (2.36), and (2.37), this implies that

lim u, ,, = 0, k,m=1,2,3, (10.22)

p-0

where p = |/x? + x2.
From Bézier’s uniqueness theorem given in Sect. 6.2, it follows that the boun-
dary conditions (10.20) and (10.22), together with the jump condition (10.19),
uniquely determine the elastic solution to within an infinitesimal rigid translation 1.
Let us transform now the boundary conditions by using the complex repre-
sentation of the solution given at the beginning of this section. From Fig. 10.1 it is
apparent that on I',

Xy =recos, x,=rysind, z,=ry(cosd + p,sin6),

1 dx, . 1 dx, (10.23)
n = —cosf = — — > n,= —sinf = — .
ro do r, do

On the other hand, since z, = x; + p,x,, it follows that

O fied =fUz  —2 i) = pafilea)
0x, 0x,

and hence, by (10.7) and (10.23), we deduce that

3
Tiuny + Tione = 2 Re ¥ L, —d% Jalrg cos 8 + p,resing).
1

Ty =

1 In fact, Bézier’s theorem concerns the case when b, = 0 in (10.19), but its extension to
the case by # 0 under the conditions of regularity imposed on the solution is straightforward.
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Consequently, the boundary conditions (10.20) become

3
-2~Re Y Lia %fa,(r0 cos + pyrosinf) = t¥(@), k=1,2,3. (10.24)

ro a=1

Considering (10.7), we see that conditions (10.22) may be fulfilled by setting
) = 0 and requiring that

lim|f,(z)| =0, a=1,2,3. (10.25)
p—>00
Moreover, (10.7) assume in this case the simplified form

3
u,=2Re ¥, Aufuz) +ul k=123 (10.26)

a=1

Denote by 4, and 4, the regions corresponding to 4 and 4 = 4 U T, res-
pectively, in the z,-plane by the transformation z, = x; + p,x,, for each a = 1, 2, 3.
‘The traction boundary-value problem can now be formulated in the following form:
Find three functions f,(z,), f3(z,), f+(z3) that are analytic in A,, 4,, A5, and continuous
in 4y, Ay, 4,, respectively, and that satisfy the boundary conditions (10.21), (10.24),
(10.25), and the jump conditions (10.19).

Alternatively, when the displacements, rather than the tractions are prescribed
on T, and when they can be approximated by some smooth functions, say uf(6),
the boundary conditions (10.20) have to be replaced by

w=u*@ on I, k=123 (10.27)

Accordingly, when using the complex representation (10.26) of the displacement
field, this displacement boundary-value problem can be formulated as follows: Find
three functions f1(zy), fx(22), f3(z5) that are analytic in A,, Ay, A;, and continuous in
A4y, Ay, A,, respectively, and that satisfy the boundary conditions (10.21), (10.25),
(10.27), and the jump conditions (10.19).

The main difficulty raised by the solving of the boundary-value problems for-
mulated above is that the images of I'y in the z,-planes are no longer circles. To
avoid this complication, we introduce after Lekhnitsky [211] new complex variables
{,, oa=1,2,3, defined by

¢ B

a = 1-ia'—a~+ 1+.a
z, = ( P)2 ( lp)ZC,

(10.28)

Remembering that Im p, > 0, o = 1, 2, 3, it may be shown that the singula-
cities of the transformation (10.28), i.e. the points where z({,) vanishes, lie inside
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the circle I'y and that the reciprocal transformation is

¢ = Za [1 + Vl _ ro(1 + pl) ], (10.29)

l_lpa Zg

where the determination with positive real part of the square root in the right-hand
side should be chosen. The transformations (10.28) and (10.29) establish, for each
o = 1, 2, 3, a one-to-one correspondence between the points situated on or outside
the circle I’y and their images in the {,-plane. A direct calculation shows that

Ll >0 as p— 0 (10.30)

and that
{, = ree’ if and only if z = ree', (10.31)

with 0 € (—n, n], which also implies that the circle I'y is invariant to the transfor-

mation (10.28).
Let us put now

f:28) = 0.8 (10.32)

By virtue of (10.30) and (10.31), the traction boundary-value problem becomes:
Find three functions ¢(,), o = 1,2,3, that are analytic in the regions |{,| >r,
and continuous for |{,| = ry, & = 1,2, 3, respectively, and that satisfy the boundary
conditions
3
—2—Re Ly d
1 do

Iy a=

(Pa("o eio) = t:(e)’ k= 1’ 25 3, (10-33)

lim |oiC)| =0, a=1,23, (10.34)
Ilal—mo

the condition (10.21), as well as the jump condition (10.19). Indeed, (10.34) follows
from (10.30) and (10.25), by taking into account that

' ey (A% L
ae\“a) T Plba) be\Za) = 1 ’
fiz) = 0. Gz 1 —ip, { + V1 —ri + P22 }

and hence |@yl)| — 0 as p — oo and |fy(z,)] — 0. For further use, we note that,
by (10.29), the last relation can be rewritten as

iz = oUl) 2= ‘ (1035)

z V1—rid + I

where {, should be considered as a function of z, on the right-hand side.
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Since ¢({,) is analytic and single-valued for |{,| > r,, it can be developed in
a Laurent series in this region. Moreover, in view of (10.34), this series may contain
only negative powers of {,. Hence

D o

Pl ="+ N b, =123 (10.36)
2nil, w2

where D, and b,,, are arbitrary complex constants. Integrating term by term this

series and neglecting additive constants, which can be included in u?, we obtain

D, [ Za 1 + V1T =r3( + pdi 22 S m
@8, = e {ln N + In = i, +m§=:1 a.,t;"  (10.3D)

where

aamz—M’ x=1,2,3; m=12,...

m

It can be shown that, by cutting the x,x,-plane along the ray x,=0,x; < —r,, both
logarithmic terms in (10.37) become single-valued functions and may be calculated
by using the same formulae (8.36), (8.37) as for In z. Indeed, on the cut Im z, = 0,
Re z, < 0, which is used to define a single-valued branch of In z,, we have, by (10.23),,
sin 0 = 0, cos 6 < 0, and hence this cut coincides with the negative x,-axis, like in
the case of In z. Moreover, it can be shown by a direct calculation that the expression
inside the braces in (10.37) assumes the value i0 on I'y. In particular, it results that

Pa(ree™®) = 240 + Y dam g™ €7, (10.38)
2n m=1

It is worth noting that writing simply In({,/r,) instead of the expression within the
braces in (10.37), would have required the introduction of several cuts in the x,x,-
plane, corresponding to the cuts Im {, = 0, Re {,< 0 used for calculating In {,,
as well as of different additive constants in (10.37), in order to assure the continuity
of u(x,, x,) across these cuts 1.

Consider now the boundary conditions (10.33) and assume that the functions
t¥(0), k=1, 2, 3, defined in the interval (—m, n] and periodically continued on the
whole real axis, can be developed in Fourier series. Then, taking also into account
(10.21), we can write

o0
1#©0) =2Re ¥ fime™, k=123 (10.39)

m=1

1 See, e.g. Granzer [142], where such a procedure has been used in a similar case.
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where
i :51_8" WO em™do, k=123 m=12...  (1040)

n
Substituting (10.38) and (10.39) into (10.33), we obtain

o]

re "’"9) Re Z Sim €™, k=1,2,3.

——Re 2 L,m(

m=1

Equating now coefficients of like powers of e¢ yields

3
2Re ¥, L, D, =0, k=123, (10.41)
g=1
O = — Ll fim 0¥, a=1,2,3; m=12,..., (10.42)
m

where [Lg!] denotes the reciprocal matrix 1 of [L,].
Finally, as

3
= 2Re V] Ao 0(Ls) + ui (10.43)
a=1

the jump conditions (10.19) give, considering (10.38),

3
2Re Y 4D, = —b, k=123 (10.44)

a=1

As shown by Stroh [324], the three complex constants D, can be determined
by solving the system of six real linear algebraic equations (10.41) and (10.44), with
the aid of the orthogonahty relations (10.15). Indeed, multiplying (10.41) by A,
(10.44) by L, summing up for k = 1, 2, 3, and adding the two relations obtained,
it results, in view of (10.15), that 2

D, = — b 03, (10.45)
2 Ama Lma

1 As shown by Stroh [323], if the roots p,, p., p; are simple, the matrices Ly, and A, are
non-singutar.
2 We recall that summation is to be performed in (10.45) only over repeated Latin indices.
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By (10.42) and (10.45), the expressions (10.37) of the complex potentials ¢,({,)
are fully determined. They can be written in a still more explicit form by considering
(10.40) and calculating the matrix [LZ!]. Namely, it results from (10.11) that

Aods — 1 Aodypy — Dy A3(ps — p2)
1
[La]= A 1 —2ds  pr—hisps  A(Pr—py) |? (10.46)
Ay — Ay APy — Aapy Pe— Py
where

L = det [L,] = p; — P> + Ass(ps — p1) + Ads(p2 — p3).

Introducing now (10.42) into (10.37), we find

D, Zq 14 1 — ré(1 + p2)/22
0.() = 77 {IHTO +In T— ip, +

A | = (r\™
+ir, Y, -’;Lg}ﬁ(m(m) .

m=1 ga

“Substituting this result into (10.43) directly yields the displacement field.
The constants u} can be determined by prescribing the displacement vector of an
arbitrary material point of the elastic medium. Finally, the stress components are
given by (10.7), where the functions f)(z,), as determined by (10.35) and (10.37),
must be replaced by

, 1 D, . = - (r\"
) = — — - (10.47
fdz) z, 1 — rd(1 + p?)/z2 { 2mi o mgl L5 fom ( - ) } ( )

We pass now to the solution of the displacement boundary-value problem.
Since conditions (10.21), (10.25), and (10.19) are common to both boundary-value
problems, the functions ¢,({,) must have the same form (10.37) with D, determined
by (10.45).

Consider now condition (10.27). Since the atomic calculation of the dislocation
core is done using a jump condition similar to (10.19), we obviously have

ug(n) — uf(—n)= —b, k=123, (10.48)
Let us put

L i,(0), (10.49)
T

ut (@) = —

10~120
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with #,(r) = #,(— n). Assuming that u,(0), as defined by (10.49) for 0€ (—m, n}
and periodically continued on the whole real axis, can be developed in a Fourier
series, we obtain

ut(0) = —

50 4 4+ 2Re Y d,, e, (10.50)

2n m==1

where

dk,,,=2LS" i 0)eimdy, k=1,2,3; m=0,1,2,...
T

—J

Introducing now (10.42) and (10.50) into (10.27), and taking into account (10.38)
and (10.44), it follows that

3 o] [>T
up+ 2Re Y, 4ix Y] @amrg™e ™ =dig + 2Re Y e, k=1,2,3.
= m=1

e=1 m=1
Next, equating like powers of e’ gives

up =dy, k=123, (10.51)

3 —
75"y, Aillam = Ay k=1,2,3; m=1,2, ... (10.52)

a=1
and, by solving (10.52) with respect to a,,, we obtain
Qum =10 AQldims 2=1,2,3; m=1,2,..., (10.53)

where [A;!] denotes the reciprocal matrix of the (non-singular) matrix [4,,]. Finally,
substituting (10.53) into (10.37), we deduce the expressions of the complex potentials

(pa(ca)’ o= 1,2’ 3:

_ D, Z, 14+ V1 — (1 + pd/z2
0.() = i {ln_r—o— +In 1= ip, +
+ Y Az dy (—2"—)"’ (10.54)
m=1 a

where D, are given by (10.45). The displacement and stress components are again
explicitly given by (10.43) and (10.7), by using (10.51), (10.35), and (10.54).
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10.3. Neglecting the core boundary conditions

The solutions obtained in the previous subsection become considerably simpler
when terms arising from satisfying the boundary conditions on X, are neglected.
Indeed, both traction and displacement boundary-value problems amount in this

case to the fulfilment of the same conditions (10.21), (10.25), and (10.19). It then
results

fo(z) = D, Inz, a«a=123, (10.55)
2mi

and we deduce from (10.6) and (10.7):

3
u= ——Tm Y A, D,Inz, + uf, (10.56)
T a=1
3 3
Ty = — le ,I_)LL’_‘E‘&, Ty = 1 Im Y, ﬁfﬁ"‘_, (10.57)
s a=1 Zy ks a=1 Zy

where D, are given by (10.45). It is easily seen that the stress and strain components
decrease as p~* when p — o0, like in the isotropic case.

We will determine now the strain energy stored per unit dislocation length
in an infinite elastic medium between the surfaces p = r, and p = R. Since a calcu-
lation similar with that performed in Sect. 8.1 would be rather tedious in the aniso-
tropic case, we prefer to use a somewhat different reasoning on the lines of Stroh
[323]. First, by applying the theorem of work and energy to an elastic cylinder of
unit length and bounded by the cylindrical surfaces p = r, p = R, and the plane
cut x, =0, —R < x; < —r;, we deduce that

1

W= _S toy, dl = ?—S Tttty A1,
c 2 )

2

where C is the union C=T, y I' U AB U A'B’, I is the circle of radius R and
centred at the origin in the x;x,-plane, and n is the outward unit normal to C in
this plane (Fig. 10.2).

Since n equals — e, on 4B and e, on A’B’, the last relation yields

w = %fﬁ taydl + %fl; ty Al + ;_ S— ° Ta(1, 0) (%1, 07) — w(3xy, 0*)} dixy,
r, r

R
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wherefrom, by (10.1), it follows that

= %f’; L dl - —21—5‘; ta dl + L b, S_ ’ Tio(xy, 0) dx;. (10.58)
r, r 2 _R

x
r
fo
o &40 Fig. 10.2. On the calculation of the strain
B8 n energy stored per unit dislocation length.
A o B 0N )
R

X3

Next, taking into consideration (10.56) and (10.57), we see that on Iy, hence for
z, =1y (cos + p,sinf), we have wu, =c,lnry+ g(0), n=e cos0 + e, sind,
t, = h,(0)/r,, where ¢, are some constants, and g,(6) and 4,(0) do not depend on r,.
Consequently, considering also (10.21),

h,(0) £(0) d6 = Sn h(0) 24(6) d6.

-7

3£ o1, I = ¢,(In ro) S” 1(0)d6 +- S"
I, —n

i

A similar calculation for the integral along I', taking into account that m =
—e,cos 0—e, sind on I', leads to an opposite value, and hence the sum of the first

two integrals in (10.58) vanishes. Next, by substituting (10.57), into (10.58) gives

3 —ry 3
W= by Im (Z L,mDa) dx, _ b Im ( y, L,mD,) In R,
2 X1 27 =1 Iy

T a=1 —R

3
On the other hand, (10.41) implies that the number ¥, L;,D. is pure imaginary and

a=1

hence, in view of (10.45), the last relation may be rewritten as

2
_ KR, (10.59)
4r ry
where
3
Kb = —1— Z L"’L’“b'b . (10.60)
i a=1 AmaLma
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The expression (10.59) of w has been first derived by Foreman [120], who also
calculated the values of w for various dislocation orientations in crystals with cubic
and hexagonal symmetry. Clearly, the constant K, which is also called the energy
factor, depends not only on the elastic constants and of the dislocation orientation,
but also on the magnitude and on the direction of the Burgers vector. By comparing
(10.59) with (8.62) and (8.54), we conclude that in the isotropic case the energy factor
takes the value p for a screw dislocation and /(1 —v) for an edge dislocation.

We close this discussion by specializing the above results to the case where
the dislocation line is a two-fold symmetry axis or, equivalently for elasticity, when
it is perpendicular to a reflection plane *. Then, by (5.11), we have

C1q = Cgq = C3q = Cg4 = C15 = Cp5 = C35 = C56 = 0, (10.61)

and the reciprocal [Sg,,] of the matrix [cg,], K, M = 1,2, 4, 5, 6, has the elements

Sy = (CaaCes — C36)/d, S12 = (C16€26 — C12Ce6)/d,
S16 = (1226 — C16C20)/d; Sas = (C11Ces — Cio)/d,
Soe = (C11C26 — C12C16)/ds Ses = (C11C22 — ¢)/d,  } (10.62)

Su = c55/d', Sy = —cgs/d’, Sps = cauld',

Su= S24 = S46 = S15 = Sp; = Sss =0,

with the notation

_ 2 2 2 ' 2
d = ceg(C11Caz — Cia) + 2€12C16C26 — C11Cog — CasCigy @ = CaaC55 — Cise

If we require that the strain energy function W be positive definite, the quantities
d and d’, which are actually principal minors of the matrix [cy,], must be strictly
positive.

From (10.8), it follows now that /;(p) vanishes identically, and hence (10.9)
may be decomposed into the quartic equation

I(p) = Sup* — 25160 + (2512 + See)p® — 2856 + S22 =0, (10.63)

whose roots with positive imaginary parts will be denoted by p, and p,, and the
quadratic equation

Iy(p) = Sssp* — 28Si5p + Su =0, (10.64)

1 This case has been first considered by Seeger and Schick [285]. A complete discussion of
the symmetry cases when analytic results are available or merely possible may be found in the
book by Steeds [317] and in the review article by Steeds and Willis [477].
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which gives
Ps = (—eg5 + "V‘?)/CM- (10.65)
Next, (10.12) yields
= j-2 = 13 =0,

and hence (10.11) becomes

—P1 —P: 0
L. =] 1 1 o} (10.66)
0 0 —I

On the other hand, from (10.13) and (10.14) it follows that
Ay = Subs — Sigle + S12 Aza = S12Pa—S26 + SealPay  A3=0, a=1,2, (10.67)
Ay = A3 =0, Ay = Si5s — Sulps= ivgl- (10.68)

It may be easily seen now that, in the case considered, the elastic state pro-
duced by the dislocation consists of a pure screw and a pure edge part, like in the
isotropic case. Indeed, let us consider first an edge dislocation with components of
the Burgers vector

by=05b, by=>5b;=0. (10.69)
From (10.45) and (10.66—68) we obtain

D, = — b y Dy= — psb s Dy=0, (10.70)
2(p1Ay — A2 2(psA1e — Ass)
whereas (10.56) and (10.57) yield
U3 =0, Ty3=7T=0, (10.71)
1
uﬁ - Im Z AﬁaD,lIl(xl +p¢x2) + ug, (10.72)
13 ¢
1 2 1
Ty =-—Im __&_l)_“___, Tm:_____.ImZ _&_D’__,
a X1 +pax2 T e X1 + DX
(10.73)
T22 = .._1-_ Im __BL_ ’
T L X1 + DPeXe
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where )] denotes summation with respect to a over the integers 1 and 2. Next,
by (4.63),, (10.3), and (10.71),, we have

T33 = Ciatiy,g -+ Cogtlnn + Caeltiy,s + Uz,1)s (10.74)

wherefrom, by virtue of (10.72), it follows that

D,

1
T3 =—1Im { Z [A1a(C1a + PaCs6)-+ Asa(PoCas + C3)]
T . X1+ PaXe

} . (10.75)

Finally, from (10.60) and (10.66), we deduce that the energy factor of the edge dis-
location is

1 Pa
K=y ————. (10.76)
i [ Aza - paAla

We shall resume the case of the edge dislocation in Sect. 14.2, when consider-
ing the solution obtained in a different way by Teodosiu and Nicolae [338]. For a
more explicit form of the above relations, which is valid, however, only when
€16 = €96 = 0, see Hirth and Lothe [162], pp. 422—425.

Let us consider now a screw dislocation with the components of the
Burgers vector

From (10.45) and (10.66—68) we obtain in this case

D,=D,=0, Dy=— b = ib|d, (10.77)
2A35

and from (10.56), (10.57), and (10.74), we deduce that

=ty =0, Ty=Tp="T,=Ty=0, (10.78)
b 0
Uy = — — arg (x; -+ Paxy) + 1, (10.79)
T
T, — V? Re P8 - _ bV? C45X1 — Co5%3 ,
1 T Xy + psx, T CauX; — 2045%1 %3 + C55%3
(10.80)
T23 - bvd’ Re 1 - bvd’ ch]_ - 645X2

T X1 + PsX T CaeX — 2045%1%5 + C55%3



152 II. Linear elastic field of single dislocations

Finally, by making use of (10.60) and (10.66), we infer that the energy factor of
the screw dislocation is

K=Vd. (10.81)

From the considerations above it is easily seen that the pure edge and the
pure screw dislocations have complementary non-zero displacement and stress
components. Hence the elastic state produced by a mixed straight dislocation can
be derived by simply adding the elastic states corresponding to its edge and screw
components.

10.4. Numerical results

As shown by (10.56); (10.57), and (10.60), the quantities p,, Ak, and Ly, &k, a=1,2,3,
completely characterize the principal singularity of the elastic field of a straight dislocation in a
medium with general anisotropy. For this reason, a special program has been elaborated by Teo-
dosiu, Nicolae, and Paven [340, 342], for calculating these quantities. The program was applied
to 60 different crystals® belonging to the cubic and hexagonal systems, and to almost all cases
of straight dislocations occurring in these crystals 2, by using the experimental values given in
Table 5.3 of the adiabatic second-order elastic constants at room temperature with respect to the
standard crystallographic axes x, xJ, xJ shown In Fig.10.3 a and 10.6a (cf. also Mantea et al.
[230D).
Tables 10.1 and 10.2 concern the dislocations considered for various crystal lattices. The
orientations of the axes x;, x,, x, that were used to describe the elastic field of the dislocation, chosen
in each case with the x;-axis along the dislocation line, have been labeled from 1 to 6, the direc-
tions of the xi-axes being indicated in Table 10.1. The direction of the dislocation line, the glide
plane, and the Burgers vector are shown in Table 10.2 and are illustrated in Figs. 10.3—10.6.

Table 10.1
Crystallographic orientations of the co-ordi-

pate axes used to describe the elastic field
of straight dislocations

Directions of the co-ordinate
Orientation axes
label
X Xy X3
1 [110] [110] [001]
2 [101] [010] [101]
3 [110] [111] [112]
4 [121] [101] [111]
5 [2110] | [0001] | [0110]
6 [10i01 | fooo1] | [1210]

1 Namely Ag, Al, Au, Cu, Ni, Pb, Th, Cr, «—Fe, K, Li, Mo, Na, Nb, Ta, V, W,
CuZn, AgBr, AgCl, the 16 alkali halides, CaO, MgO, SrO, C, Si, Ge, Be, Cd, Co, Er, Mg,
T, Y, Zr, Ag,Al, BeO, CdS, CdSe, and a—ZnS.

2 For hexagonal crystals, however, only the basal glide has been considered.
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Table 10.2.

Dislocations considered in numerical calculations

Crystal Crys_tal < _ Glide Disl. Glide Burgers Dislocation
system lattice | .2 8 system line plane vector type
o=
1
- [101] SCrew
— 1 —
2 (110){111} [101] (111) - [101] sessile edge
f.c.c.

L
5 [110] | 60° mixed

~ -;— [flO] edge
3 {112){111} [112] aimn .
- [011] 30° mixed

C110p{(112} | [011 | (121) S OIT1 | edge
2
casie | bee 110110} | [1011 | (101 Z 1111 | 35°16' mixed
3 ¢y | n121 | @aio S[IT11 | edge
4 {110} |y (110) ]
(111X{112} @iD 5 [111] | screw
1 <100){110} | [001] (110) [110] edge
;g‘l::( 2 <110){110} [101] (101) 1011 screw
4 | qan{uey | pul | o1 [101] | 35°16' mixed

1
- 7 [101
diamond | 2 | <110M{111} | [101] | (11D 2 [101]1 | screw

1 _
5 [1101 | 60° mixed

- _ % [2110] | edge
5 <0110)(0001)| [0110] (0001)
Hexa- h.c.p.

1 _
gonal 3 [1210] | 30° mixed

6 | (1210%(0001)| [12101 | (0001) 5 [1210] | screw

To illustrate the numerical results obtained we give here only the values of the quantities
Do Args and Ly,, calculated for dislocations in four typical crystals Cu, a—Fe, NaCl, and Zn, ha-
ving an f.c.c., b.c.c., rock-salt, and h.c.p. lattice, respectively. Crystals belonging to the diamond
structure do not exhibit qualitative differences as concerns the values of p,, Aks, and Lyy (cf. also
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Table 10.2). Only non-zero coefficients Ay, and Ly, are listed. Moreover since always
Ly=—py, Lg= Dy Lyy=Lyy = —Lyy =1,

these values are not mentioned. The quantities p, and L, are non-dimensional, whereas Ay, are ex-
pressed in units of (Mbar)™ = 10" m?*N.

/
AT A .
Z//I_zﬁ.’év X0l

%[107] (

a)

Fig. 10.3. Dislocations in an f.c.c. crystal. (a) The screw, the sessile edge, and
the 60° mixed dislocations (orientation 2 of the x;-axes). The standard crystal-

lographic axes of the cubic lattice are denoted by x(f, xg, and xg. (b) The edge
and the 30° mixed dislocations (orientation 3 of the xi-axes).

x,[111] %3112}

AUl

=41 % (M0}
l010] §

(107

b= RS /
_ \iio)
x,[107]
{a) ]
L 2
S b=
- % [121]

(279)
{c)

Fig. 10.4. Dislocations in a b.c.c. crystal. (a) The [110] edge and the 35°16" mixed
dislocation (orientation 2 of the xi-axes). (b) The [112] edge dislocation (orien-
tation 3 of the xz-axes). (c) The screw dislocation (orientation 4 of the x-axes).
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x;[O 10)

x,[107]

la) ib)

{c)

Fig. 10.5. Dislocations in a rock-salt crystal. (a) The edge dislocation
(orientation 1 of the xy-axes). (b) The screw dislocation (orientation 2
of the xi-axes). (¢) The 35°16" mixed dislocation (orientation 4 of the

Xp-axes).
3
| I
|
| |
[ Ic ]
Lo,
3})——“* X3
- 2
[ A
x7
la)
X2[0001] X2[0001]
L1 1
ik T T
i 1
b=1{2T101 ?32 /Zgé {0001)
7 {0001) i x,[1070]
x3[0‘|‘|0] ] \__ .
b=L01Z10\ x,(2770] 5 {1210} b=31210]
(b) {c)

Fig. 10.6. Basal glide dislocations in an h.c.p. crystal. (a) Standard

crystallographic axes, x‘l’, x3, x9, and crystallographic vectors, a;, a,,

a,. ¢, of the h.c.p. lattice. (b) The edge and the 30° mixed dislocations

(orientation 5 of the xi-axes). (c) The screw dislocation (orientation
6 of the xj-axes).
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Cu (f.c.c. lattice)

Orientation 2: p, , = F0.7056 + 0.8058 i, p; = 0.5528 i,

Ay = App = —0.6614 — 0.8611i, Ay = —Apy = —0.2273 — 1.1406 i, Ay — 2.39291.

Orientation 3: p; = 0.3906 i, p,3; = --0.5845 + 1.4813 i,

Ay = —0.2359, Ay, = —1.6130 + 0.8382 i, Ay — 1.0265 + 1.3844 i,

Ay = —1.3017 i, Ay, = 0.0552 — 0.6557 i, A3 = —0.2253 + 0.5818 i,

Ay = 07085 i, Agy = 1.1312 — 1.7939 i, Az = 0.2190 + 1.9987 i,

Lyg = — 1.1134 + 1.0197 i, Ly, = — 0.8523 — 0.4154 i, Ly —=—0.1707, Ly, =0.948140.4621 i.

a—Fe (b.c.c. lattice)

Orientation 2: p;. = F0.6247 -+ 0.8658 i, p, = 0.6399 i,
Ay = Ajp = —0.4288 — 0.4912 i, Ay = —Ayy = —0.1574 — 0.6781 i, Az = 1.3402 7.

Orientation 3: p; = 0.4670 i, p, 3 = 4 0.4361 + 1.4099 i,

Ay = —0.1590, Ay, = —0.9473 + 0.3885 i, A3 = 0.6487 + 0.8335 4,

Ay = —0.7591 i, Ay, = 0.0452 — 0.3915 i, Ay = —0.1603 + 0.3736 i,

Ay = 0.3765 i, Az = 0.6510 — 0.9509 i, A33 = 0.0952 + 1.1850 i,

L13 = —1.1133 + 1.0384 i, Ly, = —0.8951 — 0.5127 i, Ly = —0.1759, Lj, = 0.8411 - 0.4818 .

Il

Orientation 4: py,,= F0.3839 + 0.6398 i, ps = L. 9092 i,

Ay = Ay, = —0.2852 — 03172 i, Ay = — Ay, = —0.0935 — 0.6706 i,

Ay = —1.6054 i, Ay = 0.4348, Ay = Ay = —0.2204 — 0.7287 i, Az = 1.5824 i,
L, =22972, Ly; = 1.2032 i, Ly = —L, = 0.4605 — 0.1393 i.

NaCl (rock-salt lattice)

Orientation 1: p; , = 1-0.4606 -+ 0.8876 i, p; =i,
A, = —Am = —2.7412 + 2.2565 i, Ay = —Azz = 0.7401 — 3.4725 i, Ay = 7.8247 i.

Orientation 2: p, = 0.6279 i, p, = 1.5020 i, py = 1.1947 i,
Ay = —1.6162, Ay = —6.2085, Ay = —3.8083 i, Ap = —2.4274 i, Ag = 6.5497 i.

Orientation 4: p, 5 = F0.2426 + 0.8130 i, p; = 1.4023 i,

Ay = Ay = —2.5044 — 1.2567 i, Ay = —Ap = —0.4140 — 3.7922 1,
Ay = 8.7490 i, Agy — —4.3871, Ay = Agy = 1.1424 + 2.7747 i, Ags = 6.2046 1,

Ly = —22078, Ly = —1.5744 i, Ly = —Ly; = —0.4472 1 0.1841 i.
Zn (h.c.p. lattice)*

Orientations 5 and 6: p,5 = +0.6714 -+ 1.0747 i, p; = 1.2809 i,
Ay = —Ay, = —1.2890 + 1.2085 i, Ay; = — Ay, = 0.4334 — 2,1967 i, A5y = 2.0127i.

1 There is no difference, as regards the elastic constants, between the orientations 5 and 6
of the x;-axes. Indeed, they differ only by a rotation around ¢, which does not change the second-
order elastic constants of hexagonal crystals, for they have transverse isotropy (cf. Sect. 5).
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10.5. Green’s functions for the elastic state
of generalized plane strain

There exists a closed connection between straight dislocations and line forces . Indeed, let us resume
the case of the straight dislocation considered in Sect. 10.3, but assuming that the tractions acting
per unit length of the cylindrical surface p = r, have a non-vanishing resultant force P, which is
independent of x;.

Requiring again that the stresses and the elastic rotation be continuous across the negative
x,-axis and vanish at infinity, we can still write the elastic state in the general form

3
w=2Re ¥, Arafule) +uf, k=123, (10.82)
e=1
3 3
Tiy = ~2Re Y| poLiafz)s  Tia = 2Re Y, Liafilz,), (10.83)
e=1 a=1
D, g Eam
filzy) = S Izt m}=]1 —En—— a=1,23, (10.84)

where z,=x; + p,x,, whereas D,, g, are undetermined complex constants. Next, imposing the
condition

k4
rog 12(6) d0 = Py,

g7
and taking into account (10.24), we find that now (10.41) must be replaced by

3
2Re Y| Li,D,=P,, k=1,2,3, (10.85)
a=1
while the jump conditions (10.44)

3
2Re Y, AgDy = — by, k=1,2,3, (10.86)

a=1

provide three more real algebraic equations for determining the three complex constants D,. The
system (10.85), (10.86) can be solved as before, by using the orthogonality relations (10.15), to give

AraPr — Liaby

, a=1,2,3, (10.87)
2AmaLma

D, =

where the summation over repeated Latin indices is implied, as usual. This result shows that
the logarithmic terms of the complex potentials f,(z,) are completely determined by the Burgers

1 This connection was first noticed by Stroh [324] and further developed in a six-dimensi-
onal form by Malén and Lothe [225], and Malén [226].
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vector b and the resultant force P of the tractions acting on X, whereas the coefficients g,,, occur-
ring in (10.84) depend on the detailed distribution of the tractions on X, as shown in Sect. 10.3.
Clearly, equations (10.87) establish an algebraic equivalence between a straight dislocation and a
line force.

Let us consider now the problem of defining the Green’s tensor function of the generalized
plane strain. We have seen in Sect. 6.4 that the three-dimensional Green’s tensor function G(x}
can be interpreted in terms of the displacement fields produced by concentrated forces in an infinite
elastic medium. Namely, a unit concentrated force P = e, actmg at the origin and directed
along the x,-axis, produces the displacement field u(’)(x) Gys(x) in the infinite elastic medium.

Similarly, by putting b= 0 and P, = J; in (10.87) we obtain the particular value Df,s) of D, cor-
responding to the case where the tractions acting on 2, have the resultant force P = ¢, namely

A
Y — 2y =1,2,3. 10.88
I ¢ (10.88)

However, this particularization does not determine uniquely the displacement field (10.82) since
the coefficients g,,, are still arbitrary. Consequently, by analogy with the three-dimensional case,
the Green’s tensor function Gy((x,, x;) of the generalized plane strain is defined by taking ug =0

in (10.82) and retaining only the principal singularity of the solution, i.e. the leading logarithmic
term of the expression (10.84) of f,(z,), with D, replaced by (10.88). Thus

3 Ax D(s) 1 3
Gis(®) = ud(E) = }] 2 =——1Im Y, 4,0 Inz, (10.89)
a=1 =1
where
& = x;e; + xpe;, Zq = Xy & PaXa (10.90)

and the corresponding stresses result from (10.83) as

©) 3 1,00
LkaDa Palkala | T"’)(E,)———I Z kaD .

(10.91)

3
7O = — — ;

From the reasoning above it is apparent that Green’s tensor function G(§) has been sele-
cted by imposing a certain singularity of the elastic state for p — 0, where

p =&l =] x2+x2 (10.92)

In fact, the neglected terms correspond to self-equilibrated traction distributions on X, or to elastic
states that possess self-equilibrated singularities, such as force multipoles, at the origin. This leads
us to the following equivalent definition of G(§).

We call fundamental singular solution or Green’s tensor function of the generalized plane strain,
the second-order tensor field G(§) with the following properties:

(i) For any point of the x;x,-plane with position vector & # 0 and for each s = 1,2, 3,
the displacement field u@)(é) =G(&) defines a (regular) elastic state of generalized plane stram

corresponding to zero body forces. In particular, by (10.2),
TISI)I + Tng 2 =0, k= 1, 21 3, (10.93)
where
TEE) = Cham1 Gms,1 ©) + Ckams Gms 2 €,  k=1,2,3; a=1,2, (10.94)
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are stress components corresponding to the displacement field ui-")(&).

(ii) GE)/lnp = 0(1) and TOXE) = O(p™?) as p — 0 and also as p — oo.
(iii) For all > 0 and s =1,2,3,

fﬁ TOndl = e s=1,23,
Ty

or, in component form,

fﬁr (T my + T n) dl = &y, ks =1,2,3, (10.95)
n

where I, is the circle with radius 7 centred at the origin in the x,x,-plane, and n =n,e, + n, e,
is the inward unit normal to I,

It is easily seen that the singular elastic state (10.89), (10.91) satisfies (i)—(iii). Conversely,
it may be shown that these properties uniquely determine the singular elastic state. Indeed, (i)
implies that each fé(z,) is analytic and single-valued outside any circle I"; centred at the origin, and

hence can be developed in a Laurent series. Consequently, integrating with respect to z,, for each
a =1, 2, 3, we may write

D 0
a
felza) = oni In z, + Z Lamz ™

m=—0o0

Next, (i) eliminates all positive and negative powers of z, from this expression. Finally, (iii) and
the condition that the displacement be single-valued, determine the coefficient D, of the re-
maining logarithmic term in the form (10.88), thus leading to the expression (10.89) of G(&).

To derive the differential equation satisfied by G(&) in the sense of the theory of distributions
we use a reasoning similar to that employed in Sect. 6.4. For conciseness, we assume in the remain-
ing part of this subsection that Greek subscripts take only the values 1 and 2, and extend the
summation convention to repeated Greek subscripts. Let ¢(§) denote an arbitrary function of class
C* and of compact support on the x,x,-plane. According to the definition of the derivatives of a
distribution, we have

(CiakpGis,ap(®)> P(8)) = (CiakpGis,a(8), ©,48)) = (CiakpGis(8); ?,ap(8)). (10.96)

Denote by 4, the exterior domain bounded by the circle I', of radius p and the centre at the
origin in the x,x,-plane. Integrating by parts twice, taking into account that ¢ vanishes together
with all its derivatives for sufficiently large values of p, and considering that, by virtue of (10.93)
and (10.94),

CkampGms,ap&) = 0 for any § # 0 and any k = 1,2,3,

we successively obtain

(ckamﬂGms(a) ‘P.a(&)),ﬂ ds — S CkamﬂGms,ﬂ(é)(P,a(g) ds =
4p

S ckamﬁGms(g) 'P,ap(a) ds = S
4p

4p

=S ckamﬁGms(g) ‘P,a(g) ng dl — S (ckamﬁGms.ﬂ(E) (P(g)).a ds + S ckamﬁGms,aﬁ(E») P(€) ds=
r, 4, 4,

= S ckamﬁGms(g) ¢,a(§) ng d/ — S ckamﬁGms,ﬂ(g) q)(&) ny dl.
Fp rp
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Next, making use of the mean theorem of the integral calculus and considering (ii) and (iii), we
find that

lim S CkampGms(€) ¢,2(8) ng di= 0,
-0 pp

lim ckamﬁGms,ﬁ(&) 9’(&) ny d/=lim T,f:) Ny ‘p(&) dl = ‘sks‘P(o),
p—0 ['p p=0 rp

and hence

lim S CkampOms(8) 9,4p(8) ds = — Oy (0).
4p

p—-0

Combining this result with (10.96), we deduce that the regular functionals associated t0 CxympGms,ap(E)
on the regions 4, tend to — 8;p4(€) as p — 0. Therefore, the components of the distribution asso-
ciated to G(§) satisfy the equations

CkampCms,ap (&) + 0108 = 0, k,s=1,23. (10.97)

Assume now that the elastic medium is subjected to the action of a body force f(§), which
is independent of x, and of class C! on the x,x,-plane, and which satisfies the condition !

f€)In p=0(p* as p—oo (10.98)
Making use of the properties of the convolution and taking into account (10.97), we may write

Fil® = 8150E — EfE) = — ChampGoms.ap& — ENAE)

= — Chump{Gms® — 8 A&} aps

where the derivatives are taken with respect to x, and xz. We conclude that

Un(8) = Gpms(§ — £ /5(&)), m=123, (10.99)
is a particular solution of the equilibrium equations of the generalized plane strain
Ckamp¥m,ap + fu = 0, k=1,23.

Finally, by taking into account the way in which the distribution G(§) has been generated,
as well as the continuity of the convolution, (10.99) may be rewritten as

un(8) = S Gms(& — &) £5(&) ds', (10.100)
E

1 This condition is satisfied a fortiori if £(€) = O (p®) as p — oo.
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where E denotes the x;x,-plane, the convergence of the improper integral in the right-hand side
being granted by the conditions (ii) and (10.98).

Using a procedure similar to that presented in Sect. 6.3 for the three-dimensional case, it
is also possible to extend the concept of Green’s tensor function to the generalized plane strain of
cylindrical bodies with free boundaries at finite distance. Such Green’s functions have been con-
structed by Sinclair and Hirth [472] for an anisotropic infinite elastic body containing a planar
crack, and then subsequently used to study the interaction between the crack and some rod éhaped
inclusions or coherent precipitates parallel to the crack front.

10.6. Somigliana dislocation
in an anisotropic elastic medium

In this subsection we treat, following [478], a Somigliana dislocation that produces a state of
generalized plane strain in an infinite anisotropic elastic medium with an infinite circular cylindrical
hole of radius ry. The results obtained will be applied to the simulation of crystal dislocations by
non-linear elasticity (see Sect. 14).

%
r
L n
Fig. 10.7. Cut along the half-plane
x, =0, x; < —ry used to gene- . n
rate a Somigliana dislocation in (x,07) 0
an infinite elastic medium with a = ) Xy
circular cylindrical hole. {3

X3

Let us take the axis of the hole as x;-axis of a Cartesian system of co-ordinates and the half-
plane x, = 0, x; < —r, as cut S for producing the Somigliana dislocation (Fig. 10.7). Having in
mind further applications, we first consider a more general case where not only the displacement
vector u is allowed to be discontinuous across the cut S, but also the tractions applied on the faces
of the cut are not equilibrated, being statically equivalent to a distribution of surface forces on S.
Specifically, we assume that (7.19) and (7.20) are replaced by the conditions

u(x;, 07 — u(x;, 07) = glxy), t(xy, 0%) + t(x;, 07) = h(xy)

for x,€ (—o0, —rol, where g and h are analytic vector-valued functions, such that g = O(1) and
h= 0(x1—2) as |x,| — co. These conditions assure that the jump of the displacement vector across
the cut and the resultant force of the tractions acting on the cut faces per unit length of the x;-axis
are both bounded. Developing the functions g(x,) and h(x,) in power series for x; € (—oco0, —rp],

11120
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we have
[+ o]
wlx, 09) — mlxy, )= 3, 2, (10.101)
m=0 xl
. ht hkm
(%1, 07) + 1(x,, 07) = ey (10.102)
m= 1

for k = 1, 2, 3, where gg,, and hy,, are known real constants.

We look for the solution of the field equations of the generalized plane strain satisfying the
boundary condition (10.22) at infinity, and either of the boundary conditions (10.20), (10.27) on
I'y. We begin by rewriting (10.102) in terms of the stress functions @y introduced at the end of
Sect. 10.1. Let I" be a smooth closed curve in the x,x,-plane and encircling I'y anticlockwise (Fig.
10.7). Then, by virtue of (10.16), we have

dx, dx, doy,

ty = Tpym + Tkz”z”':—Tkl—dT‘l' Tkz_&T:‘_d‘l" (10.103)

where n is the inward unit normal to I', and / is the curvilinear abscissa on I". Integrating this
relation once around I' yields

% tk dl = ¢k('xb 0+) - Qk(xv 0—)’ (10.104)
r

where x, is the abscissa of the intersection point of I" with the negative x,-axis. ,
Next, the equilibrium condition of a cylinder _of unit length whose generators are parallel to
the x,-axis, and whose projection on the x,x,-plane is the region bounded by Iy, I, and the cut,

gives
—re
4; tdl=P+ S [tGxey, 07) + t(x;, 07)1dx;, (10.105)
r xy

where

P= fﬁ t¥dl (10.106)
FO

is the resultant force of the tractions acting on the elastic medium per unit length of the cylindrical

surface p = rq.
By substituting (10.104) and (10.102) into (10.105) and performing the integration with res-

pect to x;, we find

[= <]
_ q
By, 0) = By, 0) = ¥ o, (10.107)
m=0 x1
with the notation
o0
(=1 g iy
= P -+ —_—r
qko . mz=1 mr{)n
(10.108)
h
= mt1 form > 1.

qkm
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The solution may be found by superposing two elastic states:

u(Xs, %) = ey Xo) - Ux(xr, X0) - Ui (10.109)
Dy(xy, X) = 61:(3‘1, x) + 6\)k(xl, Xy), (10.110)

such that %; and 57k satisfy the jump conditions (10.101), (10.107) on thecut and the boundary con-

dition (10.22) at infinity, whereas Qk and Py are continuous across the cut, vanish at infinity, and

satisfy the boundary condition on Iy corrected by the contribution of & and @.
In view of the results in Sect. 10.1, we take

3
(xy, X)) = 2Re Y Akafo(20),

a=1
(10.111)
Bi(x;, X)) = 2 Re }331 Liof 20,
e
k=1,2,3, where
%
£z = —27;_'”2:;0 ;Z"n In z,, w=1,23, (10.112)

and b,,, are some undetermined complex constants. Introducing (10.111) into (10.101) and (10.107),
and equating like powers of x,, we find that, for each m = 0, 1, 2, .. ., the three complex constants
b,m, @ = 1,2, 3, must satisfy the system of six real algebraic equations

3
2Re ¥, Atobam = &m» Kk =1,2,3,
a=1
(10.113)
3
2Re ¥} Ligbam = Gkms k=1,2,3.
e=1

Multiplying (10.113), by Ayg, (10.113), by Lig, summing up for k= 1, 2, 3, adding the two rela-
tions thus obtained, and taking into account the orthogonality relations (10.15), we find?

- Axadxm + Lra€km

b
o 245, Ly

(10.114)

fore =1,2,3; m=0,1,2,..., the summation being performed over k, s =1, 2, 3.

1 Clearly, the case of a straight dislocation of Burgers vector b; combined with a line force
Py, both of which lying along the x;-axis, may be refound, under neglection of the boundary condi-
tions on Iy, by putting gge = —by, gkm = 0 for m > 1; by, =0 for m > 2; g0 = Py, ggm= 0 for
m = 1. Then, it results from (10.114) that b,,, = 0 for m = 1, 2,..., and b,y = D,, where D, is
given by (10.87).
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A
We pass now to the boundary condition on I'y. Since ftk and @y must be continuous across
the cut and vanish at infinity, we take

3
ak(xly x2) =2 Re Z Aka¢a(€a),

e=1
(10.115)
R 3
qjk(xl, xz) = 2 Re Z Lka (Pa(Ca),
a=1
k=123, where
X a
Pl = Y s @=1,23, (10.116)
m=1 C,
z, r¥1 + p?)
{p = — - 1+V1——°—~——“—— , (10.117)
1—ip, zg

and a,,, are some undetermined complex constants.

Let us consider first the traction boundary condition (10.20) on I'y. Denoting by t*(6) the
traction corresponding to the displacement field & on I'y, and repeating the reasoning that has led
to (10.24), we find

- 2 3 d
t’:‘((?) =-—Re Z Ly, —da—f,(ro cos 0 + pgrysin 0), k=123, (10.118)
a=1

ry

where f,(z,), ® = 1,2, 3, are given by (10.112). Next, from (10.20) it follows that the modified
boundary condition on I, may be written as

Toam + Tiam =120  onTy, k=123, (10.119)
where
T4(0) = 13(0) = 72(0). (10.120)

Since the form of this condition is the same as that considered in Sect. 10.2, we may derive at once
the expression of the unknown coefficients a,,, by using (10.42). It then results that

Gam = — L femrTHY, =123 m=12..., (10.121)
where !
1 (*
fom=—\ 1O A0, k=1,2,3; m=12,... (10.122)
—n

7 A
1 By (10.120), we have S t,ik (6)d6 = 0, and hence the Fourier coefficient f;, is zero.

—n
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are the Fourier coefficients of ?,:*(0). Thus, the solution of the problem formulated at the begin-

ning of this subsection is completely determined by (10.109—112), (10.114—117), and (10.121).
The constants u,?, corresponding to a rigid translation of the elastic medium, may be further deter-

mined by imposing the value of the displacement field at an arbitrary point of the medium.
Next, we consider the displacement boundary condition (10.27) on I',. Denoting by

17];"(9) = Ur(ro cos 6, ry sin 6) (10.123)
the value of @ (x;, x,) on I'y, we find that ﬁk(xl, X,) must satisfy the modified boundary condition

g =1u¥@®) on I, k=123, (10.124)
where
k) = uk(6) — ¥ (p), (10.125)

Since the form of (10.124) coincides with (10.27), and that of the representation (10.115), (10.116
with (10.43), (10.37), except that now D, = 0, we may directly infer the values of the unknown para-
meters u,‘: and a,,, by using (10.51) and (10.53). We thus obtain

Ul = dy,, k=1,2,3, (10.126)
Ay = 1A i, «=1,273; m=12,..., (10.127)
where
1 [ .
i = 7”-8 u¥®) e=imd do,  k=1,2,3; m=0,1,2,... (10.128)
a4

are the Fourier coefficients of 2;:(6). The solution of the problem is again completely determined
by (10.109—112), (10.114--117), but with u;: and a,, given by (10.126) and (10.127), respectively.

Tt is easily proved that the solutions of both boundary-value problems considered above are
unique. Indeed, the displacement vector and the stress functions corresponding to the difference
of any two solutions, must be continuous across the cut. Then, by Bézier’s theorem (Sect. 6.2),
the solution is unique when the displacements are given on I, and is uniquely determined to within
an infinitesimal translation, when the tractions are prescribed on I,

Finally, if we are interested only in the solution corresponding to the Somigliana dislocation,
we must simply put Ag,,=0 for any k = 1,2,3; m = 2,3, ... Then, from (10.108) it follows that

Do = Py, Do = 0 for m>=1, (10.129)
and (10.114) gives

b AgaPr + Lig8io
0= T T T
* 2 AgqLgy

(10.130)
LioZim

bam = 28k o m > 1.
T ALy
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10.7. Influence of the boundaries on the anisotropic
elastic field of straight dislocations

By using Lekhnitsky’s representation (10.6), (10.7), it should be possible to deter-
mine the stress field of a straight dislocation whose line coincides with the axis of
an anisotropic circular elastic cylinder. However, there is only one solution of
this type available so far, due to Eshelby [112], which concerns the screw disloca-
tion lying in the axis of a circular cylinder of finite length, for a particular case of
material symmetry. The solving of the problem for general anisotropy and mixed
dislocations would require the solution of an infinite set of linear algebraic equa-
tions, having as unknowns the coefficients of the Laurent expansions of the functions
fuz), «=1,2,3, and expressing the boundary conditions on the core surface
and the outer surface of the cylinder.

The elastic field of a straight dislocation lying in an infinite plate has been
determined in the particular case where the dislocation line is parallel to the faces
of the plate and to a two-fold axis of material symmetry. Thus, Spence [316]
and Chou [70] have determined the elastic field of a screw and edge dislocation,
respectively, for the case where the normal to the plate faces is also a two-fold axis
of material symmetry, while Siems, Delavignette, and Amelincks [296] have consi-
dered an edge dislocation near the basal plane of a hexagonal crystal. Finally, Lothe
[220] has derived an elegant formula giving the force exerted by the free boundary
of an infinite elastic half-space on a dislocation of arbitrary inclination with respect
to the boundary.

A problem of particular interest is the interaction of dislocations with phase
and grain boundaries. This situation is generally modelled by a dislocation lying
near the plane interface between two different anisotropic elastic half-spaces. The
solution is given by either using Stroh’s formalism or Fourier-transform techniques
(Pastur, FeI’dman, A. M. Kosevich [264], Gemperlova and Saxl {131], Gemperlova
[132], Tucker and Crocker [359], Tucker [360]), but the results are rather cumber-
some and expressed in a form which is rather inconvenient for numerical applica-
tions. More explicit solutions have been obtained by Chou [408] and Pande and
Chou [457] for the case where the adjacent grains possess rhombic symmetry with
respect to the plane of the interface. Kurihara [205] has used complex-variable
techniques to determine the elastic field of an edge dislocation in an anisotropic
half-space coated by a thin layer of anisotropic material. Numerical calculations
done for an edge dislocation whose glide plane is perpendicular to the interface
have shown that the dislocation may have a stable equilibrium position near the
interface for certain combinations of elastic constants.

Interfacial dislocations in anisotropic two-phase media have been given a
special attention owing to their role in the mechanical behaviour of polycrystalline
and composite materials. Chou and Pande [409] have calculated the elastic field
of interfacial screw dislocations again for the case where both half-spaces possess
rhombic symmetry with respect to the plane of the interface, while Chou, Pande,
and Yang [410] have solved the same problem for edge dislocations.

A review of the problems involving interfacial dislocations for general aniso-
tropy has been made by Nakahara and Willis [453], who corrected a previous
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approach by Brzkhus and Lothe [38], and gave a general formulation by
using Lekhnitsky’s representation of the elastic field for both anisotropic half-spaces,
as follows 1.Let us consider two anisotropic half-spaces welded along the interface
x, = 0, and assume that an infinite straight dislocation of Burgers vector blies
along the x,-axis at the interface. The quantities pertaining to the half-spaces x, > 0
and x, < 0 will be denoted by the superscripts (1) and (2), respectively. Ignoring
the core boundary conditions, the elastic field is given (cf. Sect. 10.3) by

1 3
U (x, x,) = — Im Yy ADY In 29 + ul®,
9

a=1

1 3 p(S) L(s)D(S)

3) _—— Vo “kea

TExy, Xo . Im El 2

> (10.131)
1 3 L(S)D(S)

TH(x1, x) = — Im Z e
T @

¥

b

1 3
O(xy, xp) = —Im Y LEADE In 200, 280 = x; + px,,
(4

e=1

where s takes the values 1 and 2. We choose as before as cut the negative x,-axis to
define sin gle-valued functions Inz{? and a single-valued displacement field. Then the
physical requirements to be fulfilled are: the continuity of the displacement vector
across the positive x;-axis,

uP(xy, 0Y) — uP(x,,07) =0 for x; >0, (10.132)
the prescribed jump of the displacement vector across the negative x;-axis,
uP(xy, 07) — uP(xy, 07) = —b, for x; <0, (10.133)
the continuity of the stress components T, across the boundary
TP(x;, 0 — T(x,,07) =0 for x; # 0, (10.134)
and finally the condition of zero resultant force of the tractions acting on any cy-
lindrical surface X, surrounding the dislocation line, which leads, in view of (10.104),

to

PW(x;, 01) — BP(x,,0°) =0  for x; # O. (10.135)

1 Cf. also Barnett and Lothe [398], Dupeux and Bonnet [413].
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Next, introducing (10.131) into (10.132—35) gives a set of twelve real equa-
tions to determine the six complex unknowns DM, D?, « = 1, 2, 3:

Im 3} (4D — AQDY) — 0,
e=1

3
Re Y} (42D + 4QDP) = —b,
e=1

(10.136)
Im 3] (LEDY — LEDE) = 0,
¢=1
3

Re ¥, (LDY + LZDY) = 0,

e=1

where k = 1, 2, 3, as well as the supplementary restrictions u§® = u{® k =1, 2, 3,
i.e. the equality of the rigid translations adopted for the two half-spaces. As shown
by Dupeux and Bonnet [413], equations (10.136), imply also the vanishing of the
resultant couple of the tractions acting on X, just as for an’infinite straight disloca-
tion in a homogeneous medium. The energy factor K of the dislocation can be
calculated by (10.60), where L,, and 4,, may be replaced by the values corresponding
to either of the half-spaces.

There exists so far no explicit solution of system (10.136) similar to that obtain-
ed by Stroh for the homogeneous medium. Nevertheless, Dupeux and Bonnet
[413] elaborated a computer program for building up this system from geometrical
and physical data, to solve it, and to calculate the energy factor of the dislocation.

11. Dislocation loops in anisotropic media
11.1. The method of Lothe, Brown, Indenbom, and Orleov

We have seen in Sect. 9.1 that a dislocation loop of line L and true Burgers vector
b produces the displacement field

up(x) - - S bicijlekp‘l(X —_— X’) ds}, (11.1)
S+
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whose gradient may be expressed by one of the equivalent formulae

+
H,(x)=— S biciju Gyp(x — X') ds} = j{; €,iDiCijiGrp (X — X') dxy, (11.2)

S L

where S is a smooth and two-sided surface bounded by L, m is the unit normal to
S in the sense given by the right-hand rule with respect to the positive sense chosen
on L, and S* denotes the face of S into which points n. Furthermore, the stress
field of the dislocation loop is given by

Tkm(x) = ckmerpr(X)' (11.3)

Equations (11.1-—3) are valid for general anisotropy, but the integrals involved
cannot be calculated analytically except for infinite straight dislocations. However,
starting from results obtained by Lothe [219] on dislocation bends in anisotropic
media, Brown [43] succeeded to show how the in-plane stress field of a planar dislo-
cation loop could be determined directly from the stress field of a straight dislocation
and the derivatives of this field with respect to variables describing the direction
of the straight dislocation. In view of the importance of this result we reproduce
below Brown’s proof, by slightly modifying his argument.

Theorem. Let L be a planar, piecewise smooth dislocation loop lying in an infinite
anisotropic elastic medium, M a current point on L, and P an arbitrary point situated
in the plane of the loop, P ¢ L. Arbitrarily choose a positive sense on L and denote
by o and 0 the angles measured in the same sense from a fixed reference direction

—>
in the plane of the loop to the tangent at M to L and to the vector M P, respectively.
Then the stress field of the dislocation loop at P is given by

i1 do(@) 1.
@)=~ %L — [o(e)+——d02 ]sm(@ wydl, (11.4)

—
where R = ||MP||, and o(0) is the stress field of an infinite, straight dislocation line
Ly with the same Burgers vector as L and directed parallel to MP, evaluated a

unit distance away from Ly in the direction m X .]l;[}), where n is the unit normal to
the plane in the sense given by the right-hand rule around L.

Proof. Let us choose a Cartesian frame Ox;x,x; with the xj;-axis directed
along m and the x;-axis along the fixed reference direction (Fig. 11.1a). Denote
by (x;, X3, 0) and (x;, xJ, 0) the co-ordinates of Pand M, respectively. It then follows
from (11.2); and (11.3) that the stress components of the dislocation loop at P are
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given by
TinlP)= =\ Ctnpbiemn Gl =0, bidsy (119
S
%
L
dl
[« 4 ] 6+d8
0 > -
la) Ib)

Fig. 11.1. On Brown’s theorem. (a) Dislocation loop lying in the x,x,-plane.
(b) An infinite straight dislocation making an angle 6 with the x;-axis.

where S is the region bounded by L. Since none of the subscripts in (11.5) are rele-
vant to the argument that follows we may simply rewrite this relation as

T(r x2) = S Fot — x}y Xy — x)dx, dx, (1L6)
S

where T'(x;, x;) denotes any component of the stress tensor T(P). On the other
hand, taking into account that Green’s tensor function G satisfies the identity
(cf. Sect. 6.4)

G(ix) = 4 1G(x) (11.7)

for any x # 0 and for any non-zero real number 4, it is easily seen from (11.5) that
the function f satisfies the identity

JOX;, AX) = 172 flXy, Xo), (11.8)
for any R = |/ X7 + X2 # 0, where X; = %, — &}, X = %, — X},
Putting A = R7! into (11.8) and taking into consideration that X; = Rcos 0,
X, = Rsinf (Fig. 11.1a), it results

f(XI’ X2) = R_SQ(G), (11'9)
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where @(0) = f(cos 6, sin 6). For further use we also note that, by virtue of (11.8),
O + n) = f(—cos 0, —sin 0) = f(cosb, sin 6) = O(0). (11.10)

Next, by making use of Euler’s theorem on homogeneous functions, we deduce
from (11.8) that

af(Xb X2) af(Xb X2)
- XL, X)) =X, ———— + X ——>
f( 1 2) 1 aXl 2 6X2

and hence

] 0
— X, Xp) = o XXy, X))+ T [Xzf(X;, Xo)),

1 2
wherefrom it follows that
0

’
Ox;

SO — X3, X — x3) = [ — xDf(xy — x1, X2 — X)) +

2 — 5y — by % = X,
0x;

Introducing this result into (11.6) and transforming the surface integral into a line
integral by Green’s theorem, we have

Ty %) = f}l (—(r — X, + (ry — ¥ bz} (L.11)
L

On the other hand, inspection of Fig. 11.1a shows that
dx; = dlcosa, dx; = dlsina, x; — x{ = Rcosf, x,— x; = Rsinf,
and hence (11.11) becomes, considering also (11.9),

OO)sin(@ — o)

o dl. (11.12)

T %) = — f}f,
L

In order to determine @(6), we consider an infinite straight dislocation line

—>
L, directed parallel to MP and having the same Burgers vector as L (Fig. 1.11b).
Let us denote by o(0) the stress field of L, evaluated at a point P, situated a unit

—
distance away from L, in the direction of n X MP, and by ¢(0) the same component
of 6(0) as T(x;, x,) for T(P). Then, we may calculate o(6) by using the same formula
(11.12), provided that « is replaced by 0, and 6 by the angle 8" between Ox; and the
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___> .
vector M,P,, where M, is a current point on L, Thus

©0) sin(6’ — ) dl’
o) = — S ) — ) (11.13)
Lo [[MPolf?
But now
—>
|MgPgll = cosec (8" — 0), dI’ = cosec*(§' — 6)dd’,
and hence (11.13) reduces to
6+n
a(@)= — So O@) sin(6’ — 6)do". (11.14)
Differentiating this equation with respect to 6 yields
0+
d90)__ ("0 )cos® — 6)de,
do o
and a second differentiation gives
2 +=
FO) _ (" 0@) sin@ — 0)d6’ — 6@ + 1) — 0(0),
do? 9
wherefrom, in view of (11.14) and (11.10), it follows that
1 d2q(0)
OB)= — -—ja®) + . 11.15
0=—- [ O+ 0| (11.15)

Finally, by substituting this result into (11.12), we find

T(xy, X3) = %jg 712 [0‘(0) + dz(;re(f) ] sin(0 — «) d/,
L

and the theorem is proved, since T'(x,, x,) and a(6) are corresponding, but otherwise
arbitrary components of T(P) and (). From the above proof and (11.2), it is
apparent that similar relations hold for the strain field and the displacement gradient
of a planar dislocation loop.

Since the tensor o¢(f) is known in the general anisotropic case and for an arbi-
trary orientation of the dislocation line, formulae of the type (11.4) allow the com-
putation of the elastic field of planar and, as we shall see below, even of non-planar
dislocation loops. This has stimulated the occurrence of a series of papers devoted
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to the numerical calculation of ¢(0) and of its angular derivatives by either starting
from the analysis given in Sect. 10.3 (Malén [224], Malén and Lothe [225]) or using
an integral formalism that avoids the solution of the sextic equation (10.11) and
is more adequate for the purposes of numerical computation (Asaro, Hirth, Barnett,
and Lothe [9)).

When considering complicated dislocation configurations, it is frequently
more convenient to decompose them into finite dislocation segments, the stress
field of each segment being calculated with the aid of (11.4), and then to sum up
the individual contributions of all segments. With the notation in Fig. 11.2 we have
for the dislocation segment AB:

R = |x — x'|| = pcosec(8 — a), dIl=pcosec*(f — «)d0,

where p denotes the distance from the field point P to the segment 4B. Substituting
these expressions into (11.4) and integrating by parts twice the term containing the
second derivative of 6(0), we obtain (Brown [43], Asaro and Hirth [8]):

T(P) = ?11;‘ [_ 6(0) cos(® — ) + 22O gin(o — a)] !:B (11.16)
A

As the x;x,-plane can be arbitrarily rotated around 4B it is obvious that (11.16)
completely determines the stress field of the dislocation segment. In view of the
wide applicability of this formula, Asaro and Barnett [10] have elaborated a nu-

X3
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//ll \d
N
///I | \
Fig. 11.2. The geometry of a straight // / 'B />
dislocation segment A B. / / 12~
/
/
A /dll’
//// / |
A& A8 N8 Nos
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merical method which permits the direct calculation of the functions ¢(f) and
da(0)/d0, without solving the sextic equation (10.11). The attractive feature of for-
mulae (11.4) and (11.16) is that it is possible to calculate the values of o(0) and
of its angular derivatives over a sufficiently large range of orientations and to store
the results in some convenient form for later use (see also Sect. 12.3).

Clearly, the elastic field of any planar or non-planar dislocation loop may be
approximated by that of a corresponding polygonal loop, i.e. of a union of finite
dislocation segments, but is not obvious @ priori that going from a segment in one
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plane to another in a different plane does not introduce some “termination” errors,
especially when angular derivatives do intervene in the calculations, However,
Bacon, Barnett, and Scattergood [396] succeeded to demonstrate that (11.16) actually
gives the three-dimensional contribution of a dislocation segment, by using the
following argument (see Fig. 11.3).

Fig. 11.3. Schematic construction
of a polygonal dislocation from
bi-angular dislocations.

An arbitrary non-planar polygonal dislocation ABCDE ... is replaced by
a union of by-angular dislocations 4’4BB’, B'BCC’, ..., such that all (infinite)
rays AA’, BB, . .. pass through the current field point P. Clearly, the stress field
of each by-angular dislocation can be computed by formulae (11.4) and (11.16)
without termination errors. On the other hand, when summing these stress fields,
the rays A4’ and A’A, BB' and B'B, etc. bring no net contribution, since they have
equal Burgers vectors and opposite directions. Consequently, the total field is given
simply by (11.16) successively applying (11.16) to the dislocation segments 4B, BC,
CD,

By using (11.6), Korner, Prinz, and Kirchner [439] have constructed isostress
lines around finite segments of partial dislocations in silver crystals, and used them
to visualize various interaction effects between segments of partials, as well as the
zigzagging of partials in unstable directions.

Shortly after the publication of the results of Lothe and Brown in 1967,
Indenbom and Orlov [168—170] have elaborated a very ingenious procedure for the
calculation of Green’s tensor functions of linear homogeneous differential operators
with partial derivatives and constant coefficients for n-dimensional infinite spaces
(where n is an odd integer) from the corresponding Green’s tensor functions of a
hyperplane. In particular they have proved the following generalization of Brown’s
theorem.

Theorem (Indenbom and Orlov [168]). The stress field T(x) of a piecewise
smooth dislocation loop L is given by

T(x) = —jﬂ Polr,x =X gp 11.17)

0x,0x

where t is the unit vector tangent at X' to L, and 6(X, t) denotes the stress field at X of
an infinite, straight dislocation with the same Burgers vector as L, passing through
the origin, and parallel to <.
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Proof. First, note that (11.2), may be rewritten as
H,(x) = f}; €, b; T (x — x) 7, d" (11.18)
L

where 1 is the unit vector tangent at x’ to L and
TR(X) = ¢;juGipi(X), THUx) =0 for x # 0, (11.19)

Moreover, it may be shown that (11.18) is equivalent to

L

H,(x) = — fg €,jfxq — X)) b; TP (x — x') 7, d/". (11.20)

Indeed, by making use of Stokes’ formula (1.54),

’ ’
fi; undxn = S € lmntn,m’ dS[,
L st

and considering (1.11) and (11.19),, the difference between the right-hand sides of
(11.20) and (11.18) may be transformed into the surface integral

|, B BT =) 4 (o — 3D T — 0145,
S

On the other hand, T{fi(x — x’) is a homogeneous function of order —3 in the
components of x — X/, i.e.

THUAX) = |A|=3T{(x) for any 4 # 0, x # 0, 11.2D)

and hence, by Euler’s theorem, the integrand of the surface integral vanishes.

Let us apply now the relation (11.20) to an infinite straight dislocation passing
through the origin, parallel to 1, and having the same Burgers vector as L. Denoting
the corresponding displacement gradient by B(x, t) and putting x’ = /'t, we obtain

B (%, 1) = — EnyeXibita Sm T®x — <) dI'. (11.22)

— 00

It can be readily proved, by considering (11.21), that f(x, ) is a homogeneous
function of order —1 in the components of x and of order 0 in the components of
T, i.e.

B(Ax, ut) = [A|7p(x,t) for any 4, u #0, x,7t #0. (11.23)
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Next, decomposing the integration interval in (11.22) into the union (— o0, 0) U
U (0, 00), operating in each integral the change of integration variable I’ = 1/s,
and taking into account (11.21), we find

0
Bo(X, T) = — €59 X, bi‘r,,S Is| T{2)(v — xs) ds. (11.24)

—C0

Now let us apply on both sides of this equation the operator x;x,,0%/07,07,,. Since

0 0 d
X (EnjaXaTn) = EnjeXaXg =0, Xk T (v — xs) = — T (t—xs),
Tk Ty ds
we obtain
2B,(x : o TP (t— xs
XX 0 Bpr( » T) _ Enjqxqbifn Is| u,r( )ds.
o0t 01, o ds?

Dividing again the integration interval into (— oo, 0) U (0, co), integrating by parts
twice each integral, and taking into consideration that

dT®(t — xs) .

lim s 0, lim T®(t— xs)=0,
s=»100 ds s—»tco
we get
2
Xgy PP v) 2€,,,%bt TO(3).
01,07,

Next, we replace x by 1, and 7 by x — x’ # 0, the latter substitution being possible
on account of (11.23). Then

B, (t, x — X')
E"jq(xq — x;) biTnT,gf’)r X — X') == _2‘_‘ TkTm péx ,ax :
k m

Finally, introducing this result into (11.22) yields

B(z, x — x') ,

11.25
0x,.0%,, ¢ )

1
HX)= ——¢@ T,
® 2§§Lk

and the theorem is proved, since (11.25) and (11.3) imply (11.17).

Indenbom and Orlov [168] have also proved that (11.17) generalizes Brown’s
result (11.4), and have applied (11.25) and (11.23) to show that the displacement
gradient of a dislocation ray with initial point at the origin and directed parallel to
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the unit vector 7 is

H(X)=i[ﬂ(x, 1) —r,,-m]- (11.26)
2 Ox,

Formulae of the type (11.26) can be also used to obtain the field of polygonal dislo-
cations and to study dislocation interactions (cf. also Indenbom and Dubnova
[432], Orlov and Indenbom [456]).

Asaro, Hirth, Barnett, and Lothe [9] have derived formulae which allow the
numerical computation of the directional derivatives involved in (11.25). However,
when handling complex dislocation configurations, it seems preferable to use the
two-dimensional formalism based on Brown’s theorem, as explained above.

In the next section, we shall come back to the application of Lothe-Brown-
Indenbom-Orlov geometrical techniques in connection with the calculation of
self-energies and interaction energies of dislocations.

11.2. Willis’ method

Willis [383] has obtained a direct evaluation of the integrals occurring in (11.1)
and (11.2), by using the expression of Green’s tensor function obtained by Fourier
transformation of the equilibrium equations (Sect. 6.4). This method leads in some
cases to results which are more explicit than those given by the method of Lothe,
Brown, Indenbom, and Orlov. The relationship between the two methods has been
investigated by Malén [226] and by Asaro, Hirth, Barnett, and Lothe [9].

With the notation in Sect. 6.4, we deduce from (6.55) that

*
Ghpx — X) = 1 Re Dip(®) e~ik-(x=x) {7,
873 J; D(k)

Differentiating this relation with respect to x, and taking into account that Re(— iz) =
= Imz, we have

%*
th,l(x — x’) — 1 Im lehP(k) e_ik,(x_x»)d-{)
82 )i D)

and, by substituting this result into (11.1) and (11.2),, we infer that

x(k . N g~
U (x) = — —l—b,c,j,,, ImS ds}S kiDip(®) e~k (x—x) dp, (11.27)
8n? st )5 D)

1 k.Dp, k) . A
H,(x) =——€_becmImp dx,\ ——2—~e-ikx-x1dy,  (11.28)
wX) 8n3 i fi;L ! S? D(k)

Willis” procedure consists in evaluating the integrals involved in (11.27) and
(11.28) in the real space & as well as in the phase space &, for various dislocation

12.-c. 120
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configurations. We shall briefly review below the results available in the literature for
straight dislocations and dislocation loops.

Infinite straight dislocation. Consider first an infinite straight dislocation with
Burgers vector b, passing through the origin, and directed along the unit vector 1,
arbitrarily oriented with respect to the standard crystallographic axes. Let m and
n be two arbitrary orthogonal unit vectors, such that 1 = m X n (Fig. 11.4).

X3
n
Fig. 11.4. Orthogonal frame asso-
ciated with a straight dislocation
line with unit vector L
o]
X
: ?"z

m

Xy

Neglecting the influence of the dislocation core, one may choose as cut surface
S the infinite strip x-m = 0, — R < x-m < 0, which is bounded by the given dislo-
cation line and by a parallel dislocation line distant R from it; R is assumed to be
large enough such that the field contribution at x be negligible compared to the contri-
bution of the dislocation passing through the origin. Then, by evaluating the inte-
grals in (11.27) and (11.28), Willis [383] obtains

3
u,(x) = — Im z n;F; (m*) In (x.m, /R), (11.29)
i=1
3

Hpr(x) = ejrsls Im E Pjip(ml)/(x' m}.)‘ (1 130)

i=1

Here and in the following we denote for any unit vector k:
1 k,DX.(k) ,

Fip(k) = ?btczjm——“la—p])h(i)—, k* =k -+ not, (11.31)

T ok,

where w*, A = 1,2, 3, are the three roots with positive imaginary parts of the
sextic equation
Dk +nw)=0. (11.32)

Since the orientation of 1 with respect to the co-ordinate axes is arbitrary,
it is no more necessary to transform the elastic constants, as in Sect. 10, from the
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standard crystallographic axes to those associated with the dislocation line. It is
easily proved that Willis’ solution (11.29) does not depend on the choice of the
unit vectors m and n, as was to be expected. It may be also shown that (11.30) is
equivalent to the equation

Hy(0 = — Im S npmi () [(x- o),
A=1

which results directly from (11.29) by partial differentiation with respect to x,.

Clearly, Willis’ method requires the solving of a sextic equation of the same
type as (10.9). In addition, the solution (11.29) is applicable in this form only when
the roots w” are simple; the degenerate cases of multiple roots must be considered
separately, by using a suitable limiting process 1.

An alternative approach based on the technique elaborated by Barnett [16]
for the numerical computation of the derivatives of Green’s tensor function (see
Sect. 6.4) has been applied to dislocation problems by Barnett and Swanger [15],
Asaro and Hirth [8], and Asaro and Barnett [10]. It has the advantage of avoiding
the solution of a sextic equation as well as of degenerate cases. Moreover, high
accuracy may be obtained after reasonable computation times by using standard
Romberg integration schemes (cf. also Meissner [244]).

Finite straight dislocation segment. For a finite straight dislocation segment of
direction 1, connecting the points & and B and having the Burgers vector b, Willis
[383] obtains from (11.28) after a somewhat more complicated calculation

H (%) = ;p—l— €,0e LI 8%, B) — f,,(8(%, )], (11.33)

x)

where p(x) is the distance from x to the dislocation segment,

n (@ —x) X (B —x) . gx, @) = n X (o — X)
e — x) x (B —x)|| ’ e — x|
(11.34)
n X (f— x)

x p) = —F 21,

gt p I — x|l

fj,,(k) = Im 23 Fjp(kl), (11.35)

A=1

and w*, A= 1,2, 3, are the three roots with positive imaginary parts of the sextic
equation

D(g + nw) =0,

1 The form assumed by the solution (11.29), (11.30) in the isotropic limit has been given
by Meissner [244].
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where g is given by (11.34), and (11.34); for « and B, respectively. Inspection of
(11.34) reveals that m is a unit vector perpendicular to the plane passing through
the points o, B, x while g(x, a) and g(x, B) are vectors situated in this plane and
perpendicular to & — x, and respectively p — x (Fig. 11.5).

gixfn)

gix,a)

Fig. 11.5. Geometrical variables

used in Willis’ formula for the

displacement gradient of a straight
dislocation segment.

a n

It may be seen that, as |a| and ||B] tend to infinity, g(x, @) and g(x, g) tend
to —m and m respectively, and (11.33) reduces to (11.30), as it should be.

By using a similar approach as Willis’, Sekine and Mura [471] have recently
determined the displacement field and the displacement gradient of a finite straight
dislocation dipole in an unbounded anisotropic elastic medium. The results are
expressed in terms of line integrals along a contour on a unit sphere.

Dislocation loops. Clearly, the finite dislocation segment considered above is
not a real crystal defect, since dislocations cannot end within an otherwise perfect
crystal region. In exchange, it provides the elastic field of a “dislocation element”,
by the integration of which it is possible to obtain the elastic field of a finite dislo-
cation loop. More precisely, let us consider an arbitrary smooth, open or closed,
dislocation arc, which is represented parametrically by

x' = x'(2), t € [a, b, (11.36)

where ¢ is the arc length. The displacement gradient produced by this dislocation arc
may be obtained by putting & = x'(¢), B = x'(¢) 4- I() 4¢ in (11.33), performing
the appropriate limiting process as At - 0 and then integrating with respect to
t. The result reads

1 b1 d

Hpr(x) = _"Ejrs "'Q—'_

2 p(t) dt
where p(t) is the distance of x to the tangent at x’(¢) to the loop. Integrating
by parts, it follows that

1
Hpr(x) = _2—ejrs {

fiolg(x, x)] ds, (11.37)

1,(6) (@)
- [g(x, b)] —
oy PAEEDI =0

b n 4 [ 1) ,
+Saf"”[g(x’ Xl (—p(t) )dt} (11.38)

where a = x(a), b = x'(b), and g(x, x') = n X (x’ — x)/[Ix" — x|l

fiolex, a)] +
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Now, the total field produced by a dislocation loop may be found by dividing
the loop into smooth arcs and summing up their contributions of the form (11.38).
This remark has been the starting point of the calculation done by Bacon, Bullough,
and Willis [11] for the self-energy of a rhombus loop constrained to slip on a {111}
glide prism in f.c.c. metals. By calculating the elastic and the core energy of the
loop it has been found that the minimum-energy configuration is close to the {012}
orientation, in accordance with experimental data on rhombus-shaped vacancy
loops in quenched aluminium.

Another case of curvilinear dislocation studied by Willis [383] is the elliptical
loop, defined by the equations

w2 x)2
_(L:_L ,(mb:)_: 1, n-x =0, (11.39)
a

where {1, m, n} denotes an arbitrary orthonormal frame (Fig. 11.6). In this case,
after performing the integrations in (11.6) and (11.7), one obtains

u,(x) = ab Im 23:1 ) g ) &
P 2 21 [a¥g-D? + b¥(g-m)[a*(g- 1?2 + bX(g-m)® — (g*-x)7]
(11.40)
Hy =2 Imy jﬁ n;F5p(®") g7 d! . (114D
2n =1 )r [a%g-1? -+ bX(g-m)* — (g*-x)*P2

where I' is the unit circle in the plane of the 1oop and having the same centre as
the loop, g is the unit vector perpendicular to m and connecting the origin with a
current point on I', hence |g|l=1, g-n=0.

Fig. 11.6. The geometry used to

apply Willis’ formula to an ellip- r g
tical dislocation loop.

For a plane circular loop, by setting a = b = R in (11.41) and taking into
consideration that (g-1)2 + (g-m)? = 1, we obtain

2 3 F. MNoi
Hy® = —Im ¥ nFi(8lgrdl (11.42)
p 2r =) e (R — (ghx)PP2

This formula has been applied by Meissner [244] to calculate the distortions pro-
duced by circular dislocation loops in copper and a-uranium, the latter being known
as a highly anisotropic material.
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11.3. Self-energy of a dislocation loop

Consider a dislocation loop L lying in an anisotropic elastic body occupying a
region ¥ of traction-free boundary & . Isolate the dislocation core by a thin tube
X, of radius r, and denote by S a cut surface connecting X, with &, and by S,
the part of S not enclosed by Z, (Fig. 11.7).

Fig. 11.7. On the dcfinition of the
self-energy of a dislocation loop.

The total self-energy W, of the dislocation loop is defined by
W, =W,+W,

where #, is the potential energy of the dislocation core!, and #" is the strain energy
of the part ¥, of the body not enclosed by X, i.c.

W = S T-Edv =~ S Tyl m A (11.43)
Yo Vo

By taking into account that

Tkm,m =0 in "/‘0, Tkmnm =0 on ¥,
and making use of Gauss’ formula (1.52), we obtain from (11.43)

W = Wcut + n///tubc’ (1 144)

where

Wew = —%b-g Tnds, W ube =§S (T n)-uds. (11.45)
Zo

So

1 This part of the self-energy can be calculated only by a combined atomistic-continuum
model (see Sect. 16).
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It should be noted that n denotes in (11.45), the unit normal to S in the sense given
by the right-hand rule with respect to the positive sense chosen on L, while in (11.45),
it designates the inner unit normal to X, (Fig. 11.7).

The expression (11.44) is also valid for a finite dislocation loop in an infinite
body, for the stresses decay in this case as r™® as r = ||x|| » oo, and hence the sur-
face integral taken on & vanishes again as & is continuously deformed to infinity.

By using one of the methods presented above in this section it is possible to
numerically evaluate both integrals in (11.45), at least for an arbitrary polygonal
loop. Thus, Bacon, Bullough, and Willis [11] have used Willis’ solution for the
elastic state of a straight dislocation segment in order to calculate the strain energy
# of a rhombus-shaped dislocation loop constrained to glide on a {I111} prism in
aluminium and copper.

A very careful analysis of the self-energy of a planar dislocation loop and of
the associated self-force has been undertaken by Gavazza and Barnett [419]. Before
reviewing their results, however, we will rewrite the expression given in Sect. 10.3
for the strain energy of an infinite straight dislocation in a more invariant form.

Let L(I) be an infinite straight dislocation lying in an infinite anisotropic elastic
medium along the unit vector 1. Denote by n the unit normal to the slip plane, and
let m =n x 1. Choose the cut surface S as the half-plane defined by x-n =0,
m-x >0, and denote as before by S, the part of S not enclosed by a thin cylindrical
tube X, of radius r, surrounding the dislocation line. Clearly, we may express
the results obtained for the straight dislocation in terms of the Cartesian firame
{I, m, n} by simply noting that the frame used in Sect. 10.3 was {e,, e,, e},
where ¢, = — m,e, = — n,e; = 1. Thus, from (10.58) and the subsequent
analysis, it follows that the strain energy stored per unit dislocation length between
the cylindrical surfaces of radii r, and R is

wﬂ):-—%b-s Tnds, (11.46)

SR

where Sg denotes the part of S of unitary length along L and such thatr, < m-x <R.
Next, let us designate by o(l), as in the proof of Brown’s theorem, the stress field
evaluated a unit distance away from L(l) in the direction of m. Then

T(x + Am) = o()/A for any A # 0, X€ L. (11.47)

Substituting (11.47) into (11.46) and taking into account that r, < 4 < R on Sg,
we find

di
A

R
wm=_§wscmn
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wherefrom it follows that

w(l) = E() In(R/ry), (11.48)
where

EQ) = — %b-c(l)n (11.49)

is the so-called prelogarithmic factor of the strain energy of a straight dislocation.
Let us consider now a planar dislocation loop L of Burgers vector b and use

the notation in Fig. 11.1. Starting from Brown’s formula (11.4), Gavazza and Barnett

([419], App.) have proved the following lemma, which we state without proof.

Lemma. Let X' be a current point on a planar dislocation loop L, 1 the unit
tangent to L at X, and m the unit principal normal to L at X'. Then the stress field of
L gt X' + Am, A > 0, admits of the following asymptotic representation® for A — 0:

a(l) 1

T +im)=——+4—
x ) /1 +2p

[o(l)+d2“a) ]ln ( 8—3’) + 3L, x), (11.50)

2
do /

where o is the angle between a fixed direction in the plane of the loop and 1, p is . the
radius of curvature of L at X', and the tensor field J(L, X'} is bounded as A — 0.
Inspection of (11.50) reveals that the singularity of the in-plane self-stresses
of a dislocation loop L at x’ is that of an infinite straight dislocation L(I) tangent
to L at x’ plus a weaker curvature-dependent logarithmic singularity.
Next, Gavazza and Barnett [419] write the variation of the strain energy corres-
ponding to an arbitrary virtual displacement along and normal to L, in the form 2

oW = — ff; fordl, (11.51)
L

where £, ér and d/ depend on the current point x’ of L. Then, in accordance witt
Eshelby [107, 111], the elementary in-plane self-force on and normal to the elemen
dl of L at x’ is defined as the product fd/

Here are the main steps of the argument used by Gavazza and Barnett to
derive the expression of f. First, a planar cut S, is chosen, passing through L and
bounded by its intersection with the tube 2, say L,. Then, the variation of #",, is
shown to be given by

W ur = —%b-j{;

Ly L

Tn 8rdi, — %b-i{; TOn ér di, (11.52)

1 Tt should be remembered that formulae (11.1—4), and hence also (11.50), hold rigorously
only if the influence of the core tractions on the dislocation stresses outside X, is neglected.

2 In the whole analysis the variation 6%, of the potential core energy is not taken into
account.
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where T is the stress field of a fictitious dislocation loop of line L, and Burgers vector
b. Next, the asymptotic representation (11.50) is used to evaluate the fields T and
T on L, and L, respectively, thus obtaining from (11.52)

W _jﬁ { By — - [E(l) 4 LEW ]m (81’—) _ I, x')}dl+ 0y,
p do?

ro

(11.53)

where J(L,x) = —b-J(L,x’)n, and E(l) denotes the prelogarithmic factor given
by (11.49).

The second step of the proof is the evaluation of the tube contribution 6%,
to 6% . Here the assumption is being made that the value of #",,,, associated with
each elementary segment d/ of L at x’ can be evaluated ! using only the stresses and
displacements of an infinite straight dislocation L(l) tangent to L at x’. By making
use of this approximation, #" ;. and its variation are shown to be given by

W e =3§ Fa)di, (11.54)
L
5«///,ube=3€ ! [F(l)+ LD }5 rdl + 0(ry), (11.55)
Lp
where
F1y =1 SQ"t.u r, d6 (11.56)
0

is precisely the first integral in (10.58) calculated for a straight dislocation directed
along 1. Finally, by summing (11.53) and (11.55), neglecting terms of the order
O(r,), and comparing with (11.51), one obtains the following result.

Theorem. (Gavazza and Barnett [419]). The component on the principal normal

m of the self-force exerted on the element dl of a planar dislocation loop L at X' is
fdl, where

f=~;—{E(|)_ [E(l) + dZE(')] n( 8p ) [F(l)-}— d*F (') ]} — J(L,x).

Ty

(11.57)

Clearly, E(I), F(I) and their angular derivatives may be calculated by using
the explicit solutions obtained by Stroh and Willis for the infinite straight dislocation
and described in Sects. 10.3 and 11.2, respectively. Alternatively, E(l) and its second

1 Bacon, Bullough, and Willis [11] have used the same approximation and asserted that the
error made is of the order ry/A as compared to unity, where 4 is the length of the dislocation
loop.
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angular derivative may be calculated by using a numerical method developed by
Barnett and Swanger [15], Barnett, Asaro, Gavazza, Bacon, and Scattergood [17],
and by Asaro and Hirth [8], which allows the direct evaluation of the in-plane stress
components of a planar dislocation loop without solving sextic algebraic equations.

A compilation of numerical values, obtained on these lines for the preloga-
rithmic factor and its first and second angular derivatives, as well as for the stress
vector acting on the slip plane of an infinite straight dislocation, has been given by
Bacon and Scattergood [394, 395] for a few slip systems in cubic and hexagonal
close-packed crystals. They use a Cartesian frame {iy, iy, i3}, where i; = b/b, i; = n,
the orientation of the dislocation line in the slip plane with normal n being given
by the angle # which is chosen such thatb X 1 = (b sin 0) n, where 1 is the unit vector
along the dislocation line. The computed quantities are E(6), E'(6), E"(6), and the
components 1,(6), 75(6), 75(6) of the vector ©(6) = (1/2) o(Mn. Clearly, in the chosen
frame, E(0) = —1,(6)b, while the stress vector acting on the slip plane with unit
normal n at the point x + Am with x € L(l) is given by t(x + Am) = 2%(6)/4, A # 0.
All quantities are fitted to trigonometric polynomials in 6; it is remarkable that
accuracies of better than 0.59%, could be generally obtained by using at most 4 to 5
harmonics.

No attempt has been yet made to evaluate the self-energy and the self-force of
a non-planar ! dislocation loop by starting from the stress field given by the formula
of Indenbom and Orlov (Sect. 11.1).

12. Interaction of single dislocations

12.1. Interaction energy
between various elastic states

Let us consider a linear elastic body #, which occupies a region ¥~ of boundary &.
By a kinematically admissible state of % we mean an admissible state that satisfies
the kinematic equations (6.1), the constitutive equations (6.3), and the displacement
boundary condition (6.20),0n the part¥; of the boundary &.We call potential energy?
®{s} corresponding to a kinematically admissible state s = [u, E, T] the difference
between the strain energy %" and the work % done by the body forces f and by the
surface tractions t° prescribed on the part &, of #(F; U ¥ = &, &, and &,
have no common interior points), i.c.

t°-uds—s f.udo. (12.1)

v

¢{4}=W—2=§Sv

T-Edv—S

L2

1 Recently, however, Shoeck and Kirchner [468] have proved by using dimensional analysis
that the cut contribution #¢,, to the strain energy of a non-planar loop can be expressed as

A A
Weut = [§L E() ul] In (L/ry), where L is some linear extension of the loop, e.g. the square
root of its largest plane projection area.
2 For adiabatic thermoelastic processes, # coincides with the internal energy U, and & is
called the enthalpy, being usually denoted by H. For isothermal thermoelastic processes # coincides
with the free energy F, and @ is called the fiee enthalpy, being usually denoted by G (cf. also Sect. 4).
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The importance of this concept for linear elastostatics results from the following
extremal property.

Principle of minimum potential energy. Let 5 be a solution of the mixed boun-
dary-value problem of linear elastostatics. Then ®{s} < ®{3} for any kinematically
admissible state 3, and equality holds only if 5 differs from s by a rigid displacement.

Proof. By setting o' = 5 — 4, we have
Ey = ‘%’ Uiy +ui)s T = CkimnEmn in¥; u=0 on ;. (12.2)

On the other hand, definition (12.1) implies that

2

45{3}—45{4}:18 (T-E—T-E)du—s t°-u'ds—-S f-u' do. (12.3)
v

S 2 v

Next, in view of (12.2),, we can replace the integral taken on %, by the same
integral extended to &, and hence, by Gauss’ formula (1.52), and taking into account
that s satisfies (6.2) and (6.20),, we obtain

S f‘“, dU +S to-ll’ds =S {_ Tk“ll;‘—l— (Tklu,:),,} dU= S T'E dU.
14 I4 v v
Substituting this result into (12.4) yields

B{5} — s} = W(E)= S W(E') do.
12

Since the strain energy density W(E') is positive definite, we conclude that ¢{4}<
< @{5} for any 5, and ®{s} = &{35} only if E = E,iec.ifsand 5 differ by a rigid
displacement.

It is worth noting that Kirchhoff’s uniqueness theorem for the mixed boun-
dary-value problem follows as a corollary of the principle of minimum potential
energy. Indeed, let s and 5 be two solutions of the mixed problem.Then, ®{s} <
< {3}, ?{5} < ®{s}, and hence s and 5 must be equal to within a rigid displacement.

If the surface tractions t° are prescribed on the whole boundary of the body,
ie. if &, = &, and if 5 is an elastic state, then (12.1) and the theorem of work and
energy (6.20) imply that

P} = —W=— ls T-Edv= —lS t°.uds —lS foudo. (124)
z), 2 ), 2,

Whenever the potential energy may be expressed as a function of a finite or
infinite number of generalized co-ordinates of the system, the partial derivatives of
the potential energy with respect to the generalized co-ordinates, corresponding to
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any kinematically admissible state and taken with opposite signs, may be considered
as generalized forces that tend to bring the system to an equilibrium configuration.
Such definitions, which are introduced by analogy with similar concepts used in
analytical mechanics and thermodynamics, are justified by the fact that the equili-
brium state corresponds, according to the above principle of minimum potential
energy, to the vanishing of the generalized forces.

By potential energy of interaction ®;,{s,s*} between two kinematically ad-
missible states s and +*, we mean the difference between the potential energy of the
state s -+ o* and the sum of the potential energies of the states s and +* taken sepa-

rately, i.e.
@D, {9, %} = {s + o*} — P{o} — P{s*}. (12.5)

For the sake of simplicity, we assume in the following that &, = & and that
4 and J* are elastic states corresponding to the external force systems [f, t] and
[£*, t*], respectively. It then follows from (12.5) and (12.1) that

Byl a*}=§g (T-E* + T*-E)dv—g (w4t u)ds —
:2

&

—S (f-u* 4 f*.u) do, (12.6)
»
and, by Betti’s reciprocal theorem (6.17), we obtain

‘pinz{ﬂaﬁ*}=”‘g T'E*dU:—S t'u*ds—S f-ut¥dv=
v I4 2

=——S T*-E dvz—S t*-uds——s f*.udo. (12.7)
v 4 v

Sometimes it is more convenient to use the potential energy of interaction
instead of the total potential energy ®{s 4 4*}. For instance, if s and 4* are singular
elastic states produced by two crystal defects, then the potential energy of interaction
may assume a finite value, although linear elastostatics predicts infinite values !
for both ®{s} and ®{s*}. For this reason, we will adopt (12.6) as a definition of the
potential energy of interaction whenever the integrals involved are convergent.
In particular, let s = [u, E, T} and +* = [u*, E*, T*] be two singular elastic states
produced by the external force systems [f, t, P], and respectively [f*, t*, P*], where
P and P* are systems of concentrated loads with disjoint domains 2 and 2%, res-

1 The real finite values of these potential energies may be computed by using an ato-
mistic description of the close neighbourhood of the defects and by taking into account that
real crystals have always finite dimensions (see Sects. 16 and 22).
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pectively. Then, applying (12.6) to the region obtained from ¥ by eliminating dis-
joint balls of radius 5 centred at the points of 9, letting n — 0, and taking into
account (6.68) and (6.69), we find

Dinefs, o*} = %S (T-E*4-T*.E)dv —S (t-u* 4 t*.w)ds —
v

4

_S (f-u* + f*-wydo — ¥ PX)- u(x)— ¥ P*x)-ux).  (12.8)
v

x'€g x' Eg*

By the reciprocal theorem for singular elastic states (6.70), this relation may be
also rewritten as

Dine{s, 4*}2—8 T-E*dvz—s t-u*ds—s f-u*dv — }, P(X)-u*(x) =

v 4 v x'€Eg

= —S T*.Edv= —S t*.u ds—S f*.udv — Yy PHx)- u(x). (12.9)
2 14 4

x' €g*

This definition of the potential energy of interaction is still applicable for infinite
regions with finite boundaries, provided that the singular elastic states vanish rapidly
enough at infinity, e.g. when conditions (6.71) are fulfilled.

If the position of a defect D situated in an infinite elastic medium may be
uniquely characterized by the position vector x of some characteristic point of the
defect, then the force exerted by an elastic state +* on the defect is by definition

F = — gradyx @in{D, s*}. (12.10)

We will apply now the above considerations to the interaction between the
singular elastic state s = [u, E, T] produced by a dislocation of line L and Burgers
vector b and a regular elastic state s* = [u*, E*, T*] produced by the surface tractions
t*. Then

Ty, ;=0 in¥\L  Tyny=0 on¥, (12.11)
THe=0 in?, Tin,=1t¥ on &. (12.12)

From the definition (12.6) and considering (12.11),, we deduce that the inter-
action energy is given by

Pine{L, s*} = %S (T-E* + T*-E)dv —S t*. u ds.
v >
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In order to show that the volume integral is convergent we first isolate the dislocation
line by the closed surface X composed of the two faces S+ and S~ of the cut S used
to generate the dislocation and of the tube X, of radius r, surrounding the loop L
(Fig. 7.5). Then

S (T-E* + T*.E) dv = lim S (T-E* + T*.E)do,
v v,

ry=0

where 77, denotes the region bounded by X and the outer surface . Next, taking
into account that T-E* =T*.E = T,u, ;, we infer by partial integration and consi-
dering (12.12) that
%S (T-E* + T*-E)dv:S t*. uds+S (T*n)-u ds, (12.13)
‘.VO

4 1z

where n denotes the outer unit normal to X (with respect to ¥7,). From the last
three relations it follows that

Bie{L, 5%} = lim S (T*n)-u ds. (12.14)
)’

ry—0

But T*n must be continuous across S, while u satisfies the jump condition (9.1).
Thus

Pint{L, s*}= lim (S t*-uds —b- S T*n ds),
SO

ry—>0 %

where now n denotes the unit normal to S in the sense given by the right-hand rule
with respect to the positive sense on L, while S, is the part of S not enclosed by Z,.
To evaluate the first integral in the right-hand side of (12.14), we decompose it
into integrals taken on circular cylindrical surfaces corresponding to the division
of L into small straight segments. Then, according to Sect. 10, u diverges asIn r,,
and hence is o(rg '), as r, — 0. On the other hand, t is continuous in the vicinity of
L, and hence, the limiting value of the integral taken on Z, is zero. Thus, the inter-
action energy has the finite value

Din{L, s*} = —b-S T*n ds, (12.15)
s

where now the integration is extended to the whole cut surface S.

In order to determine the force exerted by the stress field T on an infinitesimal
segment dl of the dislocation loop, let us assume that this segment undergoes a
virtual translation dx. The variation of the oriented area element nds is

S(nds) = —dl X 0x, O(n,ds) = — €,,.dldx,, (12.16)
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and the corresponding variation of the interaction energy is
5¢int{L, 4*} = kakm Em,sdl,.dxs.

By comparing this result with definition (12.10), we see that the force exerted by
the stress field T on the dislocation segment dl is (Peach and Koehler [265])

dF = —(T*b) x dl, dF, = —¢€,,bT&dl, (12.17)

its direction being perpendicular to the dislocation segment. From (12.17), we also
conclude that the total force exerted by the stress field T on the dislocation loop is

F= —<[; (T*b) x dL. (12.18)
JL

Equation (12.13) yields also another interesting result. By making use of
Betti’s theorem (12.7) for the elastic states s and *, which are regular in ¥", and
taking into account (12.11), we successively obtain from (12.13)

lim is (T-E* + T*.E)dv =lim S t-u* ds = lim S t-u* ds,
v, = 1z

=0 ry—90 rg—>0

the last transformation being permitted because both t = Tn and u* are continuous
across S. On the other hand, since u* is continuous in the vicinity of L, and the
resultant force of the tractions acting on X, from the dislocation core is zero, we
conclude, by making use of the mean theorem of the integral calculus that the above
limit vanishes. This result, which is due to Colonnetti [79], may be formulated as
follows: The part of the strain energy that is due to the interaction between an elastic
State produced by surface tractions and a state of self-stress is zero.

12.2. Elastic interaction between dislocation loops
It is easily seen that formula (12.15) holds also for the interaction between two
non-intersecting loops of lines L and L*, i.e.

Dini{L, L*¥*} = —Db S T*n ds, (12.19)
s

where T* is the stress field of the dislocation loop L*, and it is assumed that the cut
surface .S does not intersect L*. The proof proceeds on the same lines as before,
but L* must be also isolated by a surface 2* of the same type as X. Then, a rea-
soning similar to that leading to (12.14) yields

Dine{L, L¥} = lim S (T*n)-uds 4 lim S (T*n)-uds,
rg=0 Js» %

»
r—>0
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where ¥ is the radius of the tube Z¥ surrounding the loop L*.On the other hand
the second limit in the right-hand side vanishes, since u is continuous in the vicinity
of L* and the resultant force of the tractions acting on Z* is zero; hence the last
relation reduces indeed to (12.19).

In order to derive the elastic energy of interaction between two dislocation loops
L and L* in an isotropic medium, we simply introduce (9.20) into (12.19), thus
obtaining

SulL, ¥} — — HOP( g ! €,, dx*+€ . dx*
im{ s }"‘__4—7:_" Snr ) L _Z'R,mmt( rst xp+ pst xr)+

1
+I_—V Enst(R,tpr - 6er,mmt) d‘x:] ’

where R = |ix —x*|. By transforming this equation with the aid of Stokes’ for-
mula, we find after some intermediate calculation (Blin [31]) the relation

) 1 1
Din{L, L*} = Z—F;‘f*) dxzé; [ ’—Eeijkeklnbibf + El’zbf +
L L+

1

+ ‘meikz € jmn D1 b,ﬁR,U]dxf, (12.20)

whose symmetry with respect to L and L* is obvious. Kréner [190] put (12.20) into
the more elegant form

Dine{L, L*} = bbTM,;{L, L*}, (12.21)
where

A'[i.i{L’ L*} = Lé; ‘jﬁ eiklejmnR,km[dxnd-x;k +
8w L)L

+ 8, dx¥ + 2v/(1 — v) dx,dx¥]. (12.22)

The elastic energy of interaction per unit length of two infinite straight dislo-
cations with lines L and L* parallel to the unit vector I and having Burgers vectors b,
respectively b*, results from (12.20) as (Nabarro [257]):

w(L, L*) = ——;—n{[(b-l)(b*-l)—!—T-l_—v(b % I). (b* X l)]lnR+

L ‘RI[®* x1)-R]} » 1223
e G R CEDR (1223
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where R is any vector perpendicular to 1 and connecting L to L*, and R = ||R]|].

We mention one more result due to Kroner [190] and concerning the elastic
energy of interaction between two coaxial circular dislocation loops of the same
radius a, with the same orientation and Burgers vector b parallel to the axis:

@i {L, L*} = pb%ak(K — E)/(1 — v), (12.24)

where K and E are complete elliptic integrals of the first and second kind, respectively,
and of modulus k given by the relation k% = 4a%/(4a® + d?), where d is the distance
between the planes of the two loops.

The elastic energy of interaction between dislocation loops situated in an
anisotropic medium may be evaluated by making use of the results presented in the
preceding section. Thus, the interaction between two coplanar dislocation loops
can be successfully calculated by means of Brown’s formula (11.4). Indeed, let us
consider two coplanar dislocation loops L and L* having the same Burgers vector b.
Choose the xj-axis of a Cartesian frame parallel to the unit normal n to the plane
of the loops (Fig. 12.1). From (12.19) it results

¢iﬂt{L’ L*} = - biS 7?5(361, Xay 0) dS, (12.25)
S

where S is the plane region bounded by L, and taken as cut surface. Substituting
now (11.4) into (12.25) and taking into account (11.49) we deduce that (Brown [43])

1 d:E@0) 1 .
O fL,L*} =1\ ds § —|E@© + sin (0 — &) dl*,  (12.26
(L, ¥} ZSS 3€DR2[(> dgz] @ —@ydi,  (1226)
Xy L
mix)
Fig. 12.1. Two dislocation loops L dt
lying in the x;x,-plane. ¥
x 7
K/
» gl
7/
0 J{@AG

Xy

where R = |lx —x*|, and E(0) = —(1/2)b-0(0)n = —(1/2)b;0;5(6) denotes, as
before, the prelogarithmic factor in the expression of the elastic self-energy per unit
length of an infinite straight dislocation of Burgers vector b and directed along x —x*,

13~c. 120
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Moreover, denote by m(x) the in-plane inward unit normal to L at a current
point x (Fig. 12.1). Then the perpendicular projection dF(x) on m(x) of the force
dF(x) exerted by the dislocation loop L* on the line element d/ of L at x is given

(Brown [43]) by

1 d2E@®) 7 . .
dF(x) = — | E(6) + sin(@ — o) dI*{ dl. 12.27
® {%L*RZ[() 5@ = } (12.27)
Indeed, by (12.17) and taking into account that m X dl = —ndl, we successively

have
dF(x) = m(x)-dF(x) = —m(x)-[(T*b) X dl] =

= (T*b)-[m(x) X dl} = —(T*b)-nd/ = —b-(T*n) d,

wherefrom (12.27) follows at once by considering (11.4) and the definition of E(6).

Since E(0) may be explicitly calculated for general anisotropy and an arbi-
trary orientation of the dislocation line, it is apparent that equations (12.26) and
(12.27) allow to solve various problems concerning the interaction between coplanar
loops and the stability of plane dislocation configurations by using only straight
dislocation data (Lothe [219], Barnett, Asaro, Gavazza, Bacon, and Scattergood
[17], Asaro and Hirth [8]).

An approximate analysis has been undertaken by Korner, Svoboda, and Kir-
chner [437] for the interaction between dislocation segments in regions with free
boundaries, and has been subsequently applied by Korner, Karnthaler, and Kirchner
[438] to study the trapezoidal splitting of partial dislocations in thin foils of Ag and
Cu-10 at%, Al; the results obtained seem to be in satisfactory agreement with
experimental data. However, as pointed out by these authors, the problem of the
interaction of dislocations in finite anisotropic bodies involves some still unsolved
aspects, e.g. the consideration of end effects for dislocation lines emerging at free
surfaces and the rigorous fulfillment of the boundary conditions.

12.3. Groups of dislocations

The evaluation of the interaction energy and of the interaction forces between dislo-
cations is essential for the understanding and prediction of the equilibrium confi-
gurations of various groups of dislocations, e.g. dislocation walls building small-angle
grain boundaries and dislocation pile-ups occurring in front of strong obstacles to
dislocation glide. Such dislocation groups are known to play a very important role
in both plastic deformation and ductile fracture.

In order to illustrate the way of handling groups of dislocations by the methods
presented in this section, we shall briefly consider two basic approaches that allow
the determination of the equilibrium configurations of planar dislocation pile-ups.

The method of orthogonal polynomials. Assume that n straight dislocations are
situated in the plane x, = 0, have the same Burgers vector b, and are directed along
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the positive xg-axis. Let ay, a,, . . ., a, be the values of the co-ordinate x, = x corres-
ponding to the equilibrium configuration of the pile-up (Fig. 12.2).

Since now d/, = d,5d/, it follows from (12.17) that the in-plane component
of the force exerted per unit length of the dislocation j is

dFy/dl = —b,T¥(a;, 0,0). (12.28)

X2

Fig. 12.2. Group of »n parallel
straight dislocations lying in the
x1xp-plane and having the same
Burgers vector. L L OL e

X3

On the other hand, according to Sect. 10.3, the contribution of the ith dislocation
to (12.28) is

, (12.29)

3
Lol myrn -
T a;—a; e=1 a; — a;

where 4 = Kb/(2n) and b is the magnitude of the Burgers vector. We recall that
the energy factor K is given in the general anisotropic case by (10.76), while in the
isotropic case it equals (ub)/2n and pb/[2n(1 — v)] for screw and edge dislocations,
respectively.

Next, let 7(x) be the resolved shear stress (i.e. the component in the glide
plane and in the glide direction of the stress field) produced by the external forces
and all other crystal defects not belonging to the pile-up. The equilibrium of the
pile-up requires the vanishing of the in-plane net force exerted on each dislocation,
i.e.

d A

+1@)=0, j=1,2,...,n (12.30)
i=1a; — a;
itj
We will indicate now the main lines of the method proposed by Eshelby, Frank,
and Nabarro [108] for solving this system of equations .
Consider the polynomial

F6) =TI ¢ —a)
i=1

1 This method has been applied for the first time by Stieltjes in 1885 to illustrate the possib!e
applications of the orthogonal polynomials to finding out the equilibrium configurations of electric
charges.
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withroots a;, as, . . ., a,. It is easily proved that the pile-up, exc ept the jth dislocation,
produces the resolved shear stress

<N N A €O TR S 12.31
i§1x~a,- A[f(x) x—aj] (12.31)
i£j

Passing to the limit for x — a; with the aid of I’'Hospital’s rule and substituting
the result obtained into (12.30), wz find

fla)=0, 4 S '(aj) +1a)=0, {j=1,...,n (12.32)
2f (aj)

Clearly, all equations (12.32) are fulfilled if f(x) is a polynomial of degree n

having the simple real roots a,, a,, - .., a,, and satisfying the differential equation

@) + 2[A)x(x)f"(x) + q(n, )f(x) =0, (12.33)

where the function g(n, x) is assumed to be finite for x =a;,j=1,2,...,n, but
is otherwise arbitrary.

Sometimes it is interesting to consider pile-ups containing, besides the n
mobile dislocations, m — n more dislocations that are fixed by various obstacles
at points x = «&,, a =n 4 1, ..., m. In this case the reduced stress produced by
the fixed dislocations must be add ed to t(x), and hence (12.33) becomes

m

fr(x)+2 ’(") — 4+ Y ——— |f'®) + g1, %) f(x) = 0. (12.34)
Xe

a=n+1X —

Moreover g(n, x) may eventually tend to infinity as x approaches one of the values
X,, since it is not necessary that the net reduced stress exerted on fixed dislocations

vanishes. Denoting

FO =/ [ (- x), (12.35)
a=n+1
(x) & 1 i 1
' —2 == — s (12.36
Q(n, x) = q(n, x) _%1 r e v— (12.36)
the differential equation (12.34) becomes
F'(x) + 2/A)t(x)F'(x) + Q(n, x)F(x) = 0, (12.37)

i.e. assumes the same form as before. However, the reduced stress generated by all
(mobile and fixed) dislocations is now equal to 4F’(x)/F(x).
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It is interesting that some well-known orthogonal polynomials are solutions
of the equation (12.34), having thus a direct application in the theory of dislocation
pile-ups. Here are some of the situations that can be easily treated by means of such
polynomials.

(i) n dislocations situated in the interval [—a, a], from which n — 2 are mobile
and two are fixed at points x = -I-a; 7(x) = 0. The corresponding solution of (12.34)
reads

f(x) = Py_y(x[a), (12.38)

where P;_,(x)is the derivative of Legendre’s polynomial of degree n— 1. The resolved
shear stresses acting on the dislocations fixed at points x = J-a are +-n(n — 1)4/(4a).

(ii) n dislocations situated on the ray [0, co), from which n — 1 are free and
one is fixed at the origin. The external reduced shear stress is assumed to be constant
and directed towards the fixed dislocation, i.e. 7(x) = —1, with 7, > 0. The corres-
ponding solution of (12.38) is

J(x) = L2z yx/A), (12.39)

where L(x) is the derivative of Laguerre’s polynomial of degree n. For large values
of n, the length of the interval covered by the pile-up on the x;-axisis L = 2nd/z,,
while the total resolved shear stress acting on the fixed dislocation is —nt,.

(iii) n free dislocations under the action of a linearly varying applied shear
stress, 1(x) = ax, a > 0. Denoting by [—a, a] the interval occupied by the pile-up
on the x;-axis in the equilibrium configuration it results that

f) = Hy(xVo/4), a=)@n+ D4, (12.40)

where H,(x) is Hermitte’s polynomial of degree n.

The method of the orthogonal polynomials has been also used to study the
elastic field produced by planar dislocation pile-ups in the cases (i) — (iii), as
well as in various other situations (fixed dislocations with Burgers vector n b, pile-ups
of dislocation loops, etc.), by Stroh [322], Chou, Garofalo, and Whitmore [67],
Chou and Whitmore [68], Kronmiiller and Seeger [195], Chou [69, 72], Head and
Thompson [157], Mitchell, Hecker, and Smialek [250], and Smith [307, 308].

Numerical results concerning dislocation pile-ups, obtained by direct solving
of the equilibrium equations, have been given by Mitchell [249] and by Hazzledine
and Hirsch [153] for straight dislocations, and by Marcinkowski [233] for coaxial
circular glide-dislocation arrays. _

Seeger and Wobser [293] have numerically investigated a related problem,
namely the stable configurations for a pair of parallel straight dislocations gliding
on octahedral planes of f.c.c. crystals and in basal planes of h.c.p. crystals. Finally,
Kronmiiller and Marik [199] have investigated, also by numerical computation,
the stability of dislocation pile-ups under a spatially-oscillating shear stress and in
the presence of Lomer-Cottrell sessile dislocations, as well as the consequences of
the results obtained for work-hardening theories based on long-range stresses.
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The method of singular integral equations. For large values of n, Leibfried [212]
proposed to replace the real distribution of the straight dislocations in a pile-up
by a continuous distribution with density D(x), defined such that the resultant Bur-
gers vector of the dislocations comprised between x and x 4 dx equals b D(x).
In this case, the equilibrium equation (12.29) is replaced by the singular integral
equation

S D(x) dx r(é) for ¢ e[a, @, (12.41)

& —x

where [a, a’] is the interval occupied by the dislocation pile-up in the equilibrium
configuration. In addition, D(x) has to satisfy some supplementary conditions arising
e.g. from the prescription of the total number of the dislocations in the pile-up
or of one or both of the values @ and a' (fixed dislocations).

For the cases (i) — (iii) considered above the solutions of equation (12.41)
with the adequate supplementary conditions are (Leibfried [212]):

@  D(x) = (n/n)(@® — x¥)~12 for x€ (-a, a),
() D) = Q@u/nl)(L/x — )2, L =1|2nd|z, for xe (0, L),
(iii) D(x) = (/nd)(@® — x»'2, a = |[2nd/a for x €[—a, a],

and D(x) = 0 outside the indicated intervals. The graphs of D(x) in these three
cases are schematically represented in Fig. 12.3a, b, c, respectively.
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Fig. 12.3. Schematic representation of the surface dislocation density D(x).
(a) Case (i), D(x) = (n/m) (a® — xH—12, (b) Case (ii), D(x)=(2n/nL)x
X(Lix — D2, () Case (i), D(x) = (a/rA) (a® — xP)l/2,

The method of the singular integrals is effective whenever n is large and the
elastic field is evaluated at distances sufficiently large from the pile-up. This method
has been employed by Kronmiiller and Seeger [195], Saxlova-Svabova [281] and Li
[214] for calculating the stress field of straight dislocation pile-ups, and by Barnett
[13], Chou and Barnett [73], Kuang and Mura [203], Louat [221], and Tucker [361]
to investigate the equilibrium configuration of dislocation pile-ups near grain or
phase boundaries.
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For the study of dislocation walls ! and of the modelling of crack propagation
by coalescence of dislocations at the head of a pile-up, we refer to the book by
Hirth and Lothe [162], Sect. 21, where further literature on this topic may bealso
found.

13. Dislocation motion
13.1. Dislocation glide and climb

Under suitable energetic conditions, a straight dislocation can move in any direction,
except the direction of its own line.

The motion of an edge dislocation is said to be a glide or a climb process,
according as the dislocation velocity is contained in the slip plane or is perpen-
dicular to it. The dislocation glide proceeds without material transport, the atomic
rearrangement taking place gradually behind the moving dislocation. On the con-
trary, dislocation climb involves a local change of the crystal density, corresponding
to the lengthening or the shortening of the extra atomic half-plane, which may be
brought about e.g. by vacancy diffusion away, respectively towards, the dislocation
line. Since diffusion requires a considerable specific energy, dislocation climb is
generally significant only at sufficiently high temperatures.

In the case of screw dislocations the glide plane is not uniquely defined because
bll. In other words, any atomic plane passing through b may serve as slip plane
for a screw dislocation. Consequently, the motion of screw dislocations proceeds
always by glide, and this explains their higher mobility versus edge dislocations.
At sufficiently high temperatures and/or applied stresses screw dislocations can even
cross slip from one glide plane to another, as long as the intersection line of these
planes is parallel to b.

Since dislocations have a very low effective inertia, their speed increases rapidly
after overcoming the glide obstacles, until a limiting speed is attained, corresponding
to the dynamic equilibrium between the forces exerted on the dislocations by applied
tractions and other crystal defects, on one side, and the dragging forces produced
by various dissipative mechanisms, on the other side. As the accelerating time is
4 to 5 orders of magnitude smaller than the time of free motion between obstacles,
the dislocation motion may be considered mainly as being uniform. Therefore,
we shall treat in what follows only uniformly moving dislocations; for accelerating
dislocations we refer to Kiusalaas and Mura [180] and Hirth and Lothe [162],
Sect. 7.7.

13.2. Uniformly moving dislocations
in isotropic media

The study of the elastic field of uniformly moving dislocations in isotropic media
started some thirty years ago. Thus, Frank [121] and Eshelby [106, 107] have consi-
dered uniformly moving edge and screw dislocations, respectively, while Nabarro

1 In this connection, see also a recent paper by Hirth, Barnett, and Lothe [429], devoted
to dislocation arrays at interfaces in bicrystals.
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[256] proposed a more general method for studying the motion of a dislocation loop
whose shape changes during the motion 1.

Consider first a screw dislocation which moves uniformly in an infinite isotropic
elastic medium. Choose the x;-axis of a Cartesian system of co-ordinates along the
positive direction of the dislocation, and the x;-axis along the dislocation velocity
vector. The equations of motion are given by (6.28) with f; replaced by the inertial
term —pya,, ie.

0%u,

or?

A+ Wity + pduy, = p, s k=1,2,3. (13.1)

Since the displacement vector must have the form u(0, 0, u;), where u; depends
only on x,, X,, and ¢, we see that the first two equations (13.1) are identically satis-
fied, -while the third one reduces to

2 2 2
(i+ﬁ_-_i A (13.2)
ox:  oOxz ¢ or

where ¢, = (u/p,)'/? is the speed of the elastic transverse waves.
Making in (13.2) the change of variables of “‘relativistic” type

xp =00 — 00y, Xy= Xy Xg=X3 t'=(—0vx/c})[7, (13.3)

where v is the (constant) dislocation speed and y, = (1 — v?/c})!/2, we obtain

0? 02 1 0%y,
R .. "3 13.4
( oxz T o ) BT (134

i.e. the form of (13.2) is preserved in the new variables. On the other hand, since
the new frame moves uniformly together with the dislocation, and v is a constant,
the right-hand side of (13.4) must vanish. Moreover, the displacement field must
satisfy with respect to the moving system of co-ordinates the same ‘“‘equilibrium”
equations and the same jump condition (8.58) as a stationary screw dislocation
with respect to a fixed frame.

Hence we conclude that the solution is given by

Uy = — 1)0_, 0’ €(—mn,n), (13.5)
2z

1 In Nabarro’s approach the motion and/or extension of a dislocation loop is repre-
sented by the sudden creation and annihilation of infinitesimal loops along the primary loop. In
particular, the stress tensor of the moving dislocation loop can be calculated by using again (11.3),
but replacing G(x) by the time-dependent Green’s tensor function G(x, #), and performing an
extra integration in time over the elementary acts of creation.
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where, in view of (8.37) and (13.3),

xl—vt

cotan™? for x, >0
'Y;xz
=10 for x, =0, x; > vt (13.6)
cotan™! Sl L n  for x, <O.
VX2

Next, by substituting (13.5) into (6.1) and the result obtained into (6.5), we deduce
that the only non-zero components of the stress tensor are

_ YiXa A . ) T TN
2n (x; — vt)® + yix;

® 21 (o, — vt} + 2

In order to determine the total energy of the moving dislocation we must
add to the strain energy also the kinetic energy, whose density per unit volume is

&(@ﬂihﬂlﬂﬂ?

2 \ ot 2¢2 \ ot

Then, by taking into account (13.5—7), we deduce, by a calculation similar to that
performed in Sect. 8.2, that the total energy per unit dislocation length, stored be-

tween two circular cylindrical surfaces of radii r, and R and having the dislocation
line as axis is

2
wo_ LR (13.8)
¥, 4my, r,

Since y, — 0 as v > ¢, the dislocation energy tends to infinity as v - ¢, Hence,
within the framework of linear elasticity, the dislocation cannot achieve speeds
greater than the limiting value ¢,. This “relativistic” effect should be probably correct-
ed when the strong distortions in the 'dislocation core are also taken into account.

By expanding y;!in a power series with respect to (v/c,)* and retaining (for
v <€ ¢,) only the first term of the expansion, we obtain from (13.8)

e=w+2 L. (13.9)

Since the second term in the right-hand side of this equation represents the Kinetic
energy per unit dislocation length, the coefficient

m, = wjc3 (13.10)
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is sometimes called the effective mass of the dislocation per unit length. Moreover,
it may be -shown that this analogy may be also applied when writing down the
equation of motion of the dislocation under the action of applied loads and of
various dragging forces.

Let us consider now a uniformly moving edge dislocation in an infinite iso-
tropic elastic medium. Choose the x;-axis along the positive direction of the dislo-
cation line, and the x;-axis along the common direction of the Burgers vector and
of the dislocation velocity vector (Fig. 13.1). Since the necessary calculation is much
more intricate than for the screw dislocation, we confine ourselves to indicate the
results concerning the stress field, referring for details to Eshelby [106] and Hirth
and Lothe [162], Sect. 7.3. The only non-zero stress components are

_ by} [l(l — ) +2u pd+y) ],

Ty = 2 2 2
v Vit Vit

pbci(x, — vt) [(1 +y)P_ 4 ]
Tlg = - ]

2no? yer? i L (13.11)

bxyc} [ A — 7y +2p) +ﬂ(1 + ??)]

2 2
i ytrt

Ts3 = v(Tyy + Ta2),
where

,.'2 = (xl - Ut)2/'y% + X%, l',2 = (xl - 01)2/'?? + xg,
vi=1—1v¥c yi=1—v¥cj,

while ¢, = }/u/p, and ¢, = J/(1 + 2p)/p, are the speeds of the transverse and longitu-
dinal elastic plane waves, respectively. It may be proved that the stress state (13.11)
reduces as v — 0 to that determined in Sect. 8.1 for the stationary edge dislocation.
In addition, it may be shown (Weertman [376]) that the total energy of the disloca-
tion per unit length tends to infinity as v — ¢, and that for v < ¢, the effective mass
per unit length of the edge dislocation is given by

4
m= 2 (1 + 3—) (13.12)

where w is the strain energy (8.54) stored per unit dislocation length.

The above analysis has been recently extended by Moos and Hoover [452]
to uniformly moving edge dislocations in an elastic strip of finite width having
clamped boundaries.



13. Dislocation motion 203

A problem of particular interest is the interaction of moving dislocations.
As shown by Weertman [376], edge dislocations of like sign and gliding in the same
plane will attract rather than repel one another provided their speed ranges between
the Rayleigh vave speed ¢, and c¢,. This anomalous behaviour may be explained by

X2

Fig. 13.1. Uniformly moving edge
dislocation. v

'l/.b Xy

X3

the fact that the kinetic energy of a moving dislocation may surpass its potential
energy at sufficiently high speeds (v>> ¢,). Screw dislocations do not display a similar
behaviour since their kinetic energy can never be greater than their potential energy.

13.3. Uniformly moving dislocations
in anisotropic media

The first systematic study of the uniform motion of dislocations in anisotropic
media has been undertaken by Sdenz [280]. Later, Bullough and Bilby [45] and
Teutonico [346] have investigated the case of the straight dislocations perpendicular
to a plane of material symmetry, by extending to the dynamic case the method used
by Eshelby, Read, and Shockley [109] for stationary dislocations. The same method
has been used by Cotner and Weertman [81], Van Hull and Weertman [367], and
‘Weertman [377, 378] for more complicated situations in which the elastic states pro-
duced by edge and screw dislocations do not separate from each other, as well as
by Teutonico [347] and Stroh [324], who considered the general anisotropic case
and dislocations of arbitrary orientation and character.

Assume that an infinite straight dislocation of Burgers vector b moves with
the constant velocity v in an infinite elastic medium with arbitrary anisotropy. Choos-
ing as before the x,-axis of a Cartesian frame along the positive direction of the
dislocation line, and the x;-axis parallel to v, the elastic state will be independent of
xgand will depend on x; and ¢ only through the combination x, —vt, wherev=/|lv||, i.e.

u=u(x, — vt,x,), T="T(x;— vt x,). (13.13)
Introducing the new independent variables

X1 =X — U, X,= Xy X3= Xs (13.19)
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the equations of motion

CrtmnUm,n1 = Po o
or?
become
Chimntémay = 0, (13.15)
where
Citmn = Chkimn — PoV*OrmOnOp1> (13.16)

and (.) ;- denotes the partial derivative with respect to x;, / = 1, 2.

Now, it is easily seen that the equations of equilibrium, the jump conditions
(10.18), and the boundary conditions (10.19) — (10.22) from the static case remain
unchanged, provided that the variables x, are replaced by x; and the elastic constants
Crimn DY the “apparent” elastic constants cy,,,,. Nevertheless, the solution of the sextic
equation (10.9) requires a special discussion. Since the apparent elastic constants
depend on v, the nature of the roots of this equation will depend on v, too. We have
seen in Sect. 10.1 that for v = 0 the sextic equation (10.9) admits only complex
roots. On the other hand, it may be shown that for sufficiently large values of v
all roots are real. Consequently, there exist in general three critical speeds, say
Vi = V, = Vs, such that for v, = V,, a = 1, 2, 3, the pair of complex conjugate
roots p,, p, changes from complex to real values. For v < V, the roots p, are all
complex and the dynamic elastic state will have the same features as the static one,
the dislocation motion being described as subsonic. For v > V, at least two roots
are real and the motion is accompanied by the generation of waves, being accordingly
termed supersonic (Stroh [324]).

We confine ourselves to considering only the subsonic case. Then, by neglecting
the core boundary conditions, we infer, in view of the results given in Sect. 10.3,
that

3
U, = —I—Im pN A DoIn z, -+ uf, (13.17)
T a=1
1 3 ILI DI 1 3 LI ’
Ty=——1Im y, Peckae, Ty=—Im ¥, ~"Dﬂ (13,18)
T a=1 Zy T a=1 Zy
where
Z, =X, — 0t +pix,, Imp,>0, a=12,3, (13.19)

while the parameters p., Ay,, Li,, D, can be calculated from c;,,, following the
same prescription as that used to derive the parameters p,, 4.,, Ly, D, from cipp,
in the static case.

It may be shown (Stroh [324]) that for v — V; the prelogarithmic factor of the
total energy tends to infinity. Hence V; plays in the anisotropic case the role of an
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upper speed limit, like the speed ¢, of the transverse elastic plane waves in the iso-
tropic case. The numerical calculations done by Teutonico [346, 347] have shown
that, as in the isotropic case, there exists a speed range, depending on the material
symmetry and on the dislocation orientation, for which two like edge dislocations
attract rather repel one another. Moreover, in the general anisotropic case, when
the elastic states corresponding to screw and edge dislocations do not separate from
each other, both screw and edge dislocations can display this anomalous behaviour.

Besides the problems already mentioned, Stroh [324] has studied the waves
generated by the supersonic dislocation motion, as well as the uniformly moving
dislocations in an anisotropic elastic half-plane. Beltz, Davis, and Malen [24] have
extended Brown’s formula (11.4) to uniformly moving dislocation loops, while Malen
[223] has investigated the stability of moving dislocations.

The motion of single dislocations can be also studied by using the theory of
continuous distributions of dislocations, especially by means of Green’s tensor
functions of elastodynamics (see, e.g. Mura [253], Stenzel [319, 320], and Kosevich
{440], Sect. 7, for the linear theory, and Bahr and Schépf [397] for the non-linear
theory). Partial atomic models of moving dislocations have been also considered.
Thus, Stenzel [320] has proposed a slightly modified Peierls-Nabarro model to
describe the motion of a dislocation under the action of external loads, while Rogula
{466] has elaborated a more complex model, called “pseudo-continuum”, which
includes some of the non-local crystal properties in the continuum description.



CHAPTER III

NON-LINEAR EFFECTS IN THE ELASTIC FIELD
OF SINGLE DISLOCATIONS

We have seen in the preceding chapter that dislocations may be described as line
singularities of the elastic field: linear elasticity theory predicts stresses and strains
that vary as the inverse first power of the distance from the dislocation line and,
therefore, are unbounded as this distance goes to zero. Thus, close to the singularities
the strains become very large, and non-linear effects must be taken into account.
On the other hand, in regions sufficiently far from dislocations, the stresses and
strains are sufficiently small and may be adequately described by the linear theory.
For this reason, and also on account of its simplicity, the linear theory of elasticity
continues to be successfully applied for simulating crystal defects, e.g. in the study
of the long-range stress field of dislocations, the interaction between distant imper-
fections, and in the calculation of defect energies 1.

The above discussion suggests that one of the main applications of the non-
linear theory of elasticity in modelling dislocations could be the study of the disloca-
tion core. However, this requires caution. Indeed, very close to the dislocation line
the atomistic nature of the crystal defect is just as important as the deviations from
linear elasticity, so that a local continuum theory, even taking into account non-
linear effects, cannot give a complete description of the dislocation core. Moreover,
the second-order elasticity, which is the only approximation of non-linear constitu-
tive equations for which sufficient experimental data are available at present, proves
to be inadequate for the description of the large strains of the order 50 percent or
more occurring in the very neighbourhood of the dislocation line, since it does not
allow for the potential energy of crystal to be a periodic function of the relative
displacement of two neighbouring crystal planes. Therefore, the right solution in
applying non-linear elasticity to the study of the dislocation core requires the coupling
of the non-linear elastic model with the atomic one, and the use of semidiscrete me-
thods (Sect. 16).

There still exists a different kind of applications of the non-linear theory of
elasticity in modelling crystal defects (cf. Seeger [292]). Thus, we may be interested
to study a quantity for which the linear theory gives an unrealistic evaluation, e.g.
a vanishing result. For instance, linear elasticity predicts a vanishing effect of dis-
locations on the average strains, and hence on the macroscopic density of crystals;

1 Actually, most of the dislocation energy is stored in the long-range stress field; only
about ten percent of the dislocation energy is due to the dislocation core (cf. also Sect. 16.1).
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on the contrary, second-order elasticity indicates, in agreement with experimental
results, that dislocations produce a positive volume expansion (Sect. 15).

There exist also typical non-linear coupling effects, which simply disappear
when applying the superposition principle valid in the linear theory. The best known
example is the scattering of elastic waves from dislocations and other imperfections.
When the linear elastic field of dislocations and that of the elastic waves are super-
posed they do not perturb each other. The experimentally observed scattering of
elastic waves by strain fields can again be accounted for only within the framework
of non-linear elasticity (Sect. 20).

In all the examples above, second-order elastic effects can no longer be ignored,
although strains are still not very high. This suggests the solving of the non-linear
boundary-value problems by an iteration procedure, in which a linear elastic boun-
dary-value problem is to be solved at each step; generally, the first two steps are
sufficient to exhibit the lowest order non-linear effects looked for. That is why we
will begin this chapter by expounding an iteration scheme which is adequate for the
study of the elastic field of single dislocations (Sect. 14). Similar iteration schemes
that are applicable in the case of continuous distributions of dislocations will be
given in Sects. 19 and 20.

14. Solving of non-linear boundary-value problems
by successive approximations

14.1. Willis’ scheme

The elastic field equations have been linearized in Sects. 2 and 4 under the assumption
that the magnitude of the displacement gradient H is much smaller than unity,
and neglecting second and higher powers of H. The solution of non-linear elastic
boundary-value problems can be found by an iteration scheme involving the solution
of a linear boundary-value problem at each step, the first one being given by the
linear theory of elasticity. To develop such a scheme, we again assume that |H|| <1,
but take also into consideration higher powers of H. Specifically, we keep at the
n’th stage of the iteration all terms up to and including those of »’th order in [[H]|.

The first systematic iterative method for the solution of non-linear elastic
boundary-value problems has been elaborated in 1930 by Signorini [298], who
further developed his ideas in [299, 300]. Later on, Signorini’s scheme has been
independently generalized by Green and Spratt [146] and by Rivlin and Tapakoglu
[279] (see also Truesdell and Noll [358], Sect. 63, and Capriz and Guidugli [55]).
Willis [382] has adapted Signorini’s scheme to the case of single dislocations and of
continuous distributions of dislocations, by using Eulerian co-ordinates. This
approach will be preferred in this book, since it avoids the rather complicated dis-
cussion implied by the correct definition of the deformation produced by dislocations



14. Successive approximations 209

in terms of Lagrangian co-ordinates !. In what follows, Willis’ scheme will be extend-
ed to include the influence of the core boundary conditions.

Consider an elastic body &, free of surface and body forces, occupying a
simply-connected region ¥~ of boundary & in a deformed configuration (k), con-
taining a dislocation of line L. Assume that L is either a closed curve in ¥~ or a line
ending at &. Denote by ¥~, the doubly-connected region obtained by cutting out a
thin tube of boundary Z, around the dislocation line. Let S be a smooth and two-
sided barrier rendering ¥, simply-connected. By cutting the body along S and
allowing it to relax, it will occupy a natural configuration (K). Denote by X and x
the position vectors of a current material point X in the configurations (K) and (k),
respectively. For the sake of simplicity, we assume that after the deformation from
(k) to (K) the cut faces remain in contact with each other. Then, as shown in Sect. 7.3,
the deformation produced by the dislocation may be described by one of the mappings
(7.1) or (7.4).

We choose arbitrarily a positive sense on L and define the positive side St
and the negative side S- of S according to the convention adopted in Sect. 7.3 and
illustrated in Figs. 7.5 and 7.6. Then, the jump of the displacement vector u(x) across
S is given by

at(x) —u (x) =b, (14.1)
where x is the position vector of a current point on S, u*(x) and u~ (x) denote the

limiting values of u(x) on S* and S—, respectively, and b is the true Burgers vector.
The Cartesian components of the finite strain tensor are given by (2.30) as

D, = '12— (Hy + Hy + Hpkal)' (14-2)

When using Eulerian co-ordinates, it is necessary to express H in terms of grad u.
To this end we introduce (7.2) and (7.5) into the relation FF* = 1, thus obtaining
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