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Abstract 

A unified framework for equations of Ginzburg-Landau and Cahn-Hilliard type is developed using, as a basis, a 
balance law for microforces in conjunction with constitutive equations consistent with a mechanical version of the 
second law. 

I .  I n t r o d u c t i o n  

The Ginzbu rg -Landau  equation I 

/3p" = oz Ap - f ' ( p )  (A = Laplacian) (1.1) 

and the Cahn-Hi l l ia rd  equation 2 

p" = K A [ f ' ( p )  - a Ap] (1.2) 

(a > 0, /3 > 0, K > 0) are central to materials 

science, as they characterize important  quali- 
tative features of two-phase systems. Each of 
these equations governs the evolution of an 
o rder -paramete r  3 p = p ( x , t ) :  the Ginzburg-  
Landau  equat ion describes the ordering of atoms 
within unit cells on a lattice, while the C a h n -  

i This equation, which is attributed by Chan [1] to Landau 
and Khalatnikov [2], is also referred to as the Allen-Cahn 
equation [3]. 
2 Cahn [4]. 

3 The term order-parameter is used to denote a field whose 
values describe the phase of the system under consideration. 

Hilliard equation,  a conservation law, describes 

the t ransport  of a toms between unit cells. 

Both the G inzbu rg -Landau  and Cahn-Hi l l -  
iard equations are based on a free energy 

~p, Vp) =f(p) + {, lVpl = (1.3) 

with f ( p ) ,  the "coarse-grain"  free energy, a 

double-well potential  whose wells define the 
phases, and both equations lead to a diffuse 

phase-interface within which p undergoes large 
variations. 

The standard derivation of the G inzburg -  

Landau equat ion begins with the constitutive 
equation (1.3) for the free energy and is based 
on considering the total free energy 

qt(p) = f 6(P, Vp) do (1.4) 
B 

of the region of space B occupied by the materi-  
al. The formal variation ~ ( p )  with respect  to 
fields p that vanish on OB is given by 
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( 
8 ~ ( p )  = J [ f ' ( p )  8p + a Vp.  8Vp] do 

B 

= ( [ i f ( p )  - a Ap] 8p do (1.5) 
B 

and yields the expression 

8q' 
8p - i f ( P )  - a Ap (1.6) 

for the variational derivative (the coefficient of 
8p). Equilibrium is characterized by the vanish- 
ing of 8 ~ / S p ;  the hypothesis underlying the 
standard derivation is that relaxation toward 

equilibrium be governed by a parameter  fl > 0 
through a relation 

81/, 
/ 3 p ' = -  8p (1.7) 

a consequence of (1.6) and (1.7) is the Ginz- 
bu rg -Landau  equation. 

The Cahn-Hil l iard  equation is derived analo- 
gously. The starting point is the mass balance 

p" = - d i v h  (1.8) 

with the mass flux h related to the chemical 
potential /z through the constitutive equation 

h = - K  Xr~. (1 .9 )  

Again the flee energy is presumed to have the 
form (1.3), which, because of the presence of 
density gradients, is incompatible with the stan- 
dard definition o f /z  as the partial derivative of 
with respect to p; instead /~ is defined as the 
variational derivative 

8ffs 
- 8p (1.10) 

elegant, and physically sound, I have three 
objections: 
- t h e  derivations limit the manner  in which rate 

terms enter the equations; 
- t h e  derivations require a-priori specification of 

the constitutive equations; 
- i t  is not clear how these derivations are to be 

generalized in the presence of processes such 
as deformation and heat transfer. 4 

The major advances in nonlinear continuum 
mechanics over the past thirty years are based on 
the separation of basic balance laws (such as 
those for mass and force), which are general and 
hold for large classes of materials, from constitu- 
tive equations (such as those for elastic solids 
and viscous fluids), which delineate specific 
classes of material behavior. In the derivations 
presented above there is no such separation, and 
it is not clear whether or not there is an underly- 
ing balance law that can form a basis for more 
general theories. 

My view is that while derivations of the form 
(1.3)-(1 .11)  are useful and important,  they 
should not be regarded as basic, but rather as 
precursors of more complete theories. While 
variational derivations often point the way to- 
ward a correct statement of basic laws, to me 
such derivations obscure the fundamental  nature 
of balance laws in any general f ramework that 
includes dissipation. 

What distinguishes the development  presented 
here from other macroscopic theories of order- 
parameters is: (i) the separation of balance laws 
from constitutive equations; and (ii) the intro- 
duction of a new balance law for micro- 
forces. Here I continue an approach,  begun in 
collaboration with Fried [8, 9], which is based on 

this yields the Cahn-Hil l iard  equation 

8fit 
p" = K A 8p " (1.11) 

Although these derivations of the Ginzburg-  
Landau and Cahn-Hil l iard equations are simple, 

4 In their discussions of the phase-field theory of solidifica- 
tion, Penrose and Fife [5] and Schofield and Oxtoby [6] 
replace balance of energy, a physical law that has been a 
basis for continuum physics for over a century, with a mixed 
variational relation of the form (1.11) involving internal 
energy and entropy. See also Hohenberg and Halperin [7]. 
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the belief  that  fundamenta l  physical laws involv- 

ing energy  should account  for  the working (ex- 

pendi tu re  of  power)  associated with each opera-  

tive kinematical  process.  In the G i n z b u r g - L a n d -  

au and C a h n - H i l l i a r d  theories  the kinematics  is 

that  associated with the o rde r -pa rame te r  p, and 

it seems plausible that  there  should be "micro-  

forces"  whose  working accompanies  changes  in 

p.5 Fried and I describe this working  th rough  

terms of  the fo rm ( force) (p ' ) ,  so that  microforces  

are scalar ra ther  than vec tor  quantit ies.  Spe- 

cifically, the microforce  system is character ized 

by a vec tor  stress ~: toge ther  with scalar body  

forces 7r and 3' that  represent ,  respectively,  

internal and external forces distr ibuted over  the 

vo lume  of  B. To  describe the precise manner  in 

which these fields expend power  it is useful to 

consider  the body  as a lattice or  ne twork  to- 

ge ther  with a toms that  move ,  microscopically,  
relat ive to the lattice. 6 Here  it is impor tan t  to 

focus a t tent ion not  on individual a toms but  on 

configurat ions  (i.e.,  a r rangements  or  densities) 

o f  a toms  as character ized by the order  pa ramete r  

p. Given  an arbi t rary control  volume R (subreg- 

ion of  B) ,  with n the ou tward  unit normal  to OR, 
each of  

f ( . n)p" da , f dv , f vp" do 
OR R R 

represents  an expendi ture  of  power  on the 

a tomic  configurat ions within R:  

- ( ~ .  n)p" describes power  expended  across OR 

by configurat ions exterior  to R, but  neigh- 
bor ing OR; 

-~ ' p "  represents  power  expended  on the a toms 

of  R by the lattice; for example,  in the order ing 
of  a toms w i t h i n - o r  the t ranspor t  of  a toms 

5if the sole macroscopic manifestation of atomistic 
kinematics is the order-parameter p, then it seems reasonable 
that interatomic forces may be characterized macroscopically 
by fields that perform work when p undergoes changes. 
6 Cf. Larch6 and Cahn [10], §2. 

b e t w e e n -  unit cells of  the lattice; 

-YO" describes power  expended  on the a toms of  
R by sources external  to the body.  7 

Wha t  is most  impor tan t ,  this system of forces is 

p resumed  consistent with the micro force 
balance s 

f l ~ . n d a +  ) (rr + y ) d v = O  (1.12) 

OR R 

for each control  volume R. 

To  fix ideas I begin with the G i n z b u r g - L a n d a u  

system as discussed in [8]. The  t r ea tment  of  [8] is 

based on the microforce  balance (1.12),  suitable 

consti tut ive equat ions ,  and a mechanical  version 

of  the second law which asserts that  the free 

energy  of  R increase at a 

the working,  °W(R), of  all 

Here  

rate not  greater  than 

forces external to  R. 

~(R) = f (~'n)p" da + ~ 3'P" do, (1.13) 
aR  R 

and the second law takes the fo rm of  a dissipa- 
tion inequality 

f(¢.n)p'aa+ f o o, (1.14) 
R OR R 

7 Cf. Hohenberg and Halperin [7], who introduce a source 
term in the Ginzburg-Landau equation that corresponds to 
% 
The following two arguments might serve as partial motiva- 

tion for the microforce balance: (1) At equilibrium, if the 
total free-energy has the form (1.4), then the requirement 
~xtt(p) = 0 for all ~p that vanish on aB yields the Euler- 
Lagrange equation div ~ + Ir = (1 with ~¢ = O qt(p, Vp), ¢r = 
-8  ~(p, Vp). This represents a statical version of the micro- 
force balance (1.12) with ~: and rr given constitutive repre- 
sentations and -g = 0. In dynamics with general forms of 
dissipation there is no such variational principle; the use of a 
microforce balance is an attempt to extend to dynamics an 
essential feature of statical theories. (2) Standard forces in 
continua are associated with macroscopic length scales, while 
microforces describe forces associated with microscopic con- 
figurations of atoms. The need for a separate microforce 
balance seems a necessary consequence of the disparite 
length scales involved. 
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w h e r e  tO r e p r e s e n t s  the  f ree  ene rgy ,  p e r  uni t  

vo l ume .  ( In  A p p e n d i x  A the d i s s ipa t ion  

i nequa l i t y  is de r i ved  f rom m o r e  f u n d a m e n t a l  

ve r s ions  of  the  first two laws u n d e r  the  a s sump-  

t ion  of  i so the rma l  cond i t ions . )  This  inequa l i ty  is 

for  the  m a t e r i a l - l a t t i c e  plus a t o m s - i n  R, and  

t h e r e f o r e  does  not  inc lude  the work ing  of  ~-, 

which ,  be ing  a force  e x e r t e d  by the  la t t ice  on  the 

a toms ,  acts in te rna l ly  to  the  ma te r i a l  in R;  on the 

o t h e r  hand ,  (1 .12)  r ep r e sen t s  a force  ba lance  for  

the  a tomic  conf igura t ions  and t h e r e f o r e  inc ludes  

the  ac t ion  of  7r. 

I i n t r o d u c e  cons t i tu t ive  equa t ions  for  tO, the  

s t ress  ~:, and  the  in te rna l  force  7r; no cons t i tu t ive  

r e l a t ion  is specif ied for  the  ex te rna l  force  3'; 

i n s t ead  3" is p r e s u m e d  to be a rb i t r a r i ly  assign- 

ab le ,  jus t  as the  s t a n d a r d  body  forces  and  hea t  

supp ly  are  left  ass ignable  in the  classical  theor ie s  

of  mechan ic s  and hea t  conduc t ion .  9 Specif ical ly ,  

qJ, s ¢, and  7r a re  a l lowed  to d e p e n d  on the o r d e r  

p a r a m e t e r  p and - to m o d e l  cap i l l a r i ty  and t ran-  

s i t ion  k i n e t i c s - a l s o  on Vp and  p':"~ 

~, = 6 (p ,  Vp, p ' ) ,  ~ = ~(p,  Vp, p ' ) ,  

rc = Or(p, Vp,  p ' )  . (1 .15)  

in the  cons t i tu t ive  e q u a t i o n  for  the  f ree  e ne rgy ,  

but  r a t h e r  than  omi t  it by  fiat,  I choose  ins t ead  

to  show tha t  a d e p e n d e n c e  on  p" is i n c o m p a t i b l e  

with the  second  law. 1~ Prec ise ly ,  the  d i s s ipa t ion  

inequa l i ty  is used  to  show tha t  ~ and  ~ are  

i n d e p e n d e n t  of  p ' ,  and  that  

1~ = a.6(p,  V p ) ,  ~ = -a , ,6(p,  Vp) - ~ p ' ,  

(1 .16)  

whe re  0pt~ and  0p~ d e n o t e  the  pa r t i a l  de r iva t ives  

of  ~ with respec t  to p =Vp and  p, and  w h e r e  

/3 = / 3 ( p ,  ~7p, p ' )  _> 0 is a cons t i tu t ive  modu lus .  

The  mic ro fo rce  ba lance  div ~: + 7r + y = 0 and  

the r e d u c e d  cons t i tu t ive  equa t i ons  (1 .16)  then  

yield a gene ra l  n o n l i n e a r  P D E ,  which  for  an 

ene rgy  of  the  fo rm (1 .3) ,  c o n s t a n t / 3 ,  and  3' = 0 

reduces  to the  G i n z b u r g - L a n d a u  equa t i on .  

The  resul t ing  P D E  d e p e n d s  cruc ia l ly  on  the  

pa r t i cu l a r  fo rm chosen  for  the  cons t i tu t ive  equa -  

t ions.  In Sect ion  2.4 I show tha t  the  inc lus ion  of  

Vp' in the  list of  cons t i tu t ive  va r iab les  leads ,  for  

an ene rgy  of  the  form (1.3)  and  l inear  k ine t ics ,  

to an equa t ion  

/3p" = a A p  + K Ap" - f ' ( p )  (1 .17)  

H e r e  one  might  a rgue  tha t  p should  no t  a p p e a r  

The constitutive theories I discuss utilize the Coleman-Noll 
procedure [12], a procedure based on the premise that the 
second law be satisfied in all conceivable processes, irre- 
spective of the difficulties involved in producing such pro- 
cesses in the laboratory. The rational application of the 
Coleman-Noll procedure requires external fields that ensure 
satisfaction of the underlying balance laws in all processes. 
This may seem artificial, but it is no more artificial than 
theories based on virtual work or minimum "'energy", as 
these require arbitrary variations of the fields, even though 
such variations are generally inconsistent with the resulting 
balance laws. The method of Coleman and Noll has the same 
goal as variational procedures: to ensure a properly invariant 
theory consistent with basic physical laws under the widest 
possible set o f  circumstances. 
~'~ Here and throughout only homogeneous constitutive be- 
havior is considered; thus, e.g., the first of (2.7) signifies 
t0(x, t) = ~(p(x, t), Vp(x, t), p .  (x, t)), so that 4J represents a 
constitutive response function for the free energy, while 
to =-to(x, t) represents the actual free energy as a field over 
the body. 

con ta in ing  the add i t i ona l  k ine t ic  t e rm K Ap" (K > 

0). 
The  C a h n - H i l l i a r d  t heo ry  is d e v e l o p e d  in 

Sect ion  3 beg inn ing  with ba l ance  laws for  mass  

and  mic ro fo rce  in c o n j u n c t i o n  with a d i s s ipa t ion  

inequa l i ty  of  the  fo rm (1.14)  a u g m e n t e d  by 

te rms  assoc ia ted  with mass  t r anspor t .  ~2 Wi th in  

H Truesdell, in discussing the formulation of general constitu- 
tive theories, adopts the view that "a quantity present as an 
independent variable in one constitutive equation should be 
so present in all, unless. . ,  its presence contradicts some law 
of physics or rule of invariance" (Truesdell and Noll [11], 
§96). Truesdell and Noll assert: "This . . .  reflects on the scale 
of gross phenomena the fact that all observed effects result 
from a common structure such as the motions of molecules." 
t2 In [13] I gave a derivation of the Cahn-Hilliard equation 
based on this form of the second law, but I did not introduce 
a microforce balance and, consequently, the argument is far 
more complicated. 
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this f ramework I discuss the Cahn-Hil l iard equa- 
tion as well as various generalizations, including 
the equation 13 

p" = K A[ f ' (p )  - a Ap +/30"] (1.18) 

(/3 >0). 
In Section 4 the Cahn-Hil l iard theory is ex- 

tended to allow for deformation. 14 The basic 

balances are the standard force and moment  
balances associated with the gross deformation 
of the body in conjunction with balance laws for 
mass and microforce. 

Notation. I consider a body B that occupies a 
fixed region in three-dimensional Euclidean 

space E3. R will always designate a control 

volume (fixed subregion of B)  and n will always 
denote  the outward unit normal to OR. 

Vectors (elements of E3 viewed as 3 x 1 ma- 
trices) are denoted by lower-case boldface let- 
ters. Tensors (linear transformations of E3 into 
E3 viewed as 3 x 3 matrices) are denoted by 

upper-case boldface letters. 1 denotes the unit 
tensor; A T and t rA denote the transpose and 

trace of A; the inner product of A and B is 
defined by A. B = tr(ATB). 

The gradient, divergence, Laplacian, and time 
derivative of a field q~ = q~(x, t) are denoted,  
respectively, by V~p, divq~, Aq~, and q;. The 
derivative of a function f of a scalar variable (not 
time) is denoted by a prime: f ' .  For a vector field 

u(x), Vu(x) is the tensor with components Ou i /Oxj 
(i = row index, j =-column index). The diver- 
gence of a tensor field A(x) is the vector field 
with components  Ej OAq/axj (i = row index). 

The partial derivative of a function q~(a, b, c, 
• . .  , d) (of n scalar, vector, or tensor variables) 

13 Cf. the linear models of Aifantes [14], Stephenson [15], 
Durning [16], J/ickle and Frisch [17, 18], Binder, Frisch, and 
J~ickle [19]. Eq. (1.18) with a =0  is analyzed by Novick- 
Cohen and Pego [20]. 
L40nuki [21,22] and Nishimori and Onuki [23, 24] introduce 
and discuss a small-strain theory of elasticity with Cahn- 
Hilliard diffusion (cf. Cahn [4, 25], Larch6 and Cahn [26]). 

with respect to b, say, 

Ob@(a, b, c . . . .  , d). 

is written 

2. General ized  G i n z b u r g - L a n d a u  equat ions  

2.1. Basic laws: balance of  forces and the 
dissipation inequality 

I consider, as primitive physical quantities, the 
fields 

p order  parameter,  

0 free energy, 

microstress, 

~r internal microforce, 

7 external microforce, 

defined on the body B for all time, and base the 
theory on the microforce balance (1.12) in con- 
junction with the dissipation inequality (1.14). 
The global laws (1.12) and (1.14) are to be 
satisfied for all time and all control volumes R, 
and are hence together equivalent to the local 
microforce balance 

div ~ + zr + y = 0  (2.1) 

in conjunction with the local dissipation inequali- 
ty 

q," + ~rp' - s ¢ .  Vp" -< 0 .  (2.2) 

The field 

= - ¢ "  - ~rp" + g - 7 p - > 0  (2.3) 

represents dissipation, as its integral over R is 
the right side of (1.14) minus the left; a trivial 
but important consequence of this observation is 
the Lyapunov relation 

B B 

for the body B whenever Y--= 0 and ( ~ .  n)p "= 0 
on aB. 
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2.2. Constitutive equations. Restrictions imposed 
by the second law 

I consider constitutive equations giving the 
free energy ~, the stress £, and the internal force 
~- when the order parameter p and its derivatives 
Vp and p" are known: 

tP = 6(p, Vp, p') , ~ = ~(p, Vp, p') , 

rr = ~r(p, Vp, p') . (2.5) 

Given an order-parameter field p, the constitu- 
tive equations (2.5) can be used to compute the 
fields 0, ~, and 7r; the microforce balance (2.1) 
can then be used to determine the external force 
T that must be supplied to support this constitu- 
tive process. The second law remains to be 
satisfied, a requirement that I use to obtain 
restrictions on constitutive equations. Specifical- 
ly, I require that the local dissipation inequality 
(2.2) hold for  all such constitutive processes. 

To avoid notation such as Ovp~(p, Vp, p') for 
the partial derivative with respect to Vp, it is 
convenient to write 

p = V p ,  q = p ' .  (2.6) 

Then, granted (2.5), (2.2) is equivalent to the 
inequality 

[a,,~(p, Vp, p') + ¢'r(p, Vp, p')]p" 

+ [ap~b(p, Vp, p') - ~(p, Vp, p')] .Vp' 

+ [Oq(O(p, Vp, p')]p"<-O. (2.7) 

It is possible to find a field p such that p, p', p" ,  
Vp, and c)p" have arbitrarily prescribed values at 
some chosen point and time. Thus, since p"  and 
~Tp" appear linearly in (2.7), it follows that 
Oq(lr(p, Vp, p') = 0, ap~(p, ~Tp, p') = ~(p, Vp, p'), 
for otherwise p'" and Vp" could be chosen to 
violate (2.7). 

The free energy and stress are therefore in- 
dependent  of p" and related through 

~(p, ~Tp) = O,~(p, 7p) ,  (2.8) 

and the following inequality holds for all p, Vp, 
and p': 

7rd~,(p, Vp, p')p" - 0,  

~d,,(p, Vp, p') = ~(p, Vp, p') + a~6(p, Vp). 

(2.9) 

Granted smoothness, the most general form of 
~ra~ ~ consistent with (2.9) is 

7"rdis(P, Vp, p') = --/3(p, Vp, p')p" , 

/3(p, Vp, p') _> 0 (2.10) 

with /3(p, Vp, p') a constitutive modulus (cf. 
Appendix B). Thus ~ - = - 0 , ~  + 7rdi ~ and there 
are two contributions to the internal force: a 
contribution - 0 p ~  that arises from changes in 
the free energy and a dissipative contribution 
rrd~ ~ = --/3p'. In fact, the dissipation is given by 

= - ~d,,,(P, Vp, p')p" =/3(0, Vp, p ' ) (p ' ) : .  

(2. l l )  

Note that the constitutive relations are com- 
pletely specified by a prescription of the response 
function ~(p, Vp) for the free energy and a 
"kinetic modulus" /3(p, Vp, p')>_O, for then 
(2.8)-(2.10) generate constitutive relations that 
are compatible with the dissipation inequality 
(2.2) in all constitutive processes. 

2.3. The generalized Ginzburg-Landau  
equation 

Using (2.8)-(2.10) in the force balance (2.1) 
yields 

fi(p, Vp, p')p" = div[0p~(p, Vp) l 

- 0p~(p, 7p) + 3'. (2.12) 

This is the most general PDE  based on the force 
balance (2.1) and constitutive relations (2.5) that 
are consistent with the second law in the form 
(2.2) (cf. [8]). 

Choosing a constant, strictly positive kinetic- 
coefficient/3 in conjunction with a free energy of 
the form 

~(p, Vp) = f ( p )  + ½a]Vp] 2 , (2.13) 

with f (p )  a "coarse-grain" free energy and a a 
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strictly positive constant, leads, for y = 0, to the 
standard Ginzburg-Landau equation 

[3P" = a Ap - i f ( p ) .  (2.14) 

2.4. Further generalization o f  the Ginzburg-  
Landau equation 

A more general theory in which the stress ~ is 

dissipative is obtained by allowing for constitu- 

tive relations in which 7p" enters the list of 

independent  constitutive variables: 

~ = (O(p, Vp, p', Vp') , ~ = ¢2(p, Vp, p', Vp') , 

~r = 4r(p, Vp, p',  Vp'). (2.15) 

Using the notation (2.6) augmented by r = Vp" 
and proceeding as before leads to the inequality 
(2.7) with the arguments (p, Vp, p') replaced by 
(p, Vp, p ' ,Vp')  and with the additional term 
O,~(p, Vp, p ' ,Vp') .Vp'" added to the left side; 
this leads to the conclusions 0,~ = 0 and 0q~ = 0, 
so that 

0 = ~(p, Vp). (2.16) 

Further ,  and what is most important,  Vp" no 
longer appears linearly in the inequality, and so 
it no longer follows that 0p~ = ~; instead, all that 
one may conclude is that, for all p, Vp, p' ,  and 
Vp', 

Irdis(P, Vp, p', Vp')p" -- ~dis(P, Vp, p',  Vp')"Vp" 

~ 0 ,  (2.17) 

where 

"B'dis(P, Vp, p', Vp') = 7"g(p, Vp', Vp') + ap~([.), Vp),  

 d,s(p, vp, p ,  Vp) = !?(p, vp, p', vo)  

- Opq~(p, Vp). (2.18) 

The  most general solution of the inequality 
(2.17) is (cf. Appendix B) 

"r/dis(P, Vp, p ' ,  Vp') = --/3p' -- b "Vp', 

£dis(P, Vp, p' ,  Vp') = ap" + A  Vp' ,  (2.19) 

with 

/3 =/3(p, Vp, p ,  Vp) 

. = . (p ,  Vp, p ,  Vp) 

b = b(p, Vp, p ,  Vp ") 

a = a(p, Vp, p ,  Vp') 

(a scalar),  

(a vec tor ) ,  

(a vector) , 

(a tensor) ,  

constitutive moduli that render  the dissipation 

@ = / 3 ( p ' ) Z + p ' ( b + a ) . V p "  +Vp ' .AVp"  (2.20) 

nonnegative for all values of (p, Vp, p',  Vp'). 

The resulting PDE,  obtained upon combining 

the constitutive relations and the force balance, 
is 

(/3 - div a)p" + c-Vp" = div[0,~(p,  Vp) + A  Vp'l 

-- p~t(p, •p) + T ,  (2.21) 

with c = b - a. If the free energy has the simple 
form (2.13), if fl, b, a, and A are constant, if the 
material is isotropic so that c = 0 and A = K1, and 
if 7 = 0, then (2.21) reduces to 

/3p" = a Ap + K Ap" - i f ( p ) .  (2.22) 

3. Diffusion. Generalized Cahn-Hilliard 
equations 

3.1. Basic laws 

I now discuss a theory in which the order  
parameter  is identified with the density p of a 

diffusing, essentially independent  ~5 species of 
atoms. I base the theory on balance of mass, the 
microforce balance (1.12), and a generalization 
of the dissipation inequality that accommodates  
diffusion. I therefore consider, as primitive phys- 
ical quantities, the fields 

ls For example, if the diffusing atoms consist of a single 
interstitial species, or if the material is a binary substitutional 
alloy with atoms constrained to lie on lattice points. In the 
latter case p is the density of one of the species, say species 
a, the other species, /3, being eliminated via the constraint, 
and p~ is the chemical potential of a minus that of/3. 
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p density = order parameter ,  

/z chemical potential, 

¢ free energy 

h mass flux, 

m external mass supply, 

microstress, 

7r internal microforce, 

3' external microforce. 

Balance o f  mass is the requirement that 

[ f } f  f p dv <- -  h " n da + m dv (3.1) 
R c3R R 

for every control volume R. 
Within the present context the second law is 

the assertion that the rate at which the free 
energy of R increases cannot exceed the working 
on R plus the rate at which free energy is carried 
into R by mass transport. The rate of working is 
given by 

°W(R) = ~ (~" n)p" da + ~ YO" d r ,  (3.2) 
OR R 

because the density p is considered as an order 
parameter ,  and the free energy carried into R by 
mass transport is characterized by the chemical 
potential through the contributions 

-f.h.nda+f.mdv. (3.3) 
a R  R 

The appropriate form of the second law is 
therefore  the dissipation inequality (cf. [13]) 

R 

<--  f txh " n da + f txm dv 
,'~ R R 

+ : ( y p ' d v "  (3.4) 

OR R 

Since R is arbitrary, balance of mass yields 

p" = - d i v  h + m ,  (3.5) 

and combining (3.4), localized, with (2.1) and 
(3.5) yields the local dissipation inequality 

¢" + ( r r -  lz)p" - ~.Vp" + h.Vtz  <-O. (3.6) 

As before,  I define the dissipation ~ to be the 
negative of the left side of (3.6); the integral of 
@ over R is then the right side of (3.4) minus the 
left, so that, for m = y = 0, 

{f } f ~b dv = -  ~ dv <- O 
B B 

i f ( ~ . n ) p "  = h - n  = 0 o n  0B , 

B B 

if (~"  n)o" = 0 , / z  = /z  o = const, on OB. (3.7) 

3.2. Constitutive equations. Restrictions imposed 
by the second law 

In standard theories of diffusion the chemical 
potential is given, constitutively, as a function of 
the density, but here ! wish to consider systems 
sufficiently far from equilibrium that a relation of 
this type is no longer valid; instead I allow the 
chemical potential and its gradient to join the 
density and density gradient in the list of con- 
stitutive variables. Specifically, I consider con- 

stitutive equations of the form: 

t~= 6( p, Vp, p,, Vtt) , h = fi( p, Vp, p,, VIX) , 

~ = ~(p, Vp, ~, v ~ ) ,  ~- = ~(p, vp, ~, v ~ ) .  

(3.8) 

It is convenient to introduce the notation 

p = V p ,  s=V~z,  Z = ( p ,  V p , ~ , V ~ ) .  (3.9) 

Given a constitutive process (in the sense of 
(3.8)), the force and mass balances (2.1) and 
(3.5) may be used to compute the external 
microforce Y and mass supply m needed to 
support the process. The requirement that all 
such constitutive processes be consistent with the 
second law in the form of the local dissipation 
inequality (3.6) is then equivalent to the require- 

ment that the inequality 

[ao,#(z) + ~(z )  - M p  + [a,,,f,(z) - ¢:(z)l .Vp 

+ [a, ,g,(z)]~ + [ a , $ ( z ) ] - v #  + h(Z) .V~ <_0, 

(3.10) 
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hold for all fields p and /Z. Thus, arguing as 
before,  O ~ , ~ 0 ,  0 ~ = 0 ,  op~b=~, and 0 p ~ =  
/z - ~. Thus ~0 and ~ are independent of/Z and 
V/Z; ¢r is independent of V/Z ; 

v p , / z )  = / z  - v p ) ,  

g(p, Vp) -- O(O(p, Vp) ; (3.11) 

and 

/~(Z) .V/Z - 0  (3.12) 

for all Z, so that/~ has the form (cf. Appendix B) 

/~(Z) = - A ( Z )  V/Z (3.13) 

with A(Z),  the mobility tensor, a constitutive 
quantity consistent with the inequality s • 
A(X)s  >- 0 for all Z. Further, diffusion is now the 
sole source of dissipation with 

@ =V/Z .A(Z)  V/Z. (3.14) 

Combining (3.11) and the force balance (2.1), 

/Z = ao~(p, Vp) - div[O,~(p, Vp)] - 3", (3.15) 

an expression for the chemical potential that 
reduces to the classical relation /Z = apq~ when 
the free energy is independent of the density 
gradient and 3' vanishes. Interestingly, the gener- 
al relation (3.15) with 3' = 0  gives the chemical 
potential as the variational derivative of the total 
free energy (1.4) with respect to density: 

~qt 
/ Z -  ~ p .  (3.•6) 

3.3. The generalized Cahn-Hilliard equation 

Substituting (3.13) and (3.15) in the mass 
balance (3.5) yields the generalized Cahn-HiU- 
iard equation 

p" = d i v a  V(Op~(p, Vp) - div[0,~(p, Vp)] - y} 

+ m (3.17) 

with A = A ( Z ) .  The standard Cahn-Hill iard 
equation follows upon choosing a constant 
mobility tensor of the form A = K1 in conjunc- 
tion with the free energy (2.13) and y = m = 0: 

p" = KA[f'(p) -- a Ap] . (3.18) 

3.4. Inclusion o f  kinetics 

A more general theory may be based on 
constitutive relations in which p" enters the list of 
independent constitutive variables: 

¢ =  (t,( p, Vp, p', /z, V/z ) , 

h = i~(p, Vp, p', /Z, V/Z) , 

= vp, p , / z ,  v / z ) ,  

zr = Or(p, Vp, p',/Z, V/z). (3.19) 

In this case compatibility with the dissipation 
inequality yields the following conclusions: the 
free energy and microstress are independent of 
p', /Z, and V/Z; 

~(p, Vp) = O,~(p, Vp) ; (3.20) 

the inequality 

+ 

7rois(Z ) = ~(Z) + OjO(p, Vp) - / Z  (3.21) 

is satisfied for all 

Z = (p, Vp, p ' , /z ,  V/z). (3.22) 

The results of Appendix B applied to (3.21) 
yield the existence of constitutive moduli /3 = 
/3(Z) (a scalar), b = b(Z) and a = a(Z) (vectors), 
and A = A(Z) (a tensor), such that 

"r/dis(P, Vp, p ' ,  /Z, V/Z) = --/3p" -- b "V/Z, 

/~(p, VO, p',/Z, V/Z) = - a f t  - A V/Z, (3.23) 

and such that (3.21) is satisfied. 
Combining the first of (3.23) with the force 

balance (2.1) yields a complicated expression for 
the chemical potential: 

ix - b " V/Z = Op(b(p, Vp) - div[Op~(p, Vp)] 

+ tiP" - V • (3.24) 

For an isotropic material b = 0 and (3.24) re- 
duces to 
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tz = Op(b(p, Vp) - div[Op~(p, Vp)] +/3p" - ",/ 

= gO +/3p" - 3/, (3.25) 

so that the chemical potential is represented only 
in part  as a variational derivative. 

The general P D E  that follows from these 
constitutive equations is obtained upon substitut- 
ing (3.24) and the second of (3.23) into the mass 

balance (3.5). Granted  isotropy, constant values 

of the constitutive moduli in (3.23), a free 

energy in the form (2.13), and y = m = 0, this 
P D E  reduces to 

p" = K A [ f ' ( p )  - a Ap + /3p ' ] ,  (3.26) 

with corresponding dissipation @ = / 3 ( p ' ) 2 +  KIV I: 
The Cahn-Hi l l ia rd  theory can be further 

generalized to accomodate  memory  effects, but 
that  is beyond the scope of the present paper.  

y(x, t) = x + u(x, t) . (4.1) 

The field u is the displacement,  while 

F = 1 + Vu, (4.2) 

subject to det F > 0, is the deformat ion gradient.  
Here  and in what follows all derivatives are 
material  (Lagrangian): V and div are the gradient 
and divergence with respect to the material  point 

x, while u ' ,  for example,  is the derivative of 

u(x, t) with respect to t holding x fixed. 

Associated with each motion are the fields 
described in Section 3.1 as well as the classical 

fields 

S (Piola-Kirchhoff )  stress tensor,  

b body force vector,  

associated with the gross motion of the body. 

The underlying balances are the mass balance t~ 
(3.1), the microforce balance (1.12), and the 
standard macrobalances for forces and moments :  

4. The Cahn-Hilliard equation for deformable 
continua 

I now generalize the theory to allow for 
deformat ion,  but I restrict attention to situations 

in which diffusion occurs on a t ime scale large 
compared  to that associated with inertia, which I 

consequently neglect. As basic balances I con- 
sider the standard force and momen t  balances 

associated with the gross deformation of the 

body in conjunction with the balance laws for 

mass and microforce discussed in previous sec- 
tions. 

4.1. Basic laws 

I consider a body B identified with the region 

of space it occupies in a fixed uniform reference 
configuration. Material points are then points 
x ~ B, while control volumes R are subsets of B. 

Let  y be a mot ion of B. Then y is a field that 

associates with each material  point x and time t a 
point 

f Sn da + fbdv=0, 
aR R 

f y × S n d a +  / y x b d v = O ;  
OR R 

(4.3) 

together,  (4.3) are equivalent to the local bal- 

ances 

d i v S = 0 ,  SF "r=FS T. (4.4) 

There  are now two distinct systems of forces: a 

microforce system consisting of a stress ~, an 

internal force ~r, and an external force y, subject 
to the balance (2.1), and a macroforce  system 

consisting of a stress S and a body force b, 
subject to (4.4). The physical nature of  these 
systems manifests itself in the manner  in which 

the forces per form work: as before,  ~, 7r, and 3' 
work against changes in the order  pa rame te r  p, 

161 assume that the lattice deforms with the body via the 
motion y, and that, as before, atoms diffuse relative to the 
lattice; cf. Larch6 and Cahn [10,27]. As this diffusion is 
described in the reference configuration, h is measured per 
unit undeformed area. 
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while the working of S and b is given by the 
standard relation 

fSn.u'da+fb.u'da, (4.5) 
OR R 

in which the material velocity u" represents the 
kinetics. Thus and by (1.13), I base the theory 
on the dissipation inequality 

{f  q, dv}'<-- f Ixh.nda+ f Ixmdv 
R OR R 

OR R 

+fSn.u'da+f .u'.a. 
OR R 

(4.6) 

Combining (2.1), (3.5), (4.4), and (4.6) yields 
the local dissipation inequality 

~ b " - S ' F "  + ( T r - i x ) p " - ~ - V p "  +h 'VIx-<O.  

(4.7) 

Define the dissipation @ to be the negative of 
the left side of (4.7) and assume that Y = m = 0, 
b = 0. Then the Lyapunov relations (3.7) follow 
provided the restriction Sn .u"  = 0  on 0B is 
added. If instead Sn = Son on OB with S o con- 
stant, then (3.7) remains valid, but with qJ 
replaced by ~O- S O • Vu. 

4.2. Constitutive equations. Restrictions imposed 
by the second law 

I consider constitutive equations of the form 

qJ = ~(F, p, Vp, Ix, VIX), 

S = S(F, p, Vp, IX, VIX), 

h=I~(F, p, Vp, IX, VIX) , 

~ -= ~( F, p, Vp, Ix, VIx ) , 

• r = ~-(e, p, Vp, Ix, VIX), (4.8) 

which accounts for deformation, but not for 
kinetics, as p" is not included in the list of 
constitutive variables. (The inclusion of p" as 
well as F" presents no essential difficulty.) 

I assume that S is consistent with the second 
of (4.4). In addition, I require that constitutive 
response be invariant under changes in observer; 
precisely, I assume that (4.8) is invariant under 
the transformations 

~b-'-> ~b , S--> QS , h--> h , 

~--,~, ~-->~, 
(F, p, Vp, IX, VIX)--~ (QF, p, Vp, Ix, VIX) (4.9) 

for all orthogonal tensors Q. This leads to the 
following restrictions in which, for convenience, 
the variables p, Vp, Ix, and VIX are suppressed: 

~ ( F ) = ~ ( C ) ,  S ( F ) = F S ( C ) ,  / ~ ( F ) = h ( C ) ,  

~(F) = ~(C),  ¢r(F) = ~'(C), (4.10) 

with C = F F  T the right Cauchy-Green  strain 
tensor (cf., e.g., [28]) I will make no further use 
of the restricted relations (4.10), as the general 
development is simpler using the deformation 
gradient F. 

Let 

p : V p ,  s =vix, 

Z -= (F, p, Vp, Ix, VIX). (4.11) 

Arguing as before, compatibility of the constitu- 
tive relations (4.8) with the dissipation inequality 
(4.7) leads to the following generalizations of the 
results established in Section 3b: ~, S, and ~ are 
independent of IX and VIX; ¢r is independent of 
vix; 

"~-(F, p, Vp, IX) : Ix - ap~(F, p, Vp), 

~(F, p, Vp) = Oe~(F, p, Vp), 

S(F, p, VO) = OF~(F , P, Vp) ; (4.12) 

/~ has the form 

/~(Z) = -A(Z)VIx (4.13) 

with A(Z)  consistent with the inequality s- 
A(Z)s  >- 0 for all Z; diffusion is the sole source of 
dissipation with ~ = VIx-A(Z) VIx. 

Combining (4.12) and the force balance (2.1) 
shows that the chemical potential is, once again, 



M.E. Gurtin / Physica D 92 (1996) 178-192 189 

for y = 0 the variational derivative of the total 
energy with respect to density: 

/Z = O,~(V, p, Vp) - div[0,~(r ,  p, Vp)l - y 

- gp y .  ( 4 . 1 4 )  

4.3. Partial differential equations 

Assume, for convenience, that the external 

f ields vanish: y = m = 0, b = 0. Then, combining 
the reduced constitutive relations with the mass 
and force balances leads to the general system 

p" = div(A V/~), 

div S = 0 ,  

/Z = O,,@F, p, Vp) - div[O,,~(F, p, Vp)l, 

S = at.~(F, p, Vp), (4.15) 

with A =A(Z).  This system, supplemented by 
(4.10), is the most general properly invariant 
system consistent with the constitutive relations 
(4.8) and the second law in the form (4.6). 

4.4. L inear  elastic phases  

To model situations in which the displacement 
gradient is small, I now reconsider the theory 
assuming, from the outset, that the deformation 
is infinitesimal. To set the theory within that 
framework I redefine F to be Vu and replace the 

second of (4.4) by the requirement that S be 
symmetric: 

S = S r ;  (4.16) 

the steps leading to (4.12) and (4.13) then 
remain unchanged. Further, invariance of the 
constitutive equations under infinitesimal rota- 
tions (replacement of Vu by Vu + ~ skew) im- 
plies that the constitutive functions can depend 
on Vu only through the infinitesimal strain 

E = ½(Vu + VuT), (4.17) 

and this leads to the conclusion that F in (4.12) 
can be replaced by E. 

I now assume that the external fields vanish. 

Consistent with the assumption of infinitesimal 
deformations, I require that the free energy be at 
most quadratic in E; in fact, I now consider free 
energies of the form 

, .  vp)  = w ( e .  p)  + f ( p )  + ½ lvpl 2 . 

7 5  C ( p ) t ~ ,  t ~ = E - / ~ ( p ) ,  (4.18) W ( E ,  p )  ~ 1 . 

where C ( p ) ,  a positive definite, symmetric linear 
transformation of symmetric tensors into 

symmetric tensors, is the elasticity tensor; /~(p), 
a symmetric tensor, is the stress-free strain when 
the density is p; and f ( p )  is a double-well 
potential that defines the two phases. This form 
of the free energy yields the relations 

S = OEW(e, p)  = C ( p ) ~ ,  

/Z = f ' ( p )  + o, W(E,  p)  - a Ap 

= f ' ( p )  +½~'. C ' ( p ) ~  - S . g ' ( p )  - a A p  

(4.19) 

for the stress and chemical potential. These 
constitutive relations augment the balances 
divS = 0, p ' = - d i v ( A  V/z), and, if the mobility 
tensor A and the elasticity tensor C are constant, 
the basic equations take the form 

p" = A .  V V [ f ' ( p )  - a Ap - S " /~'(p)] , 

div(C[E - E(p)]) = 0 (4.20) 

with E given by (4.17). For an isotropic material 

with/~(p) linear in p - Po (P0 = const.), 

CD = 2aD + b ( t r O ) l ,  /~(p) = e (p  - p o ) l  , 

A = K 1 ,  (4.21) 

and, defining k = (2a + 3b )e, A = 4ke / ( 2a + b ), 

(4.20) reduce to 

p" = K A[f ' (p)  - a Ap + ,/p],  

a Au + (a + b) V div u - k Vp = 0.  (4.22) 

In these special circumstances the equation for p 
is independent of the deformation (cf., e.g., 
[5, 22, 26]), although diffusion and deformation 
will generally be coupled through the boundary 
conditions. 
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Appendix A. Mechanical version of the second 
law 

The theories I discuss are based on a version 
of the second law of thermodynamics appro- 
priate to a purely mechanical theory. To moti- 
vate this version of the second law, consider, for 
an arbitrary control volume R, the first two laws 
in the form of an energy balance 

{fedo}'=-fq.nda+frdv 
R OR R 

+ °W(R) + M(R) (A.1) 

and an entropy-growth inequality 17 

{ ] n d v } ' > - -  f (q/O)'nda+ f (r/O)dv 
R OR R 

(A.2) 

in which e is the internal energy, rt is the 
entropy, 0 is the (absolute) temperature, q is the 
heat flux, r is the heat supply, 7g'(R) is the rate 
of working on R of all forces exterior to R, and 
M(R) is the rate at which energy is added to R 
by mass transport. 

It is convenient to define the free energy qJ by 

q~ = e - On. (A.3) 

Assume isothermal conditions: 

0 = constant .  (A.4) 

~7 The Clausius-Duhem inequality (cf. Truesdell and Toupin 
[29], §§256-258). 

Then multiplying the entropy inequality by 0 and 
subtracting the resulting equation from the 
energy balance yields the global dissipation 
inequality 

qJ dv <- °W(R) + M(R) . (A.5) 
R 

The theories discussed here are based on this 
inequality, which asserts that the rate at which the 
free energy increases cannot exceed the sum of the 
working and the energy inflow due to mass 
transport. For the Ginzburg-Landau system 
there is no diffusion and the working is due 
entirely to microforces; in that case ~4/'(R) is 
given by (1.13) and M(R) vanishes. For the 
Cahn-Hill iard system ~/(R) ¢ 0, and if the body 
B is allowed to deform, then °W(R) includes the 
working of the more standard forces that accom- 
pany the gross motion of B. 

Appendix B. Solution of thermodynamical 
inequalities 

The inequality (2.17) can be written succinctly 
in the form 

F(X, Y). Y <- 0 (B.1) 

with 

X = (p, Vp), r = (p' ,  Vp'), 

F(X, r )  = (~,s(p, Vp, p ,  Vp), 

- -~dis (P ,  Vp, p ' ,  Vp ' ) )  . 

I now give a general solution of (B.1) within a 
framework that yields (2.10), (2.19), (3.13), and 
(3.23) as special cases (cf. [30]). 

The general problem can be stated as follows: 
given a smooth function F from R P x  R q into 
R q, find a general solution of the inequality 
(B.1) for all X E R  p and Y E R  q. The variable X 
appears as a parameter and I may, without loss 
in generality, suppress it when convenient. 

For X > 0 ,  F(AY).AY--<0 and hence F(AY). 
¥--<0. Thus, letting A---~ 0, F(O).¥<--O for all Y, 
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so that F ( 0 ) =  0. Thus 

1 

0 

(B.2) 

for all Y; hence, writing -B(Y) for the quantity 
{ . . . } ,  F(Y)=-B(Y)Y for all Y. The general 
solution F of (B.1) is therefore 

F(X, Y) : -B(X, Y)Y (B.3) 

with B(X, Y), for each (X, Y), a linear trans- 
formation from Nq into ~q consistent with the 
inequality 

r .  B(X, r )r  >-0. (B.4) 

Because of the dependence of B(X, Y) on Y, 
the inequality (B.4) is weaker than positive 
definiteness for B(X, Y). However, when F is 
quasilinear, that is, when F(X, Y) is linear in g 
for each X, then 

F(x, r ) :  - s (x)r  (B.5) 

for all (X, g), with B(X) positive semi-definite. 
More generally, the relation (B.5) holds to 

first order in Y: 

F(X,Y)=-B(X)Y-o([Y[) as r - - ,  0 (B.6) 

with B(X) positive semi-definite; and, for X and 
Y both small, 

F(X,  Y)  = - B Y  + o(IxI + IYI) asX, V--)0 

(B.7) 

with B constant and positive semi-definite. 
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