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Abstract

A new notion of solutions is introduced to study degenerate nonlinear
parabolic equations in one space dimension whose diffusion effect is so strong
at particular slopes of the unknowns that the equation is no longer a partial dif-
ferential equation. By extending the theory of viscosity solutions, a comparison
principle is established. For periodic continuous initial data a unique global con-
tinuous solution (periodic in space) is constructed. The theory applies to motion
of interfacial curves by crystalline energy or more generally by anisotropic inter-
facial energy with corners when the curves are the graphs of functions. Even if
the driving force term (homogeneous in space) exists, the initial-value problem
is solvable for general nonadmissible continuous (periodic) initial data.

1. Introduction

We are concerned with degenerate nonlinear parabolic equations (in one space
dimension) whose diffusion effect is very strong at particular slopes of unknown
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functions. A typical example is a quasilinear equation

ut − a(ux)(W ′(ux))x = 0,(1.1)

whereW is a givenconvexfunction onR but may not be of classC1 so that
its derivativeW ′ may have jumps althoughW ′ is nondecreasing; herea is a
given nonnegative continuous function andut andux denote the time and space
derivatives ofu. We also consider the more general form

ut − a(ux)((W ′(ux))x − C(t)) = 0(1.2)

with a given functionC , or even the fully nonlinear equation

ut + F (t ,ux , (W
′(ux))x) = 0(1.3)

with a given functionF satisfying monotonicity or degenerate ellipticity condi-
tion

F (t ,p,X) 5 F (t ,p,Y) for X = Y(1.4)

so that (1.3) is degenerate parabolic. At the first glance the evolution law given
by these equations is unclear. SinceW ′ may have jumps, so thatW ′′ contains a
sum of delta-type functions, the diffusion coefficienta(ux)W ′′(ux) is no longer
a function of ux . For example, ifW( p) = |p|, then W ′′( p) is twice the delta
function δ. In this case, (1.1) becomes

ut − 2a(ux)δ(ux)uxx = 0,

which is, of course, not a classical partial differential equation. So far, this type
of equation was analyzed only for a very restrictive class of piecewise linear
unknown functions with piecewise linearW [T1, AG1] or only for (1.1) [FG].
Our eventual goal is a synthetic approach to analyze (1.3).

The purpose of this paper is threefold: (i) to introduce a new notion of solu-
tions to (1.3) (where both solutions andW need not be piecewise linear), (ii) to
establish a comparison principle for our solutions, and (iii) to prove the unique
existence of global-in-time solutions for (1.3) (with (1.4)) when initial data are
only continuous and periodic under a very weak regularity assumption onF .
For this purpose we extend the theory of viscosity solutions [CIL] to our setting
although our equations are not partial differential equations. It turns out that our
extended version is suitable for studying (1.3) whenW ′ has jumps.

Our equations (1.1)–(1.3) stem from material sciences and physics as a ge-
ometric evolution law of interfacial curves bounding two phases of materials
[Gu, Ch]. However, in the present work no knowledge of material science is
assumed.
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1.1. Notions of Solutions

J.Taylor [T1] proposed an evolution law for a special class of piecewise
linear closed curves called admissible, which are moved bycrystalline energy.
If the curve is represented as the graph of a functionu, the governing equations
in [T1] formally correspond to (1.1) with (positive)piecewise linear W, where
a is assumed to be proportional toW. Independently,Angenent & Gurtin
[AG1] derived the same evolution laws (for curves) corresponding to (1.2) by
establishing a continuum thermomechanical theory of crystal growth with no
relation ofa andW (even if W is not piecewise linear). However, this class of
curves is still restricted. We first reproduce their equation in our setting. Assume,
for simplicity, thatW ′( p) has a jump atp = 0. Suppose thatu(t , ·) is constant
on some closed intervalI (t) = (α(t), β(t)). Suppose in a neighborhood ofI (t)
that thex-derivative ofu has a definite sign to the left (and right) ofI (t) and
that it is small so thatux(t , x) lies outside other jumps ofW ′. Integrating (1.1)
in a neighborhood (α(t) − δ, β(t) + δ), δ > 0 of the intervalI (t) we get∫ β+δ

α−δ

ut dx =
∫ β+δ

α−δ

a(ux)(W ′(ux))xdx

∼ a(0)
∫ β+δ

α−δ

(W ′(ux))xdx (δ is small)

= a(0){W′(ux(β + δ)) − W ′(ux(α− δ))}.
We postulate thatut (t , x) is independentof x on I (t). Sendingδ to zero, we
now obtain

ut − a(ux)ΛW(u) = 0 for x ∈ I (t)(1.5)

with
ΛW(u) = χ∆/L,

∆ = W ′(+0) − W ′(−0), L = β(t) − α(t),

W ′(+0) = lim
ε↓0

W ′(ε), W ′(−0) = lim
ε↓0

W ′(−ε);
hereχ is the transition numberdefined by

χ =




1 if both ux(α− δ) andux(β + δ)
are positive (for smallδ),

−1 if both are negative,
0 otherwise.

The quantityΛW(u) is called the weighted curvatureon I (t). Assume for a
moment thatW is piecewise linear and that the jumps ofW ′ are p1 < p2 <
· · · < pm. Assume thatu is an admissible evolving crystalin a time intervalJ ,
i.e.,

(a) u(t , ·) is piecewise linear whose slope consists ofpi ’s;
(b) for eacht ∈ J , if u(t , ·) has slopepi on an interval, then the slope ofu(t , ·)

in an adjacent neighborhood is eitherpi +1 or pi −1;
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(c) u is continuous in space-time and (the abscissa of) a jump ofux(t , ·) moves
smoothly in timet ∈ J ; jumps do not collide with each other.

We have abused the use of word ‘crystal’ to represent functions rather than
curves. Using an argument similar to that used in deriving (1.5), we find that
(1.5) holds on each space (maximal) intervalIj (t) = (αj (t), βj (t)), whereux(t , ·)
is constantpi and

∆ = W ′( pi + 0) − W ′( pi − 0), L = the length ofIj (t);

the transition numberχ = 1 if both ux(αj − δ) and ux(βj + δ) are greater than
pi (for small δ); χ = −1 if both are smaller thanpi ; χ = 0 otherwise. This (1.5)
is the evolution law we seek (for an admissible evolving crystal) corresponding
to (1.1). It turns out that equation (1.5) on eachIj (t) yields a system of ordi-
nary differential equations for the end points ofIj (t) or the length ofIj (t) (cf.
[T1, T3, AG1, GirK1, GMHG2]). If the set{Ij } is finite or if u(t , ·) is periodic
in x, then the system of ordinary differential equations has only finitely many
unknowns and is solvable locally in time. So, in particular, if initial data satisfy
(a) and (b) and are periodic inx, then there is an admissible evolving crystal
satisfying (1.5) (locally in time) with these initial data. SomeIj ’s may disap-
pear at the maximal timet0, where the ordinary differential equation system is
solvable on (0, t0). Fortunately, ifa is positive, u(t0, ·) fulfills (a) and (b) (at
t0) so one can again solve the ordinary differential equation system with initial
data u(t0, ·); repeating this argument we extend the solution globally in time
[T3, GirK1]. In the terminology of [GMHG2]there is a global weakly admissible
evolving crystal satisfying(1.5) with given periodic initial data satisfying(a) and
(b) with t = 0 provided that a> 0. The same argument applies to (1.2) with a
trivial modification [GMHG2].

This approach is good especially for computational purpose. However, there
arise at least two fundamental questions:

(I) If initial data do not satisfy (a), (b), i.e., if they are not admissible, what is a
natural formulation of solutions to (1.1) or (1.2)?

(II) Is it possible to solve the initial-value problem for (1.1) or (1.2) whenW′

has jumps butW is not necessarily piecewise linear?
For (1.1) Fukui & Giga [FG] introduced a new notion of solutions for

generalW and general Lipschitz initial data by adapting the theory of nonlinear
semigroups initiated byKōmura [Ko]. For periodic initial data they constructed
a unique global-in-time solution to (1.1). The problems (I), (II) are settled in this
case. They rewrote (1.1) in a divergence form

ut − W̃(ux)x = 0

by setting

W̃( p) =
∫ p

0
a(q)W ′′(q) dq

and applied the theory of subdifferential equations in periodicL2 spaces to get
solutions. We should ask whether or not a solution of [T1] and [AG1] is also
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a solution in [FG] whenW is piecewise linear. Fortunately, both solutions are
consistent. Indeed, in [FG] it is shown that the time derivative of their solutions
actually agrees with the one given by (1.5) ifu is piecewise linear.

Recently,Elliot, Gardiner & Shätzle [EGS] proved that a weakly
admissible evolving crystal satisfying (1.5) on each linear portion of the graph
of u(t , ·) (called facet) is a solution in the sense of [FG] whenW is piecewise
linear. The solution in [FG] is given by the limit of solutions of (1.1) withW
replaced by a regularizedWε approximatingW. Thus the evolution law (1.5)
for admissible evolving crystals is justified. The behavior of solutions of [FG] is
studied both analytically and numerically in [EGS]. Although the theory in [FG]
works well for (1.1), it seems very difficult to apply the theory to (1.2) in the
presence ofC even if C is a (nonzero) constant.

There is another justification of the evolution law (1.5) (for closed curves)
by Almgren & Taylor [AT] when W is piecewise linear. They investigated
a semi-discretized implicit scheme introduced by [ATW]. The time is discretized
and at each time step the value of a solution is given by solving a (non-discretized)
variational problem. Their scheme does not require that the solution be piecewise
linear at each time step. Their approximate solutions converge as the time grid
tends to zero (by taking a subsequence) for general interfacial energy [ATW].
The limit weak solution is called a flat curvature flow. In [AT] it is shown that a
weakly admissible evolving crystal (of closed curves) is the unique flat curvature
flow with the same initial data provided that two adjacent facets do not vanish
simultaneously. This justifies (1.5). For smoothW see also [FK] and [LS]. In
particular, it is shown in [FK] that the limit is contained in the level-set flow of
[CGG] and [ES].

In this paper we introduce a new notion of solutions for (1.2) or its general
form (1.3) with (1.4). Since our theory is interpreted as an extension of the theory
of viscosity solutions [CIL], we should define sub- and supersolutions of (1.3)
for nonsmooth functions. At issue is the class of test functions we choose so
that we define weighted curvatures. We shall always assume that the set of jump
discontinuities ofW ′ is a discrete setP. For technical reasons we also assume
thatW ∈ C2(R\P) has bounded second derivatives on each bounded set inR\P.

We introduce the notion of (P-) faceted functions in an open interval. Roughly
speaking, a piecewiseC1 function f ∈ C(Ω) is P-faceted if for eachp ∈ P the set
{x; f ′(x) = p} consists of a union of closed (nontrivial) intervals (calledfaceted
regions) and the transition numberχ is well-defined on each faceted region. We
then introduce the class ofP-faceted C2 functionson an open intervalΩ so that
the weighted curvatureΛW is defined everywhere (§2). Let us give a definition
of subsolution at least for continuous functions. We say a continuous function
u : [0,T) × Ω̄ → R is a subsolutionof (1.3) in Q = (0,T) × Ω if

g′(t̂) + F (t̂ , f ′(x̂), ΛW( f )(x̂)) 5 0

wheneverg ∈ C1(0,T), f ∈ C2
P(Ω) satisfies

max
Q

(u − ψ) = (u − ψ)(t̂ , x̂), (t̂ , x̂) ∈ Q
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with ψ(t , x) = g(t) + f (x) (called a test function at (t̂ , x̂)), whereC2
P(Ω) denotes

the set of allP-facetedC2 functions onΩ. If f ′(x̂) ∈ P, as already explained
we set

ΛW( f )(x̂) = χ∆/L,

whereL is the length of faceted region containing ˆx. If f ′(x̂) |∈ P, then we set

ΛW( f )(x̂) = W′′( f ′(x̂)) f ′′(x̂).

It is standard to extend this definition to semicontinuous functions as in§2. A
supersolution is defined in the similar way. Bya generalized solutionwe mean a
sub- and supersolution. It turns out that a generalized solution is consistent with
an admissible solution in [T1] and [AG1] whenW is piecewise linear. Indeed, it
is shown in [GMHG2] thata weakly admissible evolving crystal satisfying(1.5)
in each faceted region is a generalized solution in this sense.The argument can
be extended to (1.2) with extra assumptions ona. WhenC in (1.2) does depend
on x, our present theory does not apply. Moreover, the assumption thatut is
constant onI (t) in deriving (1.5) seems to be unnatural [R, GMHG1, GMHG3,
GMHG5].

1.2. Comparison Results

It is always crucial to establish a comparison principle in the theory of vis-
cosity solutions. It is, modulo suitable assumptions, of the form:

Comparison Principle. If u and v are a sub- and supersolution of(1.3) (when
(1.4) holds) in Q = (0,T) × Ω, then u 5 v in Q provided that u5 v on the
parabolic boundary∂pQ of Q.

We establish this comparison principle for a bounded open intervalΩ under
uniform continuity assumptions onF in

[0,T ′] × [−K ,K ] × R for eachT ′ < T, K > 0.

(If F is independent oft , we only need continuity ofF .) This result applies to
(1.1) and (1.2) whena = 0 andC are continuous inR and [0,T), respectively.

The basic strategy of the proof is the same as that for the case whenW is
smooth. However, several new ideas and extra work are necessary. This is why
the proof is long (§§4–7). Since the standard maximum principle for semicontinu-
ous functions [CIL] does not handle our weighted curvature, we establish a max-
imum principle for faceted functions (§4). To handle semicontinuous functions
we need to regularize them by sup-convolutions [CIL]. Unfortunately, the usual
sup-convolutions are not good for our purpose. We introduce a sup-convolution
by faceted functions and study its properties in§5. A new aspect of our sup-
convolution is that iff assumes a local maximum at ˆx, then its sup-convolution
is faceted near ˆx (Theorem 5.3). Usually, there is an equivalent definition of sub-
solutions using semijets. We have to introduce similar equivalent definitions of
subsolutions. It is very sensitive how to define time semijets in a neighborhood
of a faceted region so that both definitions of subsolutions are equivalent (§6).
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With these preparations we prove the Comparison Principle in§7. Let us briefly
explain the idea of our proof. We argue by contradiction. Using an extension of
the method developed in [CGG] and [Go] we reduce our problem so that our
sup-convolutions of bothu and−v are faceted at a point we are interested in. We
construct suitable test functions of bothu andv from these sup-convolutions with
the help of equivalent definitions of solutions. Applying the maximum principle
for faceted functions and (1.4), we get a contradiction. Note that our method
does apply whenP is an infinite set. However, it seems difficult to extend our
proof to unboundedΩ because so far the method in [CGG] and [Go] requires the
boundedness ofΩ. If both functionsu andv are periodic in space with the same
period (independent of time) we also have a comparison principle as shown in
§7.

Our comparison principle is totally new even for (1.1) whenW ′ has jumps. In
[FG] a comparison principle is proved for their solutions for (1.1). It is obtained
as a limit of approximate solutions satisfying a comparison principle. Besides the
difference of definitions of solutions, their results are weaker than ours since they
assume that bothu andv aresolutionsperiodic in space. In [GGu] a maximum
principle and a comparison principle are proved for admissible evolving crystals.
Although they handle curves of finitely many facets with no end points for a
comparison principle, their maximum principle applies to yield a comparison
principle for weakly admissible evolving crystals satisfying

ut − a(ux)(ΛW(u) − C(t)) = 0

on each faceted region whenW is piecewise linear; this equation corresponds
to (1.2), of course. (In [GGu]C is assumed to be a constant but the method
and result apply to nonconstantC with trivial modifications.) Our results are
considered as a natural extension of this type of results since a weakly admissible
evolving crystal satisfying (1.5) is a generalized solution [GMHG2].

If the singularities ofW ∈ C2(R\P) are weak, for example, ifW ′ is Lipschitz
continuous, then the comparison principle for viscosity solutions has already been
proved in [G]; see also [OhS] and [GSS] for evolutions of closed curves.

1.3. Existence Results

In our formulation we shall prove the (unique) existence of a global-in-time,
continuous, periodic-in-space solution of (1.3) if initial data are continuous and
periodic. This answers our questions (I) and (II) at least for periodic data. For
the homogeneous Dirichlet problem on a bounded intervalΩ of (1.3) we obtain
some global existence results by reducing the problem to a periodic situation.
This result applies to (1.1). However, it does not apply to (1.2) even ifC is a
(nonzero) constant. This is not a technical restriction. In fact, even for smooth
W with W ′′ > 0, a local solution may break down at the boundary∂Ω and
boundary detachment phenomena may occur (cf., e.g., [KK]). On the contrary,
our global solution for the Dirichlet problem actually attains zero at∂Ω for all
time. This is an intrinsic reason why our global result does not apply to (1.2).
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We do not pursue the boundary-value problems in this paper except for a few
remarks.

To show existence results we establish the Perron-type existence theorem to
our equations. This is by now standard in the theory of viscosity solutions [CIL]
for partial differential equations. However, in our setting, we must prove it when
the test function is faceted at a point of interest. Unfortunately, this is not a trivial
modification of the standard results. We must modify the test functionψ in a
class ofC2 P-faceted functions in space so that maxQ(u − ψ) is attained only
at one timêt and at one faceted region. We introduce canonical modification of
C2 P-faceted functions for this purpose. Another property we use in the proof is

W ′′( f ′(xn)) f ′′(xn) → 0 asxn → x0

for f ∈ C2
P(Ω), wherex0 is the boundary of a faceted region off andf ′(xn) |∈ P.

This convergence follows from the fact thatW ′′ is bounded in every bounded
set inR\P and thatf ∈ C2

P(Ω). We shall prove the Perron-type existence results
in §8. In the last section we construct a sub- and supersolution for given initial
data. This together with the Perron-type existence results and comparison results
yield an existence result for periodic data. To construct sub- and supersolutions
we modify the method developed in [CGG] and improved by [IS].

Our existence result for general continuous (not necessarily Lipschitz con-
tinuous) initial data (periodic inx) is new even for (1.1). The existence result
in [FG] needs Lipschitz continuity of initial data. We do not know whether a
solution in [FG] is continuous in space-time although it applies to all convexW.
Our solution is consistent with a solution in [FG] as we proved in [GMHG3].

WhenW is piecewise linear, a solution with nonadmissible data (question II)
for (1.1) has been studied in [T3] and [EGS]. If initial data are piecewise linear
nonadmissible, a ‘solution’ is constructed in [T3] by solving ordinary differential
equations. It turns out [EGS] that it is a solution in the sense of [FG] for (1.1).
Even for some piecewiseC1 initial data, a solution given by ordinary differential
equations is proposed in [T3, EGS]. However, the initial data are very restricted.
Instead of proving that each proposed solution is a solution in our sense, we give
an example of solutions with nonadmissible data in§2.

1.4. Background of Problems

Surface-energy-driven motion of interfaces has attracted many mathemati-
cians and physicists to study the evolution of phase boundariesΓt such as a
surface of crystal. Letn denote the unit normal vector field determining the
orientation ofΓt . We assume thatΓt is a curve in the plane. LetV denote the
normal velocity in the direction ofn. If V depends on local geometry, a typical
evolution equation is of the form

V = − 1
β(n)

( 2∑
i =1

∂

∂xi
(∂i γ(n)) + C(t)

)
on Γt .(1.6)

Hereγ : R2 → R is of the form



Evolving Graphs by Singular Weighted Curvature 125

γ(q) = |q|γ0(q/|q|), q = (q1,q2) ∈ R2, q |= 0,

andγ0, β are positive functions defined on the unit circle. In (1.6)∂i γ denotes
the partial derivative∂γ/∂qi as a function onR2. The quantityγ0 is calledthe
interfacial energy density, while β is calledthe kinetic coefficient. The function
C(t) is given. Physically it describes the bulk free energy of crystal relative to
that of the other phase. Typically, this is the difference of temperature between
two phases onΓt or the difference of pressure. The equation (1.6) was derived
mathematically byAngenent & Gurtin [AG1] (see also [Gu]) from axioms
of continuum thermomechanical theory. In the physics literature, (1.6) was first
formulated byMüller-Krumbhaar et al. [MBK] as a gradient flow of free
energy in the spirit of the time-dependent Ginzburg-Landau theory. This model
is good if the crystal surrounded byΓt is so small that surface effects dominate
bulk effects, since in this case we may assume that bulk energyC(t) is given
and is independent of the space variable. Ifγ0 is a positive constant,γ0 is
called isotropic. If both γ0 and β are isotropic, (1.6) withC = 0 becomes
the famous curve-shortening equation. We focus on the initial-value problem
for anisotropic curve shortening equation (1.6) when the interfacial energy may
have singularities. To classify the problems it is convenient to recallthe Frank
diagramof γ0:

F = {(q1,q2) ∈ R2; γ(q) = 1}.
We always assume thatF is convex, so that (1.6) is degenerate parabolic at
least formally. There are three typical situations as explained in [GMHG1].

(1) F is smooth and has positive curvature;γ0 is calleda strict convex smooth
energy.

(2) F is at most of classC1,1 and of classC2 except at finitely many points.
The curvature ofF is bounded but may be zero somewhere;γ0 is calleda
singular energy without corners.

(3) F is of classC2 except at finitely many points but is not of classC1. The
curvature ofF is bounded but may be zero somewhere;γ0 is called an
energy with corners.

An isotropic energy is a typical example of a strictly convex smooth energy.
In the case of (1) the equation (1.6) is quasilinear (nondegenerate) parabolic so
the classical theory [LSU] applies to get a local-in-time smooth solution to (1.6)
provided thatβ is smooth. Even ifC exists, it is possible to extend the solution
globally in time in the level-set sense ([CGG], [ES]). Note that the level-set
method applies to (1.6) ifγ0 is of classC2 and is convex; the strict convexity is
unnecessary [CGG, GGo]. There is by now an extensive literature for the case
(1). We suggest that the reader consult the book [Gu], the review [TCH], the
review [GMHG1] and the references therein.

Even in the case of (2) the level-set method yields global generalized solutions
for given initial curves [OhS, GSS]. A local existence of “strong” solutions is
established by [AG2]. IfΓt is given as a graph ofy = u(t , x), then (1.6) becomes

ut − a(ux)((W ′(ux))x − C(t)) = 0(1.7)
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with
a( p) = (1 + p2)1/2M ( p),

1/M ( p) = β(−p/(1 + p2)1/2, (1 + p2)−1/2),(1.8)

W( p) = γ(−p,1).

Here (2) says thatW is in C1,1 and is inC2 except at finitely many points. In
[G] properties of a global generalized solution are studied as well as comparison
and existence results. See [GMHG1] and the references therein.

In the case of (3) the existing level-set method does not apply to evolving
closed curves so far1. We discuss the case whenΓt is represented as the graph of
functions. OurW in (1.8) satisfies our assumption of regularity if (and only if)
γ0 is an energy with corners. This paper extends the theory of viscosity solutions
to establish fundamental comparison and existence of solutions so that it applies
to this setting.

A typical example of an energy with corners isa crystalline energy, where
F is assumed to be a convex polygon. For (1.7) this is the case whenW is
piecewise linear with finite jumps ofW ′. As mentioned before, its evolution
law (1.6) is reduced to a system of ordinary differential equations for admissible
evolving crystals. This was first observed byTaylor [T1] (for β ·γ = const.) and
independently byAngenent & Gurtin [AG1]. Their evolution is qualitatively
similar to the case whenγ0 is smooth. For example, we have a comparison
principle for admissible evolving crystals ‘solving’ (1.6) [GGu]. Ifβ · γ = const.
and C ≡ 0, a closed convex admissible evolving crystal shrinks to a point and
the way of shrinking is asymptotically similar to the Wulff shape ofγ provided
that the initial polygon has more than five corners [St] as conjectured byTaylor
[T1]. The Stefan-type problem with crystalline interfacial energy is studied in
[Ry]. Although it is interesting to study the behavior of our solutions, we do not
discuss them in this paper. Recently,surfaceevolutions by crystalline energy
were analyzed by [GGuM]. Among other results, a comparison principle for
admissible evolution was established there. For the background of a crystalline
energy see the review ofTaylor [T2].

It is a geometrically natural idea to approximate a strictly convex smooth
energy by a crystalline one. In fact, this approximation has been used in the
calculation of curve evolutions. IfΓt is a graph, the convergence result of [FG]
applies to (1.1). It says that an approximate solution actually converges to the true
solution with no convergence rate. At the same timeGirão & Kohn [GirK1]
studied this problem and obtained the convergence rate in the Sobolev spaceH 1

(for Dirichlet and Neumann problems). For convex closed curvesGirão [Gir]
obtained a convergence rate in the topology of Hausdorff distance. Recently
this result was extended byUshijima & Yazaki [UY] for the equationV =
−(div n)α on Γt with α > 0. See also the review paper [GirK2]. Unfortunately,
these works do not apply ifC exists in (1.2). We shall discuss convergence result

1 Recently, based on the results in the present paper, it turns out that the level-set method
can be extended in the case of (3). We shall discuss this topic in one of our forthcoming
papers.
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even for general equations (1.3) in the realm of viscosity solutions in [GMHG4,
GMHG5].

In the crystal growth problem there often arises an energyγ0 with corners
so that its Wulff shape has a flat portion called a facet. It is natural to consider
such aγ0 if the temperature is lower than the roughening temperature. Although
this phenomenon is common in all crystal growth [Ch], a typical example is the
growth of crystals of Helium. If facets exists in evolving crystals, it is explained
in physics [Ch] that the velocity on facets is not proportional to the chemical
potential difference∆µ which is the weighted curvature plus the pressure dif-
ference, although the velocity is nondecreasing in∆µ and it is zero for∆µ = 0.
If ∆µ is small, the velocity may be zero in some situation. This is a reason why
we consider

ut + F (ux , ΛW(u) + C) = 0

or its more general form (1.3) instead of (1.2).

2. Definition of Generalized Solutions

This section establishes conventions of notation and introduces several no-
tions of functions and weighted curvature. The goal of this section is to define
generalized solutions for evolution equations with singular interfacial energy.

2.1. Assumption(Set P and functionW). Let P be a closed discrete set inR.
In other wordsP is either a finite set or a countable set having no accumulation
points in R. If P is nonempty,P is of form { pj }m

j =1, { pj }∞
j =−∞, { pj }−1

j =−∞, or
{ pj }∞

j =1 with lim j →∞ pj = ∞, limj →−∞ pj = −∞, where thepj ’s are indexed
in increasing orderpj < pj +1 and m is a positive integer. LetW be a convex
function onR with values inR. We assume thatW is of classC2 outsideP.
Moreover, we assume thatW ′′ is bounded in any compact set except all points
in P.

These assumptions onP andW hold throughout this paper.

2.2. Definition. Let Ω be an open interval. A functionf in C(Ω) is calledfaceted
at x0 with slope p in Ω if there is a closed nontrivial finite intervalI (⊂ Ω)
containingx0 such thatf agrees with an affine function

lp(x) = p(x − x0) + f (x0)

in I and f (x) |= lp(x) for all x ∈ J \ I with some neighborhoodJ (⊂ Ω) of I .
The intervalI is called afaceted regionof f containingx0 and is denoted by
R( f , x0). A function f is calledP-facetedat x0 in Ω if f is faceted atx0 in Ω
with some slopep belonging toP .

2.3. Definition. Let x0 be a point inΩ. For f ∈ C(Ω) we set

ΛW( f , x0) = W ′′( f ′(x0)) f ′′(x0)

if f is twice differentiable atx0 and f ′(x0) |∈ P, and set
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ΛW( f , x0) =
χ

L
∆i

if f is P-faceted atx0 in Ω with slopepi , where∆i = W ′( pi + 0)− W ′( pi − 0).
We call the valueΛW( f, x0) the weighted curvature of f at x0. This value is
invariant under the addition of affine functions toW. Here L = L( f, x0) is the
length of the faceted regionI containingx0 andχ = χ( f, x0) is the transition
numberdefined by

χ =




+ 1 if f = lpi in J ,

−1 if f 5 lpi in J ,

0 otherwise

for some neighborhoodJ of the facet regionI . We often writeΛW( f, x0) as
ΛW( f )(x0) to emphasize that this quantity is a function ofx0.

For later convenience, we introducethe left transition numberχ− = χ−( f, x0),
and the right transition numberχ+ = χ+( f , x0) by

χ− =

{
+ 1 if f = lpi in {x ∈ J ; x 5 x0},
−1 if f 5 lpi in {x ∈ J ; x 5 x0},

χ+ =

{
+ 1 if f = lpi in {x ∈ J ; x = x0},
−1 if f 5 lpi in {x ∈ J ; x = x0}.

By definition,χ = 1
2(χ+ + χ−).

2.4. Definition. A function f ∈ C2(Ω) belongs to classC2
P(Ω) if f is P-faceted

at x0 in Ω wheneverf ′(x0) belongs toP. Let T be a positive number. For
Q = (0,T) × Ω with T > 0 let AP(Q) be the set of functions onQ of the form

f (x) + g(t), f ∈ C2
P(Ω), g ∈ C1(0,T).

An element ofAP(Q) is calledan admissible function.

2.5. Assumptions(FunctionF ). Let F be a function from [0,T) × R × R to R.
We often assume

(F1) F is continuous in [0,T) × R × R with values inR,
(F2) F (t ,p,X) 5 F (t ,p,Y) for X = Y , t ∈ [0,T),p ∈ R (degenerate elliptic-

ity),
(F3) For eachK > 0 and T ′ < T, F is uniformly continuous in [0,T ′] ×

[−K ,K ] × R.

We explicitly state these assumptions when needed.
We can now define our generalized solution in the viscosity sense.

2.6. Definition. A real-valued functionu on Q is a (viscosity) subsolutionof

ut + F (t ,ux , ΛW(u)) = 0 in Q(E)

if the upper-semicontinuous envelopeu∗ < ∞ in [0,T) × Ω̄ and
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ψt (t̂ , x̂) + F (t , ψx(t̂ , x̂), ΛW(ψ(t̂ , ·), x̂)) 5 0(2.1)

whenever (ψ, (t̂ , x̂)) ∈ AP(Q) × Q fulfills

max
Q

(u∗ − ψ) = (u∗ − ψ)(t̂ , x̂).(2.2)

Here

u∗(t , x) = lim
ε↓0

sup{u(s, y); |s − t | < ε, |x − y| < ε, (s, y) ∈ Q}

for (t , x) ∈ Q̄ and u∗ = −(−u)∗. A (viscosity) supersolutionis defined by
replacingu∗(< ∞) by the lower-semicontinuous envelopeu∗(> −∞), max by
min and the inequality in (2.1) by the opposite one. Ifu is both a sub- and
supersolution,u is called aviscosity solutionor ageneralized solution. Hereafter
we avoid using the word viscosity. Functionψ satisfying (2.2) is calleda test
functionof u at (̂t , x̂).

The following propositions are easily derived.

2.7. Proposition (Addition by Affine Functions).Let Ω be an open interval. Let
u be a sub- or supersolution of(E). Thenv(t , x) = u(t , x) − l (x) is respectively a
sub- or supersolution of

vt + F (t , vx + A, ΛWA(v)) = 0,

where
l (x) = Ax + B for some real number A and B,

WA(q) = W(q + A) for all q ∈ R,

PA = { p − A; p ∈ P}.
2.8. Proposition.If ψ ∈ AP(Q) satisfies(2.1) at each point(t̂ , x̂) ∈ Q, thenψ is
a subsolution of(E) in Q provided that(F2) holds.

2.9. Example of Equations.Let a functionF be of the form

F (t ,p,X) = −a( p)(X + C(t ,p))

with a continuous nonnegative functiona and a continuous functionC in [0,T)×
R. Then conditions (F1)–(F3) are fulfilled. Equation (E) becomes

ut − a(ux)(ΛW(u) + C(t ,ux)) = 0.(2.3)

The termΛW(u) + C is called the weighted curvature with driving forceand is
denoted byΛW(u; C) as in [GMHG1]. A more general form ofF is

F (t ,p,X) = G(t ,p,X + C(t ,p)),

where G : [0,T) × R × R → R. It is easy to see thatF fulfills (F1) or (F3)
provided thatG respectively satisfies (F1) or (F3) whereC is continuous in
[0,T) × R. Clearly if G satisfies (F2), so doesF . Equation (E) now becomes

ut + G(t ,ux , ΛW(u) + C(t ,ux)) = 0.
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Such an equation is important for describing evolutions of crystals of Helium
below the roughening temperature (whereC is independent ofp). As pointed
out in [R] (see also [GMHG3]) whenC depends on the spatial variablex, it is
not natural to defineΛW(u,C) just as a sumΛW(u) + C .

2.10. Remark.Equation (2.3) has many representations for differentW ’s. For
example, if

a( p)W ′′( p) = a0( p)W ′′
0 ( p)(2.4)

in the distributional sense with some nonnegative continuous functiona0 and
convex functionW0, then (2.3) can be formally written as

ut − a0(ux)ΛW0(u) − a(ux)C(t ,ux) = 0,(2.5)

which is also an example of (E). Fortunately, it is not difficult to see thatu is a
subsolution of (2.3) if and only ifu is a subsolution of (2.5). So our definition of
solutions is independent of the representation of the equation. By the way, there
are many choices ofa0 and W0 satisfying (2.4). Indeed, for a givena0( p), we
haveW0 satisfying (2.4) by definingW0 by

W0( p) =
∫ p∫ q

a(z)W ′′(z)a0(z)−1 dz dq.

2.11. Examples of Solutions WhenW is Piecewise Linear.We next consider
several special solutions of (2.3) whena > 0 andW is piecewise linear. We say
a functionv on R is anadmissible crystalif v is P-faceted at any point ofR and
the slopes of adjacent faceted regions should be adjacent inP. This definition
is the same as in [GMHG2]. Letu be an admissible evolving crystal on a time
interval I ′, i.e., u(t , ·) is an admissible crystal withu ∈ C(I ′ × R), and jumps
of ux moves smoothly in time fort ∈ I ′ and do not collide with each other. For
an admissible evolving crystalu equation (2.3) has a meaning on each faceted
region ofu(t , ·). This equation agrees with those derived by [T1] and [AG1] in
a slightly different setting and by [GirK1] in this setting (actually withC = 0
and finiteP but these restrictions are inessential). In [GMHG2] we prove that
an admissible evolving crystal u in(0,T) × R satisfying(2.3) is a generalized
solution of(2.3) with Q = (0,T) × R if C = 0. The same assertion is still valid
under some reasonable assumption ona even ifC does not vanish identically. In
[GMHG2] P was assumed to be finite but the proof works for generalP. Even
if u is a weakly admissible evolving crystal, i.e., ifu is an admissible evolving
crystal on [tk , tk+1), k = −1,0 . . . ,h, for some 0 =t−1 < t0 < · · · < th+1 = T
and u is continuous acrosst = tk , k = 0 . . . ,h, thenu is a generalized solution
of (2.3) with Ω = R provided thatu satisfies (2.3) on (tk , tk+1), k = −1,0 . . . ,h
(under some assumptions ona unlessC = 0). This is also proved in [GMHG2].
In the definition of weakly admissible evolving crystals of [GMHG2], the open
interval (tl , tl +1) should be replaced by [tl , tl +1).

In many cases for a given initial functionu0 which is an admissible crystal,
we see there is a unique global-in-time weakly admissible evolving crystalu
satisfying (2.3) on (tk , tk+1), k = −1,0 . . . ,h by solving a system of ordinary
differential equations. A typical situation is thatu0 is periodic inx. Since a weak



Evolving Graphs by Singular Weighted Curvature 131

admissible evolving crystal solving (2.3) is our generalized solution of (2.3),
there are many nontrivial examples of solutions.

2.12. Examples of Solutions with Nonadmissible Initial Data.WhenW is piece-
wise linear, a solution with nonadmissible data for (1.1) has been studied in
[T3] and [EGS]. For piecewise linear but nonadmissible initial data a solution is
constructed in [T3] by solving ordinary differential equations. However, if initial
data are not piecewise linear, creation of new facets also may occur but such an
example is not well examined although there is a heuristic explanation in [T3].

We give here a simple example of a solution with such initial data for (1.1)
with W( p) = c|p| with c > 0:

ut − ca(ux)(sgnux)x = 0,(2.6)

where a = 0 is continuous; we assume thata(0) > 0 since otherwise (2.6)
becomesut = 0 everywhere. We consider initial datau0 ∈ C(R) of the form

u0(x) =




A(x), x 5 α0,

h0, α0 5 x 5 β0,

B(x), β0 5 x

(2.7)

with
α0 5 β0,

A ∈ C1(−∞, α0) ∩ C(−∞, α0], A′ < 0,

B ∈ C1(β0,∞) ∩ C [β0,∞), B′ > 0,

A(α0) = B(β0) = h0 so thatu0 is continuous.

We set

D(k) =
∫ k

h0

{B−1(η) − A−1(η)}dη,

whereA−1,B−1 ∈ C1(h0,∞) ∩ C [h0,∞) denote the inverse functions ofA and
B. Note that

B−1(η) > β0 = α0 > A−1(η), η > h0

so thatD ′(k) > 0 for k > h0. The valueD(k) is the area enclosed byy = k and
y = u0(x). The inverse functionD−1 is well defined andD−1 ∈ C1(h0,∞) ∩
C [h0,∞). We then takeu ∈ C(Q̄) (Q = (0,∞) × R) of the form

u(t , x) =




A(x), x 5 α(t),

h(t), α(t) 5 x 5 β(t),

B(x), β(t) 5 x

(2.8)

with

h(t) = D−1(2a(0)ct),(2.9)
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α(t) = A−1(h(t)), α(0) = α0,

β(t) = B−1(h(t)), β(0) = β0 with α0 5 β0.
(2.10)

Sinceh(t) > h0 for t > 0 and

B−1(η) > β0 = α0 > A−1(η), η > h0,

we see thatα(t) < β(t) for t > 0. Thus the functionu is well defined and
u ∈ C(Q̄) sinceh ∈ C [0,∞) so thatα, β ∈ C [0,∞). The interval [α(t), β(t)] is
a faceted region ofu(t , ·), t > 0 andα′(t) < 0< β′(t) for t > 0. To convince the
reader that (2.8) satisfies (2.6), we calculateut on (α(t), β(t)). By (2.9), (2.10)
and definition ofD we see that

β(t) − α(t) = A−1(h(t)) − B−1(h(t)) = D ′(h(t)), t > 0.(2.11)

Since
ut (t , x) = h′(t) for x ∈ (α(t), β(t))

this yields

ut (t , x) = h′(t) = (D−1)′(2a(0)ct) · 2a(0)c

=
2a(0)c

D ′(h(t))
=

2a(0)c
β(t) − α(t)

= a(0)ΛW(u(t , ·), x),

whereW( p) = c|p|.
Lemma. The function u∈ C(Q̄) in (2.8) is a generalized solution of(2.6) in Q.
Its initial function is u0 in (2.7). Moreover−u is a generalized solution of(2.6)
in Q with initial data−u0.

This is true even ifα0 = β0. In this case a new faceted region [α(t), β(t)]
is created instantaneously. The proof of the lemma is easy but we give it for
completeness.

Proof. Step 1. We show that the functionu is a subsolution of (2.6) inQ: Let
ψ(t , x) be of the form

ψ(t , x) = f (x) + g(t) f ∈ C2
P(R), g ∈ C1(0,∞)(2.12)

and suppose that
max

Q
(u − ψ) = (u − ψ)(t̂ , x̂), t̂ > 0;

we do not takeu∗ sinceu is continuous. Iff ′(x̂) = 0, thenf is faceted at ˆx and
by geometry we see that

ΛW(u(t̂ , ·), x̂) 5 ΛW( f, x̂), g′(t̂) = h′(t̂).

By (2.11) we have

g′(t̂) − a(0)ΛW( f, x̂) 5 h′(t̂) − a(0)ΛW(u(t̂ , ·), x̂) = 0.

If f ′(x̂) |= 0 so that ˆx < α(t̂) or x̂ > β(t̂), then
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ΛW( f, x̂) = 0

sinceW ′′( p) = 0 for p |= 0. Clearlyg′(t̂) = ut (t̂ , x̂) = 0, so we have

g′(t̂) − a(0)ΛW( f, x̂) = 0

in this case. Sinceu ∈ C(Q̄), u is now a subsolution of (2.6) inQ.

Step 2. We show that the functionu is a supersolution of (2.6) inQ: Let ψ(t , x)
be as in (2.12) and suppose that

min
Q

(u − ψ) = (u − ψ)(t̂ , x̂), t̂ > 0.(2.13)

(1) If f ′(x̂) = 0 andx̂ |= α(t̂), x̂ |= β(t̂), then

ΛW(u(t̂ , ·), x̂) = ΛW( f, x̂), g′(t̂) = h′(t̂),

so that by (2.11) we have

g′(t̂) − a(0)ΛW( f , x̂) = h′(t̂) − a(0)ΛW(u(t̂ , ·), x̂) = 0.

(2) If f ′(x̂) |= 0 andx̂ |= α(t̂), x̂ |= β(t̂), then

ΛW( f, x̂) = 0, g′(t̂) = 0

as in Step 1. Thus
g′(t̂) − a(0)ΛW( f, x̂) = 0 − 0 = 0.

(3) It remains to study the case when either ˆx = α(t̂) or x̂ = β(t̂). If f ′(x̂) = 0
and intR( f, x̂) intersects (α(t̂), β(t̂)), then the situation is reduced to (1), so we
may always assume that

ΛW( f, x̂) 5 0

including the case thatf ′(x̂) |= 0 (which implies thatΛW( f, x̂) = 0). We may
assume that ˆx = α(t̂) since the casêβ(t̂) can be treated in the same way. Since
u(α(t̂), t) = A(α(t̂)) for t < t̂ , (2.13) implies thatg′(t̂) = 0. This now yields

g′(t̂) − a(0)ΛW( f, x̂) = 0.

Note thatg′(t̂) may not equalh′(t̂) whenf ′(x̂) |= 0. Since (2.6) is invariant if we
replaceu by −u, it follows that −u also satisfies (2.6). Clearlyu(0, x) = u0(x)
so the proof is now complete.ut
Remarks.(i) In [EGS] a piecewiseC1 initial function u0 with finitely many P-
faceted regions was considered. Outside faceted regionsu0 was essentially in
C1 and u′

0 |∈ P. The authors gave a local-in-time solution by solving ordinary
differential equations and proved that their solution is a solution in the sense of
[FG]. We remark that our lemma essentially implies that their solution is our
generalized solution. Note that the situation is localized near each facet so the
proof of our lemma applies. Our lemma also allows the situation that new facets
are created instantaneously.
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(ii) Our solution (2.8) is not of classC1 in space for allt > 0 even if the initial
function u0 is smooth. This shows that the solutionu(t , ·) may lose smoothness
instantaneously. Whenα0 = β0(= 0), the growth of the facet depends on the
behavior ofA and B nearα0 = 0. To see this, we for simplicity assume that
B(x) = mxr ,A(x) = B(−x) (m, r > 0) andh0 = 0. A direct computation shows
that

D(k) =
2

mr

∫ k

0
η1/r dη = m−1/r d0k1+1/r , d0 =

2r
1 + r

which yields

h(t) = m1/(1+r ){2d−1
0 a(0)ct}r /(1+r ),

β(t) = {2m−1d−1
0 a(0)ct}1/(1+r ) (= −α(t)).

We conclude this section by giving another example of a solution of the
equation

ut − ca(ux)(sgn (ux − p0))x = 0(2.14)

for a given numberp0 ∈ R. We assume thata > 0 everywhere in this example.
We consider (2.14) with initial data

u0(x) = µ sin (νx), µ > 0, ν > 0.(2.15)

Assume that 05 p0 < µν. As in the previous example we obtain an explicit
form of the solution with initial data. Letα0 be the unique number that satisfies

v′
0(α0) = 0 with − π/ν < α0 < 0,

where
v0(x) = u0(x) − p0x.

Let α1 be the unique number that satisfies

v0(α1) = 0 with − π/ν 5 α1 < 0,

so thatα1 5 α0. We set

D(k) =
∫ k

v0(α0)
{B−1(η) − A−1(η)}dη

=
∫ B−1(k)

A−1(k)
{k − v0(x)}dx, 0 = k = v0(α0),

whereA(x) = v0(x) for x, α1 5 x 5 α0 andB(x) = v0(x) for x, α0 5 x 5 0. The
value D(k) is the area enclosed byy = k and y = v0(x) with α1 < x < 0. Let
T > 0 be the number defined by

T =
D(0)

2a( p0)c
=

1
2a( p0)c

{
µ

ν
(1 − cos(να1)) − p0α

2
1

2

}
.
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We set
h(t) = D−1(2a( p0)ct) for 0 5 t 5 T,

so thath(0) = v0(α0),h(T) = 0,h′(t) > 0 for 0< t < T. We then set

α(t) = A−1(h(t)), 0 5 t 5 T,

β(t) = B−1(h(t)), 0 5 t 5 T,

so that
α(0) = α0, α(T) = α1, β(0) = α0, β(T) = 0.

As in the proof of the Lemma one can prove that the 2π/ν-periodic (in space)
continuous functionu defined by

u(t , x) =




u0(x), −π/ν < x < α(t),

u0(α(t)) + p0(x − α(t)), α(t) 5 x 5 β(t),

u0(x), β(t) < x < −β(t), for 0 5 t 5 T,

u0(−α(t)) + p0(x + α(t)), −β(t) 5 x 5 −α(t),

u0(x), −α(t) < x 5 π/ν

u(t , x) = u(T, x) for t > T

is the generalized solution of (2.14) inQ = (0,∞) × R with initial datau0(x) =
µ sin(νx). Note thatu(t , x) becomes a stationary solution in a finite time. If
|p0| = µν, the initial functionu0(x) itself is the stationary solutions (If−µν 5
p0 5 0, then the solution is given byu(t ,−x + π/ν), whereu is the solution of
(2.14) with p0 replaced by−p0.) If p0 = 0, many quantities in the definition of
u are explicitly computable. For example,α0 = −π/(2ν), α1 = −π/ν so that

A−1(η) = −{arcsin(η/µ) + π}/ν,
B−1(η) = arcsin(η/µ)/ν,

v0(α0) = −µ,
where arcsin is the principal value of the inverse of sin. We then calculate

D(k) =
∫ k

−µ

{B−1(η) − A−1(η)}dη

=
1
ν

∫ k

−µ

{
2 arcsin

(
η

µ

)
+ π

}
dη

=
1
ν

{
2

[
k arcsin

(
k
µ

)
+
√
µ2 − k2

]
+ πk

}

for −µ 5 k 5 0. In particular,D(0) = 2µ/ν, so that

T =
µ

ν

1
a(0)c

.

In this caseu(T, x) ≡ 0 sou(t , x) ≡ 0 for t = T.
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3. Main Theorems

We state our comparison and existence results for the equation (E).

3.1. Comparison Theorem.Assume that conditions(F1) and (F2) hold. Assume
that (F3) holds if F depends on the time variable t . Let u andv respectively be a
sub- and supersolution of(E), whereΩ is a bounded open interval. If u∗ 5 v∗ on
the parabolic boundary∂pQ(= [0,T) × ∂Ω∪{0}× Ω̄) of Q, then u∗ 5 v∗ in Q.

3.2. Comparison Theorem for Periodic Functions.Assume that conditions(F1)
and(F2) hold. Assume that(F3) holds if F depends on t. Let u andv respectively
be a sub- and supersolution of(E) in (0,T)×R. Suppose that u andv are periodic
in the spatial variable x with period$. If u∗ 5 v∗ on {0} × R, then u∗ 5 v∗ in
(0,T) × R.

3.3. Perron-Type Existence Theorem.Assume that conditions(F1) and (F2)
hold. Let u− and u+ respectively be a sub- and supersolution of(E) in Q = (0,T)×
Ω, whereΩ is an open interval. Suppose that u− 5 u+ in Q and (u+)∗ < +∞
and (u−)∗ > −∞ in [0,T) × Ω. Then there exists a generalized solution u of(E)
satisfying u− 5 u 5 u+ in Q.

3.4. Perron-Type Existence Theorem for Periodic Functions.Assume that con-
ditions(F1)and(F2)hold. Let u− and u+ respectively be a sub- and supersolution
of (E) in (0,T) × R. Suppose that u− 5 u+ in (0,T) × R and (u+)∗ < +∞ and
(u−)∗ > −∞ in [0,T) × R. Suppose that u− and u+ are periodic in the spatial
variable x with period$. Then there exists a generalized solution u of(E) such
that u− 5 u 5 u+ in (0,T) × R and that u is periodic in x with period$.

3.5. Existence Theorem for Periodic Initial Data.Assume that conditions(F1)
and(F2) hold. Assume that(F3) holds if F depends on t. Suppose that u0 ∈ C(R)
is periodic with period$. Then there exists a unique function u∈ C([0,T) × R)
that satisfies

(i) u is a generalized solution of(E) in (0,T) × R,

(ii) u(0, x) = u0(x) for x ∈ R,

(iii) u(t , x +$) = u(t , x) for (t , x) ∈ [0,T) × R.

In particular, if T is arbitrary, then u can be extended globally in time.

3.6. Existence Theorem for the Dirichlet Problem.Assume that conditions(F1)
and(F2)hold. Assume that(F3)holds if F depends on t. LetΩ be a bounded open
interval. Assume also that F(t ,p,X) = −F (t ,p,−X). Suppose that u0 ∈ C(Ω̄)
satisfies u0 = 0 on∂Ω. Then there is a unique generalized solution u∈ C([0,T)×
Ω̄) of (E) with u(0, x) = u0(x) and u = 0 on ∂Ω.

3.7. Remark on the Dirichlet Problem.Theorem 3.6 applies to

ut − a(ux)ΛW(u) = 0(3.1)

but it does not apply to
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ut − a(ux)(ΛW(u) − C) = 0(3.2)

even ifC is a (nonzero) constant. This is not a technical restriction. In fact, even
for smoothW with W ′′ > 0 a local solution to (3.2) may break down at the
boundary∂Ω in the sense that the gradient on∂Ω blows up in a finite time. This
phenomenon is sometimes called theboundary-detachment phenomenon(see,
e.g., [KK]). To solve this problem globally in time we interpret the Dirichlet
condition in the viscosity sense as in [KK]. We do not pursue this problem in
this paper. Our global solution in Theorem 3.6 actually attains zero on∂Ω for
all time so it should not apply to (3.2).

Theorem 3.6 follows from Theorem 3.5. Indeed, we may assume thatΩ =
(0,−$/2). We extend initial datau0 in (−$/2,0] so thatu0(x) = −u0(−x) for
x ∈ (−$/2,0). We extendu0 in R so that it is periodic inx with period$.
Sinceu0 = 0 on ∂Ω, our extendedu0 is continuous. We apply Theorem 3.5 to
get a unique generalized solutionu ∈ C([0,T) × R) of (E) with u(0, x) = u0(x)
and u(t , x + $) = u(t , x). By the symmetry assumptions onF , we see that
v(t , x) = −u(t ,−x) satisfies (E). By Theorem 3.2 we haveu = v, which implies
that u is odd in x. In particular,u = 0 at x = 0. A similar argument shows that
u = 0 at x = 1

2$. We thus observe thatu satisfies the Dirichlet condition. Since
u satisfies (E) in (0,T) × R it also satisfies (E) in (0,T) × Ω (Proposition 6.19).
This property is not trivial and it will be proved in§ 6. The proof of Theorem
3.6 is now complete.

3.8. Remark on Other Boundary-Value Problems.Theorem 3.5 also applies to the
homogeneous Neumann problem ifF andW satisfy

F (t ,p,X) = F (t ,−p,X), W( p) = W(−p),

provided that we appropriately define the generalized solution of (E) with the
Neumann conditionux = 0 on∂Ω. This assertion applies to both (3.1) and (3.2)
provided thata( p) = a(−p) andW( p) = W(−p). We shall discuss the Neumann
problem in one of our forthcoming papers.

3.9. Regularity.We now examine whether or not a solution in our Existence
Theorem 3.5 is regular if the initial data are regular. As observed in§2, even
if the initial data are smooth, the solution may not be of classC1 in space.
However, it is Lipschitz continuous in space. A precise form is presented below.
A similar property is proved in [FG] for their solution to (1.1).

3.10. Theorem on the Preservation of Lipschitz Continuity.Let the hypotheses
of Theorem 3.5 on F and u0 hold and let u be the solution with initial data u0.
Let νi be either+1 or −1 for i = 1,2 and let L be a positive constant. If

ν1u0(x) 5 ν1u0(x + ν2h) + L|h|

for all h > 0, x ∈ R, then

ν1u(t , x) 5 ν1u(t , x + ν2h) + L|h|
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for all h > 0, x ∈ R,0 5 t < T . In particular, if u0 is Lipschitz continuous with
constant L, i.e., if

|u0(x) − u0(y)| 5 L|x − y|
for all x , y ∈ R, then

|u(t , x) − u(t , y)| 5 L|x − y|
for all x , y ∈ R,0 5 t < T .

Proof. This is an easy corollary of the Comparison Theorem 3.2 sinceF is
independent ofu andx so thatu(x + ν2h) ± L|h| is a solution of (E) (cf. [GGIS,
Corollary 2.11], [G, Theorem 3.6]). Ifν1 = 1, we compareu with v(t , x) =
u(t , x + ν2h) + L|h|. Since bothu and v are solutions of (E), by Theorem 3.2
we haveu(t , x) 5 v(t , x). Similarly, if ν1 = −1, we compareu with v(t , x) =
u(t , x + ν2h) − L|h| to getu = v. ut

In § 4 we prepare the key maximum principle. In§ 5 we introduce convo-
lutions with faceted functions. In§ 6 we give several equivalent definitions of
solutions. In§ 7 we prove Theorems 3.1 and 3.2 based on the results in§§ 4–6.
In § 8 we prove Theorems 3.3 and 3.4. In the last section we prove Theorem 3.5
based on Theorems 3.2 and 3.4.

We are forced to assume the uniform continuity (F3) ofF if F depends ont
in the Comparison Theorems. We believe this restriction comes from the method.
(In the proof in§ 7 we have no estimates of the length of facets of test functions
from below when the parameter moves.)

4. Maximum Principle

In this section we derive various maximum principles for faceted functions,
which are the key tools for proving our Comparison Theorem.

A classical maximum is:

4.1. Proposition(Maximum Principle forC2 Functions, I). LetΩ be a domain in
Rn. If a function f ∈ C2(Ω) takes a local maximum overΩ at x̂ , then∇f (x̂) = 0
and the HessianHessf (x̂) 5 0.

As an easy application we get

4.2. Proposition (Maximum Principle forC2 Functions, II). Let Ω be an open
interval. Letx̂, ŷ be inΩ. Suppose that functions f1, f2 ∈ C2(Ω) and θ ∈ C2(R)
satisfy

f1(x) + f2(y) 5 θ(x − y) for all x and y∈ Ω,

f1(x̂) + f2(ŷ) = θ(x̂ − ŷ).

Then
f ′′
1 (x̂) + f ′′

2 (ŷ) 5 0.

This type of maximum principle for semicontinuous functions is a key tool
to establish a comparison theorem for viscosity solutions of degenerate elliptic
and parabolic partial differential equations [CIL]; see§ G in § 7.



Evolving Graphs by Singular Weighted Curvature 139

We extend this type of the maximum principle to faceted functions.

4.3. Theorem (Maximum Principle for Faceted Functions). Let Ω be an open
interval. Let f1, f2(∈ C(Ω)) be faceted at̂x , andŷ, respectively, with slope0 in Ω.
Suppose that̂x, ŷ ∈ Ω and x̂ − ŷ ∈ I , where I is a closed interval containing0
(I may be a singleton). Suppose thatθ0 ∈ C(R) satisfies

θ0 = 0 in I , θ0 > 0 otherwise.

If functions f1 and f2 satisfy

f1(x) + f2(y) 5 θ0(x − y) for all x and y∈ Ω,
f1(x̂) + f2(ŷ) = θ0(x̂ − ŷ),

then
χ( f1, x̂)
L( f1, x̂)

+
χ( f2, ŷ)
L( f2, ŷ)

5 0.

This is not difficult to prove directly. We give a maximum principle for faceted
functions depending on time, which generalizes Theorem 4.3; see Remark 4.10.
Its corollary will be applied in the proof of Comparison Theorem, where we need
to estimate ‘time derivatives’ of functions although they are not differentiable.

4.4. Notation.We use following notational conventions in this section.
(i) For (t̂1, x̂1), (t̂2, x̂2) ∈ (0,T) × R, let uj : (0,T) × R → R be a uppersemicon-
tinuous function (j = 1,2) such that

uj (tj , ·) ∈ C(R) for eachtj ∈ (0,T),

uj (t̂j , ·) is faceted at ˆxj in R with slope 0,

L(uj (t̂j , ·), x̂) < ∞, for j = 1,2.

The faceted regionR(uj (t̂j , ·), x̂j ) is denoted by [aj ,bj ], j = 1,2.
(ii) Let θ : [0,∞) → [0,∞) be a continuous function such that

θ = 0 in [0, σ] with someσ > 0, θ > 0 otherwise.

(iii) S ∈ C((0,T) × (0,T)).
(iv) Θ(t1, x1, t2, x2) = u1(t1, x1) + u2(t2, x2) − θ(|x1 − x2 − q̂|) − S(t1, t2) with
q̂ = x̂1 − x̂2.
(v) For j = 1,2 we setj ′ ∈ {1,2} \ { j }.

4.5. Theorem(Maximum Principle for Faceted Functions with Time Direction).
Suppose that(t̂1, x̂1, t̂2, x̂2) ∈ (0,T) × R × (0,T) × R is a maximizer ofΘ over
(0,T) × R × (0,T) × R, with q̂ = x̂1 − x̂2.
(i)

χ(u1(t̂1, ·), x̂1)
L(u1(t̂1, ·), x̂1)

+
χ(u2(t̂2, ·), x̂2)
L(u2(t̂2, ·), x̂2)

5 0.

(ii) For j = 1,2, let (I j ) denote the inequality

uj (tj , xj ) − uj (t̂j , x̂j ) 5 S(t1, t2)|tj ′ =t̂j ′ − S(t̂1, t̂2).(I j )
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Then

(I1) holds for all (0,T) × [a2 + q̂,b2 + q̂],

(I2) holds for all (0,T) × [a1 − q̂,b1 − q̂].

Moreover, ifãj = ãj ′ , thenχ−(uj (t̂j , ·), x̂j ) = −1 and there existsδ > 0 such that

(I j ) holds for all (0,T) × [aj − δ, aj ),

and if b̃j 5 b̃j ′ , thenχ+(uj (t̂j , ·), x̂j ) = −1 and there existsδ > 0 such that

(I j ) holds for all (0,T) × (bj ,bj + δ],

where
[ã1, b̃1] = [a1,b1], [ã2, b̃2] = [a2 + q̂,b2 + q̂].

4.6. Corollary. Assume that the hypotheses of Theorem 4.5 hold. LetΩ be an
open interval. Suppose that[â1, b̂1], [â2, b̂2] ⊂ Ω, and x̂j ∈ [âj , b̂j ] for j = 1,2,
where

[â1, b̂1] = [a1,b1] ∩ [a2 + q̂,b2 + q̂], [â2, b̂2] = [a1 − q̂,b1 − q̂] ∩ [a2,b2].

Then there exist uppersemicontinuous functionsv1 andv2 : (0,T) × Ω → R such
that

vj (tj , ·) ∈ C(Ω) for each tj ∈ (0,T),

vj (t̂j , ·) is faceted at̂xj in Ω with slope0 in Ω,(i)
uj 5 vj in (0,T) × Ω,
vj (t̂j , x̂j ) = uj (t̂j , x̂j ) for j = 1,2,

R(v1(t̂1, ·), x̂1) = [â1, b̂1], R(v2(t̂2, ·), x̂2) = [â2, b̂2],(ii)
L(v1(t̂1, ·), x̂1) = L(v2(t̂2, ·), x̂2),

(iii) χ(v1(t̂1, ·), x̂1) + χ(v2(t̂2, ·), x̂2) 5 0,

(iv) Let (I′j ) denote the inequality

vj (tj , xj ) − vj (t̂j , x̂j ) 5 S(t1, t2)|tj ′ =t̂j ′ − S(t̂1, t̂2).(I′j )

Then

(I′j ) holds for all (0,T) × [âj , b̂j ] for j = 1,2.(4.1)

Moreover, ifχ−(vj (t̂j , ·), x̂j ) = −1, then there existsδ > 0 such that

(I′j ) holds for all (0,T) × [âj − δ, âj )(4.2)

and ifχ+(vj (t̂j , ·), x̂j ) = −1, then there existsδ > 0 such that

(I′j ) holds for all (0,T) × (b̂j , b̂j + δ].(4.3)
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We prove Theorem 4.5 and Corollary 4.6 in several steps:

4.7. Lemma.Assume that the hypotheses of Theorem 4.5 hold. Then

(I1) holds for all (t1, x1) ∈ (0,T) × [a2 + q̂,b2 + q̂].(i)

(I2) holds for all (t2, x2) ∈ (0,T) × [a1 − q̂,b1 − q̂].(ii)

Proof. By the assumptions of the theorem, we have

u1(t1, x1) + u2(t2, x2) − θ(|x1 − x2 − q̂|) − S(t1, t2)

5 u1(t̂1, x̂1) + u2(t̂2, x̂2) − S(t̂1, t̂2)(4.4)

for (t1, x1), (t2, x2) ∈ (0,T) × R.

We taket2 = t̂2 andx2 = x1 − q̂ for x1 ∈ [a2 + q̂,b2 + q̂] in (4.4) to get

u1(t1, x1) + u2(t̂2, x1 − q̂) − S(t1, t̂2) 5 u1(t̂1, x̂1) + u2(t̂2, x̂2) − S(t̂1, t̂2)

for (t1, x1) ∈ (0,T) × [a2 + q̂,b2 + q̂].

Since x1 − q̂ ∈ [a2,b2], we haveu2(t̂2, x1 − q̂) = u2(t̂2, x̂2), which implies (i).
Similarly, we get (ii) by substitutingt1 = t̂1, x1 = x2 + q̂ for x2 ∈ R(u1(t̂1, ·), x̂1)
− q̂. ut
4.8. Lemma.Assume that the hypotheses of Theorem 4.5 hold.

(i) If ãj > ãj ′ , thenχ−(uj (t̂j , ·), x̂j ) = −1 and there existsδ > 0 such that

(I j ) holds for all (tj , xj ) ∈ (0,T) × [aj − δ, aj ).

(ii) If b̃j < b̃j ′ , thenχ+(uj (t̂j , ·), x̂j ) = −1 and there existsδ > 0 such that

(I j ) holds for all (tj , xj ) ∈ (0,T) × (bj ,bj + δ].

Proof. We only prove case (i), since the proof of (ii) is similar. By Lemma 4.7,

(I j ) holds for all (tj , xj ) ∈ (0,T) × [aj ′ − (−1) j q̂,bj ′ − (−1) j q̂], for j = 1,2.

Since [aj ′ − (−1) j q̂,bj ′ − (−1) j q̂] ⊃ [aj ′ − (−1) j q̂,aj ) = [aj − δ, aj ) with
δ = ãj − ãj ′ ,

(I j ) holds for all (tj , xj ) ∈ (0,T) × [aj − δ, aj ).

It remains to prove thatχ−(uj (t̂j , ·), x̂j ) = −1. Substitutingtj = t̂j into (Ij ), we
have

uj (t̂j , xj ) 5 uj (t̂j , x̂j ) for all xj ∈ [aj − δ, aj ).

SinceR(uj (t̂j , ·), x̂j ) = [aj ,bj ], there existsη > 0 such that

uj (t̂j , xj ) < uj (t̂j , x̂j ) for all xj ∈ [aj − η,aj ),

which impliesχ−(uj (t̂j , ·), x̂j ) = −1. ut
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4.9. Lemma.Assume that the hypotheses of Theorem 4.5 hold. Letσ > 0 be as
in §4.4(ii).

(i) Suppose that̃a1 = ã2; thenχ−(uj (t̂j , ·), x̂j ) = −1 holds and

(I j ) holds for all (tj , xj ) ∈ (0,T) × [aj − σ, aj ) for j = 1,2.

(ii) Suppose that̃b1 = b̃2; thenχ+(uj (t̂j , ·), x̂j ) = −1 holds and

(I j ) holds for all (tj , xj ) ∈ (0,T) × (bj ,bj + σ] for j = 1,2.

Proof. We only give the proof of (i) here, since the proof of (ii) is parallel. By
assumption of Theorem 4.5, we have inequality (4.4). Substitutingtj ′ = t̂j ′ and
xj ′ = aj ′ in (4.4), we have

uj (tj , xj ) − θ(|xj − aj |) − S(t1, t2)|tj ′ =t̂j ′ 5 uj (t̂j , x̂j ) − S(t̂1, t̂2)

for (tj , xj ) ∈ (0,T) × R,

sinceã1 = ã2. For xj ∈ [aj − σ, aj + σ], we haveθ(|xj − aj |) = 0, which implies
that

(I j ) holds for all (tj , xj ) ∈ (0,T) × [aj − σ, aj ).

Substitutingtj = t̂j in (I j ), we have

uj (t̂j , xj ) 5 uj (t̂j , x̂j ) for all xj ∈ [aj − σ, aj ),

which implies thatχ−(uj (tj , ·), xj ) = −1. ut
Proof of Theorem 4.5.By Lemmas 4.8 and 4.9, there existj and k ∈ {1,2}
such that

χ−(uj (t̂j , ·), x̂j ) = −1, χ+(uk(t̂k , ·), x̂k) = −1,

which implies that

χ(u1(t̂1, ·), x̂1) + χ(u2(t̂2, ·), x̂2) 5 0.

For (χ(u1(t̂1, ·), x̂1), χ(u2(t̂2, ·), x̂2)) = (−1,−1), (−1,0), (0,0) and (0,−1), the
validity of the inequality in (i) is trivial. We check (i) when

(χ(u1(t̂1, ·), x̂1), χ(u2(t̂2, ·), x̂2)) = (−1,1).

Since Lemmas 4.8 and 4.9 imply that

R(u1(t̂1, ·), x̂1) ⊂ R(u2(t̂2, ·), x̂2) + q̂,

we have
L(u1(t̂1, ·), x̂1) = L(u2(t̂2, ·), x̂2),

which implies (i). When (χ(u1(t̂1, ·), x̂1), χ(u2(t̂2, ·), x̂2)) = (1,−1), we use a sim-
ilar proof.

The property (ii) is given by Lemmas 4.7, 4.8 and 4.9.ut
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4.10. Remark.Even if σ = 0 in Notation 4.4(ii), the assertions of Lemma 4.7 and
4.8 are still valid. Ifã1 = ã2, then settingtj = t̂j , x2 = x1 − q̂ in (4.4) we have

χ−(uj (t̂j , ·), x̂) = −1

for j = 1 or 2. (However, the assertion for (Ij ) in Lemma 4.9 may not be true.)
We observe that the proof of Theorem 4.5(i) is still valid even ifσ = 0. By

this remark, we note that Theorem 4.3 follows from Theorem 4.5(i) by setting

uj (t , x) = fj (x), S(t1, t2) = 0, x̂1 = x̂, x̂2 = ŷ

with a choice ofθ in Notation 4.4(ii) such that

θ(|z − q̂|) = θ0(z), for z ∈ R.

Proof of Corollary 4.6. We use the notation of Theorem 4.5. Define functions
fj ,+ and fj ,− ∈ C(Ω) for j = 1,2 satisfying (A) and (B).

(A) If ãj ′ = ãj , thenfj ,− ≡ 0 ≡ fj ′,− in Ω, and if ãj ′ < ãj , then

fj ,− ≡ 0 in Ω, fj ′,− > 0 in (ãj ′ , ãj ), fj ′,− = 0 in Ω\(ãj ′ , ãj ).

(B) If b̃j = b̃j ′ , thenfj ,+ ≡ 0 ≡ fj ′,+ in Ω, and if b̃j < b̃j ′ , then

fj ,+ ≡ 0 in Ω, fj ′,+ > 0 in (b̃j , b̃j ′ ), fj ′,+ = 0 in Ω\(b̃j , b̃j ′ ).

Setting

vj (t , x) = uj (t , x) + fj ,−(x) + fj ,+(x) for (t , x) ∈ Q and i = 1,2,

we see that (i), (ii) and (iii) hold.
Since [âj , b̂j ] ⊂ [aj ′ − (−1) j q̂,bj ′ − (−1) j q̂], we get (4.1) by Theorem 4.5

(ii). By the definition ofv1 andv2,

ãj ′ 5 ãj if χ−(vj (t̂j , ·), x̂j ) = −1,

b̃j 5 b̃j ′ if χ+(vj (t̂j , ·), x̂j ) = 1,

which imply (4.2) and (4.3). ut

5. Convolutions

To regularize semicontinuous functions it is convenient to use sup- and inf-
convolutions of functions. A typical way to regularize is to consider asup-
convolution

f (x, λ) = sup
ξ∈R

{ f (ξ) − |x − ξ|2/λ}

for an (upper-semicontinuous) functionf , whereλ is a small positive parameter
[CIL]. However, this type of convolution is not convenient for our purpose. We
consider a sup-convolution with a faceted function replacing|x − ξ|2/λ. The
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goal of this section is to study such sup-convolutions. A new feature of our sup-
convolution is that iff assumes a local maximum at ˆx, then its sup-convolution
is faceted near ˆx.

Let φ be a function fromR× (0,1] to [0,∞). We often assume the following
conditions onφ.

(Φ0) For eachλ, 0< λ 5 1, φ(·, λ) is Lipschitz continuous on every bounded
set inR.

(Φ1) φ(ξ, λ) is even inξ, i.e.,φ(ξ, λ) = φ(−ξ, λ).
(Φ2) φ(ξ, λ) is nonincreasing inλ for all ξ.
(Φ3) lim

ξ→∞
φ(ξ,1) = ∞ andφ(ξ, λ) is nondecreasing inξ = 0, for 0< λ 5 1.

(Φ4) lim
λ↓0

φ(ξ, λ) = ∞ unlessξ 6= 0 andφ(0, λ) = 0,0< λ 5 1.

(Φ5) Let σλ = sup{|ξ|;φ(ξ, λ) = 0}. Then for 0< λ 5 1, σλ > 0 (σλ is
nondecreasing inλ and lim

λ↓0
σλ = 0 if we assume (Φ2) and (Φ4)).

Let f be a function onR with values in [−∞,∞). Then

f λ(x) = sup
ξ∈R

{ f (ξ) − φ(ξ − x, λ)}(5.1)

is calleda sup-convolutionof f by φ. Our assumptions in (Φ0)–(Φ4) are rather
standard. For example,

φ(x, λ) = |x|2/λ
satisfies (Φ0)–(Φ4). However it does not satisfy (Φ5), whereφ(ξ, λ) = 0 is
assumed to be faceted atξ = 0 with slope zero. Instead of this choice ofφ we
often use

ϑ(x, λ) = λϑ̄(x/λ),(5.2)

with

ϑ̄(x) =




(x − 1)2 for x > 1,

0 for |x| < 1,

(x + 1)2 for x < −1.

Clearly, (Φ0)–(Φ5) are fulfilled forφ = ϑ. We recall fundamental properties of
f λ in (5.1) which are familiar whenφ = |x|2/λ [LL]. If φ = |x|2/λ, f λ is often
used in functional analysis and is called the Yosida approximation off . Another
choice ofφ (which does not satisfy (Φ5)) was used in [IR] to study singular
Hamilton-Jacobi equations.

5.1. Lemma.Assume that(Φ0)–(Φ4) hold. Let f ( |≡ −∞) be a function onR with
values in[−∞,∞) and assume that f is bounded from above on every bounded
set inR and that

lim
|ξ|→∞

max( f (ξ),0)/φ(ξ − x,1) = 0 for each x∈ R.(5.3)

Let fλ be a sup-convolution of f byφ. Then
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(i) f λ is Lipschitz continuous on every bounded set inR.

(ii) f λ = f µ = f for λ = µ > 0 and lim
λ↓0

f λ(x) = f ∗(x) for each x∈ R.

(iii) Let B and B′ be bounded open sets inR with B̄ ⊂ B′. Then for each K0 > 0
there isλ0(K0) > 0 such that

sup
x∈B̄

sup
ξ |∈B′

H (ξ, x, λ) < −K0 for λ < λ0(K0)

with H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ).
(a) If infB̄ f ∗ > −∞, then forλ < λ′

0 ≡ λ0(max(0,− infB̄ f ∗)) we have

f λ(x) = sup
ξ∈B′

H (ξ, x, λ) for x ∈ B̄.

(b) If x̂ is a maximizer of f over B′, i.e., f(x̂) = maxB′ f , then fλ(x) 5 f (x̂)
for x ∈ B̄ provided that

λ < λ′′
0 ≡ λ0(max(0,−f (x̂))).

Proof. The proof is standard. We give it for completeness.
We may assume thatf is upper-semicontinuous by replacingf by f ∗ in (5.1)

since the valuef λ(x) in (5.1) is unchanged with this replacement.
By (Φ2) we havef λ(x) = f µ(x) for λ = µ. Sinceφ(0, λ) = 0 by (Φ4), we

have
f λ(x) = f (x) − φ(x − x, λ) = f (x).

Let ρ > 0 be any number with

ρ > ρ̄ = sup{σ; f (x) ≡ −∞ for |x| < σ}.
Then there isρ′ > ρ such that

f λ(x) = sup
|ξ|5ρ′

H (ξ, x, λ) = sup
|ξ|5ρ′

{ f (ξ) − φ(ξ − x, λ)},(5.4)

|x| 5 ρ, 0< λ 5 1.

Indeed, by (5.3) there isρ0 > ρ such that

f (ξ) 5 1
2φ(ξ − x,1) for |ξ| = ρ0, |x| 5 ρ,

so that if |x| 5 ρ, then

f (ξ) − φ(ξ − x, λ) 5 1
2φ(ξ − x,1) − φ(ξ − x,1) = − 1

2φ(ξ − x, 1)(5.5)

by (Φ2). Since there isx′, |x′| 5 ρ such thatf (x′) > −∞,

f λ(x) = f (x′) − φ(x′ − x, λ)

= f (x′) − sup
|y|5ρ

φ(x′ − y, λ) = M for |x| 5 ρ(5.6)
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with some constantM independent ofx. By (Φ3) one can takeρ′ > ρ0 so large
that

− 1
2φ(ξ − x,1)< M for |ξ| = ρ′, ρ = |x|.

By (5.5) and (5.6) this implies that

f λ(x) > f (ξ) − φ(ξ − x, λ) for |ξ| = ρ′ and ρ = |x|.
We have thus proved (5.4).

Sincef is bounded from above on|x| 5 ρ′, the supremum of (5.4) is finite, so
that f λ(x) is finite. For eachρ > ρ̄ we now prove thatf λ is Lipschitz continuous
for |x| 5 ρ. By (5.4) for eachε > 0 there isξ0, |ξ0| 5 ρ′, such that

f λ(x) 5 f (ξ0) − φ(ξ0 − x, λ) + ε.

For y, |y| 5 ρ, we have

f λ(x) − f λ(y) 5 f (ξ0) − φ(ξ0 − x, λ) + ε− { f (ξ0) − φ(ξ0 − y, λ)}
5 φ(ξ0 − y, λ) − φ(ξ0 − x, λ) + ε.

Sinceφ(ξ, λ) is Lipschitz continuous for|ξ| 5 ρ + ρ′ by (Φ0), we have

f λ(x) − f λ(y) 5 L|x − y| + ε

with someL > 0. Sendingε ↓ 0 and interchanging the role ofx, y we have

| f λ(x) − f λ(y)| 5 L|x − y| for |x| 5 ρ, |y| 5 ρ.

We now show that
lim
λ↓0

f λ(x) = f (x).(5.7)

Sincef is upper-semicontinuous, for eachε > 0 there isδ such that

f (ξ) 5 f (x) + ε for |ξ − x| 5 δ.(5.8)

We takeρ = |x| andρ′ as in (5.4). Then by the monotonicity of (Φ3) we have

sup{ f (ξ) − φ(ξ − x, λ); |ξ| 5 ρ′, |ξ − x| = δ}
5 sup

|ξ|5ρ′
f (ξ) − φ(δ, λ).(5.9)

By (Φ4), for eachK > 0 there is a smallλ0 > 0 such that the right-hand side of
(5.9) is dominated by−K for |λ| 5 λ0. Applying (5.8) and (5.9) to (5.4) yields

f λ(x) 5 max( sup
|ξ−x|5δ

( f (ξ) − φ(ξ − x, λ)),−K )

5 max( f (x) + ε,−K )

if λ < λ0. TakeK large such that−K < f (x) and fixλ0. Thenf λ(x) 5 f (x) + ε
for λ < λ0. Sincef 5 f λ, this implies (5.7).
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It remains to prove (iii). We takeρ (> ρ̄) such that{x ∈ R; |x| 5 ρ} contains
B. By the proof of (5.4) it suffices to prove that forρ′ > ρ,

sup
x∈B̄

sup{H (ξ, x, λ); |ξ| 5 ρ′, ξ |∈ B′} 5 −K0(5.10)

for sufficiently smallλ, λ < λ0(K0) (5 1). Let d > 0 be the distance from̄B to
∂B′. Then by (Φ3) with (Φ1) we have

H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ) 5 f (ξ) − φ(d, λ) for ξ |∈ B′, x ∈ B̄.

Sincef is bounded from above on{ξ ∈ R; |ξ| 5 ρ′}, from (Φ4) it now follows
(5.10) withλ < λ0(K0) provided thatλ0(K0) is taken so that

sup
|ξ|5ρ′

f (ξ) + K0 < φ(d, λ0(K0)).

If K0 = max(− infB̄ f ,0) , then f λ(x) = f (x) > −K0 for x ∈ B̄. If λ < λ′
0 =

λ0(K0) with this K0, then (5.10) yields

f λ(x) > sup{H (ξ, x, λ), ξ |∈ B′, |ξ| 5 ρ′} for x ∈ B̄,

so that

f λ(x) = sup{H (ξ, x, λ); |ξ| 5 ρ′} by (5.4)

= sup{H (ξ, x, λ); |ξ| 5 ρ′, ξ ∈ B}
= sup{H (ξ, x, λ); ξ ∈ B} for x ∈ B̄.

This completes the proof of (a). IfK0 = max(0,−f (x̂)), then forλ ∈ λ′′
0 = λ0(K0)

we have, by (5.4) and (5.10), that

f λ(x) = max( sup
ξ∈B′

H (ξ, x, λ), sup{H (ξ, x, λ); ξ |∈ B′, |ξ| 5 ρ′})

5 max( f (x̂) − 0,−K0) 5 f (x̂) for x ∈ B̄.

The proof of (b) is now complete.

5.2. Remark.(i) The assertion of Lemma 5.1 is still valid even ifR is replaced by a
normed space which may have infinite dimensions provided thatφ(ξ) is replaced
by φ(|ξ|). The proof presented here does not depend on the local compactness
of R so it applies to this case with trivial modifications.

(ii) The symmetry assumption (Φ1) is made just for convenience and it may be
removed if (Φ3) is replaced by

lim|ξ|→∞ φ(ξ,1) = ∞,

φ(ξ, λ) andφ(−ξ, λ) are nondecreasing inξ = 0.

(iii) So far, the property (Φ5) has not been invoked. It is essentially used to prove
the following Theorem, which is our main result in this section.
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5.3. Theorem (Convolution with Faceted Functions).Assume that(Φ0)–(Φ5)
hold forφ. Assume that the hypotheses of Lemma 5.1 concerning f hold. Assume
that f has a local maximum atx̂ and that f is not a constant function. Let fλ be a
sup-convolution of f byφ defined by(5.1). Then there is a smallλ1,0< λ1 5 1,
such that forλ 5 λ1,

(i) f λ is faceted at̂x in R with slope zero and fλ(x̂) = f (x̂);
(ii) x̂ is an interior point of the faceted region R( f λ, x̂).

We set
a = sup{x; f (y) = f (x̂) for all y ∈ [x̂, x]}
b = sup{x; f (y) 5 f (x̂) for all y ∈ [x̂, x]} (= a).

Note thatb > x̂ if f assumes a local maximum at ˆx and thata < ∞ sincef is
not a constant. The next lemma is a key step to prove Theorem 5.3.

5.4. Lemma. Assume that the hypotheses of Theorem 5.3 concerning f andφ
hold.

(i) Assume that a= b (> x̂). Then, for sufficiently smallλ, sayλ < λ2, f λ is
nondecreasing on[x̂,b], and there is x′λ, x̂ < x′

λ 5 b − σλ, such that

f λ(x) = f (x̂) for all x ∈ [x̂, x′
λ],

f λ(x) > f (x̂) for all x ∈ (x′
λ,b]

with σλ as in (Φ5).

(ii) Assume that b> a(= x̂). Assume that f is upper-semicontinuous. Then for
sufficiently smallλ, sayλ < λ3, there are y1λ and y2

λ with y2
λ > y1

λ > x̂ , and

f λ(x) = f (x̂) for all x ∈ [x̂, y′
λ],

f λ(x) < f (x̂) for all x ∈ (y1
λ, y2

λ).

Proof of Theorem 5.3 by Using Lemma 5.4.We may assume thatf is upper-
semicontinuous. Lemma 5.4 gives the behavior off λ for x > x̂; the behavior
of f λ for x < x̂ is obtained by Lemma 5.4 by replacingx by −x. Sincef λ is
continuous, the behavior off λ so far obtained yields Theorem 5.3. We remark
that Lemma 5.4 determines the value of transition numbers. It asserts that

χ+( f λ, x̂) = 1 if a = b andχ+( f λ, x̂) = −1 if a < b. ut
The results in Lemma 5.4 are easy to imagine sinceφ is faceted. However,

the proof is not trivial although it relies only on elementary facts. Especially,
the proof of part (ii) is complicated since we are forced to handle the case when
f oscillates so that it takes the valuef (x̂) infinitely many times on the interval
[a,b].

Proof of Lemma 5.4. Since f assumes its local maximum at ˆx, there isδ > 0
such that

f (ξ) 5 f (x̂) for ξ, |ξ − x̂| 5 δ.
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Let x0 be a point such that ˆx < x0 < b. We apply Lemma 5.1(iii) with

B = (x̂, x0), B′ = (x̂ − δ, b), K0 = max(0,−f (x̂))

to get

sup
ξ |∈B′

H (ξ, x, λ) < −K0 5 f (x̂) for all x ∈ [x̂, x0](5.11)

with H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ), and

f λ(x) 5 f (x̂) for all x ∈ [x̂, x0](5.12)

if λ < λ′′
0 ≡ λ0(K0), which also depends onx0. We also apply Lemma 5.1(iii)

with
B = (x̂,b), B′ = (x̂ − δ, b + δ), K0 = max(0,− infB̄ f ∗)

to get

f λ(x) = sup{H (ξ, x, λ); x̂ − δ 5 ξ 5 b + δ} for all x ∈ [x̂, b](5.13)

provided thatλ < λ′
0 ≡ λ0(K0) which is well-defined ifK0 < ∞.

(i) Sincea = b, we seef (x) = f (x̂) for all x ∈ [x̂, b). This implies that

inf{ f ∗(x); x̂ 5 x 5 b} = f (x̂) > −∞.

If λ < λ′
0, then (5.13) is valid. Sincef (ξ) 5 f (x̂) for all ξ ∈ [x̂ −δ, b] andφ = 0

with φ(0) = 0, we see that

H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ) 5 f (x) − φ(x − x, λ)

5 f (x) − 0 for all ξ ∈ [x̂ − δ, x]

for all x ∈ [x̂, b). Applying this to (5.13) we get

f λ(x) = sup{H (ξ, x, λ); x 5 ξ 5 b + δ} for all x ∈ [x̂, b](5.13′)

for λ 5 λ′
0 sincef λ(x) = f (x) = H (ξ, x, λ) for all ξ ∈ [x̂ − δ, x]. Sinceφ(ξ, λ)

is nondecreasing inξ = 0, we observe that

H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ) 5 f (ξ) − φ(ξ − y, λ)

for x̂ 5 x 5 y 5 b andy 5 ξ. Since

sup{H (ξ, x, λ); x 5 ξ 5 y} 5 f (x̂) = f (y) 5 f λ(y),

(5.13′) now yieldsf λ(x) 5 f λ(y) for λ < λ′
0 and x̂ 5 x 5 y 5 b. We have thus

proved the monotonicity:f λ(x) 5 f λ(y), x̂ 5 x 5 y 5 b for λ 5 λ′
0.

Let x0 be fixed with x̂ < x0 < b, and setλ2 = min(λ′
0, λ

′′
0 ) so thatλ 5 λ2

implies (5.12). Sincef 5 f λ by Lemma 5.1(ii) anda = b, the estimate (5.12)
yields

f λ(x) = f (x̂) for x̂ 5 x 5 x0, λ 5 λ2.(5.14)
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By definition of b there is a sequenceξj = b, ξj ↓ b such thatf (ξj ) > f (x̂).
By definition of f λ we see that

f λ(x) = f (ξj ) − φ(ξj − x, λ).

Assume thatb = x > b − σλ. Then for sufficiently largej the sequenceξj (↓ b)
satisfiesξj − x < σλ. We now invoke (Φ5) to get

φ(ξj − x, λ) = 0 for sufficiently largej .

This is the only place that (Φ5) is invoked in (i). We fix such aj and observe
that

f λ(x) = f (ξj ) − φ(ξj − x, λ) = f (ξj ) > f (x̂).

In other words,

f λ(x) > f (x̂) for all x ∈ (b − σλ, b].(5.15)

Sincef λ is continuous by Lemma 5.1 (i) andf λ is nondecreasing in [ ˆx,b],
the existence ofx′

λ in (i) follows from (5.14) and (5.15). The proof of (i) is now
complete.

(ii) We take x0 with a < x0 < b and fix λ′′
0 in (5.11) and (5.12). Sincef is

upper-semicontinuous, the set

U = (a, x0)\{x; f (x) = f (x̂)}
is an open set, i.e.,U is a disjoint union of countably many open intervals
{Oj }∞

j =1. We set
Wλ = { j ; |Oj | > 2σλ},

where|Oj | is the length ofOj . This set is at most finite. Letλ4 be taken so that

2σλ4 < max
j =1

|Oj |,

which implies thatWλ is nonempty forλ 5 λ4. We set

x1
λ = inf{x ∈ Oj ; j ∈ Wλ}.

SinceWλ is finite, there is a uniquej0 ∈ Wλ with x1
λ = inf Oj0. We then set

x2
λ = supOj0 (5 x0).

We now prove that ifλ 5 λ3 with λ3 = min(λ4, λ
′′
0 ), then

f λ(x) = f (x̂) for all x ∈ [x̂, x1
λ + σλ],(5.16)

f λ(x) < f (x̂) for all x ∈ (x1
λ + σλ, x2

λ − σλ).(5.17)

Note thatx1
λ + σλ < x2

λ − σλ since|Oj0| > 2σλ.
By definition of Wλ for all x ∈ [x̂, x1

λ + σλ] there isξ0, with x − σλ < ξ0 <
x + σλ, such that

f (ξ0) = f (x̂),



Evolving Graphs by Singular Weighted Curvature 151

which yields

f λ(x) = f (ξ0) − φ(ξ0 − x, λ)

= f (x̂) − 0 by (Φ5).

Property (5.16) now follows from (5.12).
It remains to prove (5.17). Assume thatx fulfills x1

λ +σλ < x < x2
λ − σλ and

λ 5 λ3. By definition of Oj0 it follows that

H (ξ, x, λ) = f (ξ) − φ(ξ − x, λ) < f (x̂) − 0 for all ξ ∈ (x1
λ, x2

λ).(5.18)

Sinceλ 5 λ3 5 λ′′
0 , (5.11) yields

sup{H (ξ, x, λ), ξ 5 x̂ − δ or ξ = b} < f (x̂).(5.19)

By definition of δ andb, if ξ ∈ [x̂ − δ, b], then f (ξ) 5 f (x̂) so that

H (ξ, x, λ) 5 f (x̂) − φ(ξ − x, λ).

If ξ is outside (x1
λ, x2

λ), thenφ(ξ − x, λ) > 0 so that

H (ξ, x, λ) < f (x̂) for ξ ∈ [x̂ − δ, b]\(x′
λ, x

2
λ).(5.20)

Sincef is upper-semicontinuous, (5.18) and (5.20) imply that

sup{H (ξ, x, λ); x̂ − δ 5 ξ 5 b} < f (x̂).

This together with (5.19) yields

f λ(x) = sup
ξ∈R

H (ξ, x, λ) < f (x̂)

for x1
λ + σλ < x < x2

λ − σλ. ut
In §7 we use a sup-convolution of a function byϑ defined in (5.2). There is

an advantage in using this specialϑ since it fulfills the composition rule

f β(x) = ϑ(x, λ− β) for 0< β < λ with f (x) = ϑ(x, λ).(5.21)

We conclude this section by proving a more general composition rule which
includes (5.21) as a special case. Forρ = 0 andλ > 0 let ϑ(x, ρ, λ) be of the
form

ϑ(x, ρ, λ) =




(x − ρ)2/λ, x > ρ,

0, | x| 5 ρ,

(x + ρ)2/λ, x < −ρ.

5.5. Lemma (Composition). (i)For 0 5 α 5 ρ, 0< β < λ,

ϑ(x, ρ− α, λ− β) = sup
ξ∈R

{ϑ(ξ, ρ, λ) − ϑ(ξ − x, α, β)} for x ∈ R.

(ii) For 0 5 αi , 0< βi (i = 1,2) with α1 + α2 5 ρ, β1 + β2 < λ,
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ϑ(x − y, ρ− (α1 + α2), λ− (β1 + β2))

= sup
ξ

sup
η

{ϑ(ξ − η, ρ, λ) − ϑ(ξ − x, α1, β1) − ϑ(η − y, α2, β2)}
for x, y ∈ R.

Proof. (i) By elementary calculus we can evaluate the maximum of the right-
hand side to get the desired identity. We give a noncomputational proof for
completeness.

We set

H (ξ, x) = ϑ(ξ, ρ, λ) − ϑ(ξ − x, α, β), f (x) = sup
ξ∈R

H (ξ, x)

by suppressing parameters.

(a) If |x| 5 ρ− α, thenf (x) = 0. Indeed, fromλ > β, ρ = α it follows that

ϑ(ξ − x, α, β) = ϑ(ξ − x, α, λ) = ϑ(ξ, ρ, λ),

which yieldsH (ξ, x) 5 0 for all ξ ∈ R. SinceH (ξ, x) = H (x, x) = 0, we now
obtain f (x) = 0 = ϑ(x, ρ− α, λ− β) for |x| 5 ρ− α.

(b) If x > ρ− α, then

f (x) = sup{H (ξ, x); ξ = x + α}.(5.22)

Indeed, forξ, |ξ| 5 x + α, we see that

H (ξ, x) = ϑ(ξ, ρ, λ) − 0 5 ϑ(x +α, ρ, λ) −ϑ(x +α− x, α, β) = H (x +α, x).

For ξ 5 −(x + α) we see that

H (ξ, x) = ϑ(ξ, ρ, λ) − ϑ(x − ξ, α, β)

5 ϑ(−ξ, ρ, λ) − ϑ(−ξ − x, α, β) = H (−ξ, x)

sincex − ξ = −ξ − x = α. We thus obtain (5.22). An elementary observation
shows that

sup
ξ∈R

{
(ξ − ρ)2

λ
− (ξ − x − α)2

β

}
= sup

ξ=x+α

{
(ξ − ρ)2

λ
− (ξ − x − α)2

β

}

sincex + α > ρ, λ > β. Since

H (ξ, x) =
(ξ − ρ)2

λ
− (ξ − x − α)2

β
for ξ = x + α,

it now follows from (5.22) that

f (x) = sup
ξ∈R

{
(ξ − ρ)2

λ
− (ξ − x − α)2

β

}

= sup
η∈R

{
η2

λ
− (η − z)2

β

}
, z = x − (ρ− α).
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Sinceβ < λ, the last supremum is attained only atη0 = λz/(λ− β) so that

f (x) =
η2

0

λ
− (η0 − z)2

β
=

z2

λ− β
.

This shows thatf (x) = ϑ(x, ρ − α, λ − β) for x > ρ − α. The proof for
x 5 −(ρ− α) is the same and so is omitted.

(ii) Using (i) twice we obtain the desired identity.

6. Equivalent Definitions of Solutions

To prove a comparison theorem (and an existence theorem) it is convenient
to introduce other versions of definitions of solutions. In our original definition
our test functionψ is admissible onall of Q = (0,T) × Ω. However, it turns out
that we only need some admissibility ofψ near the point (̂t , x̂) ∈ Q such that

max
Q

(u∗ − ψ) = (u − ψ)(t̂ , x̂).

To be precise we introduce several notions of admissible functions. In this section
Ω is assumed to be a (possibly unbounded) open interval.

6.1. Definition. Let (t̂ , x̂) be a point inQ. A function ψ ∈ C(Q) is locally
admissiblenear (̂t , x̂) in Q if there is a rectangular neighborhood̂Q ⊂ Q of
(t̂ , x̂) such that the restrictionψ|Q̂ of ψ on Q̂ belongs toAp(Q̂). Since Q̂ is
rectangular, it is of form

Q̂ = J × Ω̂

with open intervalsJ and Ω̂.
By definition, if p̂ = ψx(t̂ , x̂) ∈ P, thenψ(t̂ , ·) is faceted at ˆx in Ω̂ with slope

p̂.
Our assumption thatψ|Q̂ ∈ AP(Q̂) implies thatψ(t̂ , ·)|Ω̂ ∈ C2

P(Ω̂). In partic-

ular, the faceted regionR(ψ(t̂ , ·), x̂) should be contained in̂Ω.

6.2. Semijets.We recall the definition of parabolic semijets in [CIL]. Letϕ be a
function onQ and (̂t , x̂) ∈ Q. The set of parabolic semijets is of the form

P 2,+
Q ϕ(t̂ , x̂) = { (τ,p,X) ∈ R × R × R;

ϕ(t , x) − ϕ(t̂ , x̂) 5 τ (t − t̂) + p(x − x̂) + 1
2X(x − x̂)2

+ o(|t − t̂ | + |x − x̂|2) as (t , x) → (t̂ , x̂)}.

The setP 2,−
Q ϕ(t̂ , x̂) is defined by

P 2,−
Q ϕ(t̂ , x̂) = −(P 2,+

Q (−ϕ))(t̂ , x̂).

We often writeP ± instead ofP 2,±
Q .

If ϕ(t̂ , ·) is faceted at ˆx, then the use ofP + does not enable us to discuss the
behavior ofϕ near the faceted regionR(ϕ(t̂ , ·), x̂). We are interested in defining
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an upper time derivative on the faceted region. For this purpose we introduce
semineighborhoods of a faceted region depending on the local behavior ofϕ(t̂ , ·).
6.3. Semineighborhoods.Let f ∈ C(Ω) be faceted atx0 with slope p0. Let δ+

andδ− be (small) positive numbers. LetR( f , x0) denote the faceted region off
containingx0. We set

N+( f , x0; δ+) = {x ∈ Ω; supR( f , x0) < x 5 supR( f , x0) + δ+},
N−( f , x0; δ−) = {x ∈ Ω; inf R ( f , x0) − δ− 5 x < inf R( f , x0)}.

Our semineighborhood depends onχ±( f , x0).

(i) If χ+( f , x0) = χ−( f , x0) = −1, we set

Ñ−1( f , x0; δ+, δ−) = R( f , x0) ∪ N+( f , x0; δ+) ∪ N−( f ; x0; δ−).

(ii) If χ+( f , x0) = 1 andχ−( f , x0) = −1, we set

Ñ−1( f , x0; δ+, δ−) = R( f , x0) ∪ N−( f , x0; δ−).

(iii) If χ+( f , x0) = −1 andχ−( f , x0) = 1, we set

Ñ−1(x0; δ+, δ−) = R( f , x0) ∪ N+( f , x0; δ+).

(iv) If χ+( f , x0) = χ−( f , x0) = 1, we set

Ñ−1( f , x0; δ+, δ−) = R( f , x0).

The setÑ +1( f , x0; δ+, δ−) is defined by

Ñ +1( f , x0; δ+, δ−) = Ñ−1(−f , x0; δ+, δ−).

In other words,Ñ +1 is defined in the same way by interchanging 1 and−1 in
(i)–(iv). We often suppressδ+ andδ− of Ñ±1 and simply writeÑ±( f , x0).

6.4. Upper Time Derivatives.A functionω : [0,∞) → [0,∞) is called amodulus
if ω is a nondecreasing continuous function withω(0) = 0. For a functionϕ on
Q we define

T +
P ϕ(t̂ , x̂) = {τ ∈ R; there are a modulusω and three positive numbers

δ, δ+, δ− such that

ϕ(t , x) − ϕ(t̂ , x̂) 5 τ (t − t̂) + p(x − x̂) + ω(|t − t̂ |)|t − t̂ |
for (t , x) ∈ (t̂ − δ, t̂ + δ) × Ñ−1(ϕ(t̂ , ·), x̂, δ+, δ−)}

provided thatϕ(t̂ , ·) is P-faceted at ˆx ∈ Ω with slopep in Ω. If ϕ(t̂ , ·) is not
P-faceted at ˆx, we setT +

P ϕ(t̂ , x̂) = ∅. The setT +
P ϕ(t̂ , x̂) is defined by

T −
P ϕ(t̂ , x̂) = −(T +

(−P)(−ϕ))(t̂ , x̂).

The setT +
P is roughly the set of upper time derivatives which are uniform near

the faceted region since the error termω(|t − t̂ |)|t − t̂ | is independent ofx at
least on the faceted region.
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6.5. Definition. Let ϕ : Q = (0,T) × Ω → R be an upper-semicontinuous
function. Let (̂t , x̂) be a point inQ. Assume thatϕ(t , ·) ∈ C(Ω) for t neart̂ . We
say thatϕ is an (infinitesimally)admissible superfunctionat (̂t , x̂) in Q if one of
following conditions holds.

(A) The functionϕ(t̂ , ·) is P-faceted at ˆx in Ω andx̂ ∈ int R(ϕ(t̂ , ·), x̂), i.e., x̂ is
an interior point of the faceted region ofϕ(t̂ , ·) containing ˆx. The setT +

P ϕ(t̂ , x̂)
is nonempty.

(B) There is (τ,p,X) ∈ P +ϕ(t̂ , x̂) with p |∈ P.

(C) The functionϕ(t̂ , ·) is P-faceted at ˆx in Ω but x̂ ∈ ∂R(ϕ(t̂ , ·), x̂). The function
ϕ is locally admissiblenear (t̂ , x̂) in Q.

We sayϕ is anadmissible subfunctionat (̂t , x̂) in Q if −ϕ is an admissible
superfunction withP replaced by−P. If ϕ is locally admissible near (t̂ , x̂) in
Q, it is easy to check (A), (B) or (C) so thatϕ is an admissible superfunction at
(t̂ , x̂) in Q.

6.6. Definition.A real-valued functionu on Q is asubsolution in the infinitesimal
senseof (E) if u∗ < ∞ in [0,T) × Ω̄ and the following conditions are fulfilled.
For each (̂t , x̂) let ϕ be an admissible superfunction at (t̂ , x̂) in Q such that (2.2)
holds. Then

(i) τ + F (t̂ , ϕx(t̂ , x̂), ΛW(ϕ(t̂ , ·), x̂)) 5 0 for all τ ∈ T +
P ϕ(t̂ , x̂) if (A) in §6.5

holds;
(ii) τ + F (t̂ , p, W ′′( p)X) 5 0 for all (τ,p,X) ∈ P +ϕ(t̂ , x̂) if (B) in §6.5 holds
(iii) (2.2) is valid with ψ = ϕ if (C) in §6.5 holds.

The definition ofsupersolutionis given by replacingu∗ (< ∞) by u∗ (>
−∞), max by min, superfunction by subfunction,T +

P by T −
P , P + by P −

and the inequalities in (i),(ii) and (2.2) by the opposite ones. We note that ifF
is continuous andW ′′ is continuous nearp, thenP + may be replaced by ¯P 2,+

Q ,

the closure ofP + = P 2,+
Q in the sense of semijets [CIL]:

¯P 2,+
Q ϕ(t̂ , x̂) = {(τ,p,X); there are sequencesxn → x̂, tn → t̂ ,

τn → τ, Xn → X satisfyingϕ(tn, xn) → ϕ(t̂ , x̂),

(τn,pn,Xn) ∈ P 2,+
Q ϕ(tn, xn), (tn, xn) ∈ Q}.

6.7. Definition. A real-valued functionu on Q is asubsolution in the local sense
of (E) if u∗ < ∞ in [0,T) × Ω̄ and (2.1) holds for all (̂t , x̂) ∈ Q and for all
ψ (∈ C(Q)) that are locally admissible near (t̂ , x̂) in Q and fulfill (2.2). The
definition of supersolutionis given by replacingu∗ by u∗, max by min and the
inequality (2.1) by the opposite one as before.

Our main goal in this section is to show that Definitions 6.6, 6.7 are equivalent
to Definition 2.6.

6.8. Theorem(Local Version vs. Original Global Version).A real-valued function
on Q is a subsolution or supersolution of(E) if and only if it is resepectively a
subsolution or supersolution in the local sense of(E).



156 M.-H.Giga & Y.Giga

6.9. Theorem(Local Version vs. Infinitesimal Version).Assume that(F1) holds.
A real-valued function on Q is a subsolution or supersolution in the local sense of
(E) if and only if it is respectively a subsolution or supersolution in the infinitesi-
mal sense of(E).

6.10. Remark.At first glance, our definition of an admissible superfunction is
rather strange. In the definition ofT +

P we are tempted to replacẽN−1 by
R(ϕ(t̂ , ·), x̂). However, if we do so, then a subsolution might not be a subsolution
in the infinitesimal sense. We are also tempted to replaceÑ−1 by Ñ +1 ∪ Ñ−1,
a neighborhood ofR(ϕ(t̂ , ·), x̂). This modification is good for proving Theorem
6.9. However, test functions constructed in the proof of the Comparison Theo-
rem (§7) might not be admissible under this modification. Note that§7 is the
only place the infinitesimal version of the definition is invoked. In§7 there is no
situation in which ˆx is a boundary point ofR(ϕ(t̂ , ·), x̂) so the definition of the
local version at such an ˆx is inherited in Definitions 6.5 and 6.6.

A. Preliminary Lemmas. To prove Theorems 6.8 and 6.9 we prepare several
lemmas.

6.11. Extension Lemma.Let I be an open interval in(0,T) and J be a bounded
open interval inΩ. Assume thatϕ ∈ C(Q)(Q = (0,T) × Ω) fulfills

ϕ|I ×J ∈ AP(I × J ).

Let I1 and J1 be open intervals such that̄I1 ⊂ I and J̄1 ⊂ J . Then there is a
functionψ ∈ AP(Q) such that

ϕ 5 ψ in Q, ϕ = ψ in Ī1 × J̄1.

Proof. Step 1. We prove thatif I k and Jk (with k = 2,3) are open intervals such
that

Īk ⊂ Ik+1 (k = 1,2), Ī3 ⊂ I ,

J̄k ⊂ Jk+1 (k = 1,2), J̄3 ⊂ J ,

then there are nonnegative functions f2 ∈ C(Ω) andg2 ∈ C(0,T) such that

f2 ≡ 0 in J2, g2 ≡ 0 in I2,

ϕ(t , x) 5 f2(x) + g2(t), (t , x) ∈ Z = Q\(I3 × J3).

Indeed, we taked ∈ C1(Ω) that satisfies

(a) d ≡ 0 in J3,

(b) d′ > 0 in the right ofJ3; d′ < 0 in the left ofJ3,

(c) d(x) → +∞ asx tends to the boundary ofΩ.

We set
J (r ) = {x ∈ Ω; d(x) < r }
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so thatJ (0) = J3 and ∪r =0 J (r ) = Ω. Similarly, we taked̄ ∈ C1(0,T) that
satisfies (a), (b), (c) withJ3 and Ω replaced byI3 and (0,T), respectively. We
also set

I (r ) = {t ∈ (0,T); d̄(x) < r },
h(r ) = max{max(ϕ(t , x), 0), (t , x) ∈ Z , (t , x) ∈ I (r ) × J (r )}.

SinceI (r ) × J (r ) is compact andϕ is continuous, it follows thath is continuous
in [0,∞). There are nonnegative functionsf2 ∈ C(Ω) andg2 ∈ C(0,T) such that

f2(x) =

{
h(d(x)) for x ∈ Ω\J3,

0 for x ∈ J2,

g2(t) =

{
h(d̄(t)) for t ∈ (0,T)\I3,

0 for t ∈ I2.

By definition
ϕ(t , x) 5 h(max(d(x), d̄(t)))

5 max( f2(x), g2(t))

5 f2(x) + g2(t) for (t , x) ∈ Z

since bothf2 andg2 are nonnegative. This completes the proof of Step 1.

Step 2. Sinceϕ|I ×J ∈ AP(I × J ), there isf1 ∈ C2
P(J ) andg1 ∈ C1(I ) such that

ϕ(t , x) = f1(x) + g1(t) in I × J.

Let θ ∈ C(Ω) andρ ∈ C(0,T) satisfy

0 5 θ 5 1, θ ≡ 1 in J3, θ ≡ 0 in a neighborhood ofΩ\J ,

0 5 ρ 5 1, ρ ≡ 1 in I3, ρ ≡ 0 in a neighborhood of (0,T)\I .

Then, it is easy to see thatf3 = θ f1 + f2 ∈ C(Ω) and g3 = ρ g1 + g2 ∈ C(0,T)
fulfills

f3 = f1 in J2, g3 = g1 in I2,

ϕ(t , x) 5 f3(x) + g3(t), (t , x) ∈ Q,

wheref1 andg1 are extended by zero outsideJ and I respectively.

Step 3. To complete the proof it suffices to findg ∈ C1(0,T) and f ∈ C2
P(Ω)

such thatg = g3 on (0,T) with g = g3 in Ī1 and thatf = f3 on Ω with f = f3
in J̄1. Sinceg3 ∈ C(0,T) fulfills g3 = g1 in I2, so thatg3 is of classC1 in a
neighborhood of̄I1, it is easy to find such a functiong. If J2\J1 is contained in
one faceted region off1, we take a nonnegativeC2 functionσ supported inJ2\J̄1

such that (f1 + σ)′ does not belong toP at the boundary of some neighborhood
J ′ of J1 in J2 and such thatf1 + σ|J2 ∈ C2

P(J2). Replacingf3 by f3 + σ we may
assume thatf3 ∈ C(Ω) fulfills

f3 ∈ C2
P(J2), f ′

3(x) |∈ P for all x ∈ ∂J ′.
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The proof is now complete, if we admit the next lemma, which yields a desired
f .

6.12. C2
P Extension Lemma. Let J′, J2 and Ω be possibly unbounded open

intervals such that̄J ′ ⊂ J2, J̄2 ⊂ Ω. Assume that f0 ∈ C(Ω) satisfies

f0|J2 ∈ C2
P(J2), f ′

0(x) |∈ P for all x ∈ ∂J ′.

Then there is a function f∈ C2
P(Ω) such that f= f0 in Ω and such that f= f0 in

J ′. If f ′′
0 = 0 in J2, f can be taken so that f′′ = 0 in Ω.

Proof. For a sufficiently small open neighborhoodJ ′′ of J̄ ′ in J2 there is f̄0 ∈
C2(Ω) such thatf̄0 = f0 in J̄ ′′ and f0 5 f̄0 in Ω and thatf̄0|J ′′ ∈ C2

P(J ′′) since
f ′
0(x) |∈ P near∂J ′. So we may assume thatf0 ∈ C2(Ω) by replacingJ2 with

J ′′. We then apply the next elementary but important lemma on intervalsΩ\J ′ =
(b′,a′)∪ (a,b) and obtain a functionf on Ω\J ′ with f (k)(a′) = f (k)

0 (a′), f (k)(a) =
f (k)
0 (a) (k = 0,1,2), f ∈ C2

P(Ω\J̄ ′) and f = f0 on Ω\J ′. If we set f = f0 on J̄ ′,
so thatf ∈ C2

P(Ω), then f = f0 in Ω and f = f0 in J ′. If f ′′
0 = 0 on J2, our f

satisfiesf ′′ = 0 in Ω as noted in the next lemma. Thus the proof of Lemma 6.12
is complete if we admit the next lemma.

6.13. Lemma.Assume that a< b 5 ∞. For f0 ∈ C2[a,b) assume that f′0(a) |∈ P.
Then there is f∈ C2[a,b) ∩ C2

P(a,b) such that f = f0 at x = a up to second
derivatives, i.e., f(k)(a) = f (k)

0 (a) (k = 0,1,2) and f0 5 f in [a,b). If f (2)
0 (a) = 0,

then f can be taken so that f′′ = 0 on [a,b). The same assertion holds if we
replace[a,b) by (b,a] when−∞ 5 b < a.

Proof. Since the proof is the same forb > a, we may assume thata < b. We
may assume thata = 0 by a translation. We may assume thatf ′

0(0) = 0 by adding
−f ′

0(0)x to f and replacingP by P − f ′
0(0).

We may also assume that there isx1 = 0 such thatf ′
0(x) |∈ P for 0 5 x 5 x1

and that f ′′
0 = 0 on [x1,b) with f ′

0(x1) = 0. Indeed, if f ′′
0 (0) = 0, we take

σ ∈ C [0,b) such thatσ = f ′′
0 in [0,b), σ(0) = f ′′

0 (0) andσ = 0. We then set

f̄0(x) = f0(0) +
∫ x

0
dy
∫ y

0
dz σ(z),

so thatf̄0 = f0, f̄ ′′
0 = 0 on [0,b) with f (k)

0 (0) = f̄ (k)
0 (0) (k = 1,2). In this casex1

is chosen to be equal to zero andf ′′ = 0 on [0,b). If f ′′
0 (0)< 0, for eachε > 0

we takeσ ∈ C [0,b) such thatσ = f ′′
0 in [0,b), σ(0) = f ′′

0 (0) (< 0), σ = 0
in [ε, b), σ < 0 in [0, ε) and thatσ is increasing inx. Let f̄0 be defined as
in the preceding formula for̄f0 but with this newσ. It turns out that ifε > 0
is sufficiently small, then for ¯p = inf{ f̄ ′

0(x); 0 5 x 5 b} (= f̄ ′
0(ε)) we have

[p̄,0] ∩ P = ∅. Moreover, there isx1 > ε such thatf̄ ′
0(x1) = 0. Sincef̄ ′′

0 = σ = 0
on [ε, b), this f̄0 (= f0) has the required property off0 in this paragraph with
f (k)
0 (0) = f̄ (k)

0 (0) (k = 1,2).
It is easy to constructh ∈ C1[x1,b) such that

h = f ′
0(= 0), h′ = 0 on [x1,b),

h = f ′
0 nearx = x1 with x = x1



Evolving Graphs by Singular Weighted Curvature 159

and that{x ∈ (x1,b); h′(x) = p} is either the empty set or a nontrivial closed
interval for eachp ∈ P sincef ′

0 is nondecreasing on [x1,b). We then set

f (x) =

{
f0(x1) +

∫ x
x1

h(z) dz for all x ∈ [x1,b],

f0(x) for all x ∈ [0, x1].

By the choice ofh this f is in C2
P(0,b) and f = f0 in [0,b). Sincef = f0 near

x = 0 (even ifx1 = 0), the conditions on derivatives are clearly satisfied.

B. Proof of Theorem 6.8.Sinceϕ ∈ AP(Q) implies thatϕ is locally admissible
near any (̂t , x̂) in Q, the ‘if’ part is trivial. We then prove the ‘only if’ part.
Since the proof for a supersolution parallels that for a subsolution, we present
the proof for a subsolution.

Let u be a subsolution of (E). For (t̂ , x̂) ∈ Q let ϕ ∈ C(Q) be locally
admissible near (t̂ , x̂) in Q with

max
Q

(u∗ − ϕ) = (u∗ − ϕ)(t̂ , x̂).

Case 1.ϕ(t̂ , ·) is P-faceted at̂x . By definition there are bounded open intervals
I and J such that t̂ ∈ I ⊂ (0,T), R(ϕ(t̂ , ·), x̂) ⊂ J ⊂ Ω and such that
ϕ|I ×J ∈ AP(I × J ). Let I1 and J1 be open intervals such that̄I1 ⊂ I , J̄1 ⊂ J ,
t̂ ∈ I1, and R(ϕ(t̂ , ·), x̂) ⊂ J1. By Extension Lemma 6.11 there isψ ∈ AP(Q)
such thatϕ 5 ψ in Q andϕ = ψ in Ī1 × J̄2. We thus observe that

maxQ(u∗ − ψ) = (u∗ − ψ)(t̂ , x̂).

Sinceu is a subsolution, we see that

ψ̂t + F
(
t̂ , ψ̂x , ΛW(ψ(t̂ , ·), x̂)

)
5 0

with ψ̂t = ψt (t̂ , x̂), ψ̂x = ψx(t̂ , x̂). Sinceϕ = ψ in Ī1 × J̄1 and J1 contains the
faceted regionR(ϕ (t̂ , ·), x̂), this inequality is still valid if we replaceψ by ϕ.
We thus obtain (2.1) forϕ, which we wanted to prove.

Case 2.ϕx(t̂ , x̂) |∈ P. The proof parallels that for Case 1 if we replace
R(ϕ(t̂ , ·), x̂) with a single point{x̂}.

C. Proof of Theorem 6.9. If ϕ is locally admissible near (t̂ , x̂) in Q, thenϕ
is an admissible superfunction at (t̂ , x̂) in Q, so the ‘if’ part is trivial. We then
prove the ‘only if’ part. Since the proof for a supersolution parallels that for a
subsolution, we present the proof for a subsolution.

Let u be a subsolution of (E) in the local sense. For (t̂ , x̂) ∈ Q let ϕ be an
admissible superfunction at (t̂ , x̂) in Q with

max
Q

(u∗ − ϕ) = (u∗ − ϕ)(t̂ , x̂).

We shall construct a good locally admissible functionψ such thatψ(t̂ , x̂) =
ϕ(t̂ , x̂), ψ = ϕ in Q.

Case 1.ϕ(t̂ , ·) is P-faceted atx̂ in Ω and x̂ ∈ int R(ϕ(t̂ , ·), x̂).
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Step 1. By (A) of §6.5 there isτ ∈ T +
P ϕ(t̂ , x̂). By definition there are a

modulusω and three positive numbersδ, δ+, δ− such that

ϕ(t , x) − ϕ(t̂ , x̂) 5 τ (t − t̂) + p(x − x̂) + ω(|t − t̂ |)|t − t̂ |

for all (t , x) ∈ Q(δ, δ+, δ−) = (t̂ − δ, t̂ + δ) × Ñ−1(ϕ(t̂ , ·), x̂, δ+, δ−), where
p = ϕx(t̂ , x̂) ∈ P. As is well known, there isθ ∈ C1(R) such thatθ(0) = θ′(0) = 0
and

ω(|t − t̂ |)|t − t̂ | 5 θ(|t − t̂ |).
Although it is elementary, we present a general form of this fact.

6.14. Lemma.Let ω be a modulus. Let k be a nonnegative integer. Then there
is θ ∈ Ck [0,∞) such thatθ(j )(0) = 0 and θ(j )(x) = 0 for x = 0 with 0 5 j 5 k
andω(|ρ|)|ρ|k 5 θ(|ρ|) for all ρ ∈ R. In particular, for a given x0 ∈ Rm, G(x) =
θ(|x − x0|) is Ck as a function of x∈ Rm.

Proof of Lemma 6.14.This is a simple extension of [CEL, Lemma I.4]. We set

θj (t) =
∫ 2t

t
θj −1(s) ds, j = 1, θ0 = ω for t = 0,

so thatθj ∈ Cj [0,∞) with θ(i )
j (0) = 0 for 05 i 5 j . Sinceθj is nondecreasing,

we have
θj (t) = t θj −1(t) for t = 0

so thatθj (t) = t jω(t). We thus observe thatθ = θk has all desired properties; the
Ck property ofG at x = x0 follows from θ(j )(0) = 0 for 05 j 5 k. ut

By our choice ofθ we have

ϕ(t , x) − ϕ(t̂ , x̂) 5 p(x − x̂) + g(t) with g(t) = τ (t − t̂) + θ(|t − t̂ |)(6.1)

for all (t , x) ∈ Q(δ, δ+, δ−).

Step 2. We prove:For sufficiently small l> 0 there isξl ∈ C(J̄ ) with J =
{x; dist (x, R(ϕ(t̂ , ·), x̂)) < l } such that

(i) ξl is faceted atx̂ in J with R(ξl , x̂) ⊃ R(ϕ(t̂ , ·), x) and ξl = ϕ(t̂ , ·) in
R(ϕ(t̂ , ·), x̂);

(ii) χ+(ξl , x̂) = χ+(ϕ(t̂ , ·), x̂), χ−(ξl , x̂) = χ−(ϕ(t̂ , ·), x̂);

(iii) ϕ(t , x) 5 ξl (x) + g(t) for (t , x) ∈ Ī × J̄ for some neighborhood I oft̂ .

This is the essential part of the proof, which shows that our choice ofÑ−1 in
the definition ofT +

P is suitable. Let [b−,b+] denoteR(ϕ(t̂ , ·), x̂). On (b−,b+)
we setξl = ϕ(t̂ , ·). We extendξl on [b− − l ,b+ + l ] in the following way. Since
the extension on [b− − l , b−] parallels that on [b+, b+ + l ] we only show how
to extendξl on [b+ + l ]. If χ+(ϕ(t̂ , ·), x̂) = 1, we take

ξl (x) = sup{ϕ(t , x) − g(t); |t − t̂ | 5 1
2δ} for b+ 5 x 5 b+ + l
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where l < δ+. Sinceϕ(t , ·) is continuous,ξl is lower-semicontinuous. Sinceϕ
is upper-semicontinuous, the supremum is attained. Thus we see thatξl is now
continuous in [b+, b++l ]. Since (6.1) holds for (t , x) ∈ [ t̂ − 1

2δ, t̂ + 1
2δ]×[b−, b+],

ϕ(t , b+) − g(t) 5 p(b+ − x̂) + ϕ(t̂ , x̂) = ϕ(t̂ ,b+)

for t ∈ [ t̂ − 1
2δ, t̂ + 1

2δ]. This implies thatξl (b+) 5 ϕ(t̂ , b+). Sinceξl (b+) =
ϕ(t̂ , b+) is trivial, we have

ξl (b+) = ϕ(t̂ ,b+),

which yields the continuity ofξl at x = b+. By definition,ξl (x) = ϕ(t̂ , x), so that
ξl is a restriction on [b−, b+ + l ] of some faceted functioñξ with χ+(ξ̃, x̂) = 1.
Sinceχ+(ξ̃, x̂) is independent of̃ξ, we safely writeχ+(ξl , x̂), which is consistent
with our originalχ+ (if ξl is faceted at ˆx). By definition it is clear that

ϕ(t , x) 5 ξl (x) + g(t) on [t̂ − 1
2δ, t̂ + 1

2δ] × [b−, b+ + l ].

Assume now thatχ+(ϕ(t̂ , ·), x̂) = −1. For sufficiently smalll > 0 we have

ϕ(t̂ , b+ + l ) < ϕ(t̂ , x̂) + p(x − x̂).

Sinceϕ is upper-semicontinuous, there is a smallσ > 0 (l +σ < δ+, σ < l , σ <
1
2δ) such that

ϕ(t , x) < ϕ(t̂ , x̂) + p(x − x̂)

for |x − (b+ + l )| 5 σ, |t − t̂ | 5 σ. We take a continuous functionξl (x) for
|x − (b+ + l )| 5 σ such that

ϕ(t , x) < ξl (x) < ϕ(t̂ , x̂) + p(x − x̂), |x − (b+ + l )| < σ,

ξl (x) = ϕ(t̂ , x̂) + p(x − x̂) at x = b+ + l ± σ.

If we set
ξl (x) = ϕ(t̂ , x̂) + p(x − x̂) for b+ 5 x 5 b+ + l − σ,

thenξl is continuous in [b+, b+ + l ] with χ+(ξl , x̂) = −1. Note that (6.1) holds
for

x ∈ [b−, b+ + δ+), |t − t̂ | < δ sinceχ+(ϕ(t̂ , ·), x̂) = −1.

This yields

ϕ(t , x) 5 ξl (x) + g(t) for b+ 5 x 5 b+ + l − σ, |t − t̂ | < δ.

For x satisfyingb+ + l − σ 5 x 5 b+ + l , by the choice ofξl we have

ϕ(t , x) < ξl (x) for |t − t̂ | 5 σ.

Thus (iii) holds for|t − t̂ | 5 σ, x ∈ [b−, b+ + l ]. Extendingξl on [b−, b− − l ]
in the same way we obtainξl satisfying (i), (ii), (iii) of this step.

Step 3. We prove:There is fl ∈ C2
P(J ) ∩ C(J̄ ) such that

(i) fl is faceted at̂x in J with R( fl , x̂) ⊂ R(ξl , x̂);
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(ii) fl = ξl on R( fl , x̂) and fl > ξl on J̄\R( fl , x̂);
(iii) χ+( fl , x̂) = χ+(ξl , x̂), χ−( fl , x̂) = χ−(ξl , x̂);
(iv) dist (R( fl , x̂), ∂R(ξl , x̂)) 5 l .

It is not difficult to choose such anfl if C2
P(J ) is replaced byC2(J ). Indeed,

we have the next approximation lemma.

6.15. Lemma.Let ξ ∈ C(J̃ ) be faceted at̂x in J̃ whereJ̃ is an open interval.
For each l′ > 0 there is f ∈ C2(J̃ ) such that

(i) f is faceted at̂x in J̃ with R( f , x̂) ⊂ R(ξ, x̂);
(ii) f = ξ on R( f , x̂) and f > ξ on J̃\R( f , x̂);
(iii) χ±( f , x̂) = χ±(ξ, x̂);
(iv) dist (R( f , x̂), ∂R(ξ, x)) 5 l ′;
(v) f 5 ξ + l ′ in J̃ ;
(vi) R( f , x̂) = R(ξ, x̂) if χ(ξ, x̂) = −1.

To prove Step 3 we apply this lemma withl ′ = l , ξ = ξl , whereξ is continuously
extended in some neighborhoodJ̃ of J̄ and we denotef by f̄l . Sincef̄l ∈ C2(J̃ )
is faceted at ˆx, there is a neighborhoodJ2 of R( f̄l , x̂) such thatf̄l |J2 ∈ C2

P(J2)
with f̄ ′

l (x) |∈ P for x ∈ J2\R( f̄l , x̂). We take a neighborhoodJ ′ of R( f̄l , x̂) in
J2 and apply Lemma 6.12 withf0 = f̄l and obtainf ∈ C2

P(J ), which we denote
by fl . Sincefl = f̄l in J ′ and fl = f̄l in J̃ , our fl satisfies all properties (i)–(iv) of
this step.

Step 4. By Step 2 we observe that

ϕ(t , x) 5 fl (x) + g(t), (t , x) ∈ Ī × J̄ .

We extendψl (t , x) = fl (x) + g(t) outsideĪ × J̄ so thatψl ∈ C(Q) andϕ 5 ψl

in Q. This is possible sinceϕ is upper-semicontinuous (cf. Lemma 6.18). Since
fl ∈ C2

P(J ), we haveψl |I ×J ∈ AP(I × J ), so thatψl is locally admissible near
(t̂ , x̂) in Q. Sinceψl (t̂ , x̂) = ϕ(t̂ , x̂) andϕ 5 ψl and sinceϕ is a test function of
u at (̂t , x̂), we have

max
Q

(u∗ − ψl ) = (u∗ − ψl )(t̂ , x̂).

Sinceu is a subsolution of (E) in the local sense,

g′(t̂) + F (t̂ , f ′
l (x̂), ΛW( fl , x̂)) 5 0.(6.2)

Note that by Steps 2 and 3,χ( fl , x̂) = χ(ϕ(t̂ , ·), x̂) and

|L( fl , x̂) − L(ϕ(t̂ , ·), x̂)|
5 |L( fl , x̂) − L(ξl , x̂)| + |L(ξl , x̂) − L(ϕ(t̂ , ·), x̂)|
5 2l + 2l = 4l .

This implies that
ΛW( fl , x̂) → ΛW(ϕ(t̂ , ·), x̂)
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as l → 0 sincef ′
l (x̂) = p. By the continuity (F1) ofF we sendl → 0 in (6.2) to

get
τ + F (t̂ ,p, ΛW(ϕ(t̂ , ·), x̂)) 5 0

sinceg′(t̂) = τ . We have thus proved (i) in§6.6 for Case 1.

Case 2.There is(τ,p,X) ∈ P +ϕ(t̂ , x̂) with p |∈ P. By definition ofP + there is
a modulusω such that

ϕ(t , x) − ϕ(t̂ , x̂) 5 τ (t − t̂) + p(x − x̂) + 1
2X(x − x̂)2

+ω(|t − t̂ | + |x − x|2)(|t − t̂ | + |x − x̂|2) in Q.

The last term is dominated by

2ω(2|t − t̂ |)|t − t̂ | if |t − t̂ | = |x − x̂|2,
2ω(2|x − x̂|2)|x − x̂|2 if |t − t̂ | 5 |x − x̂|2

so that

ω(|t − t̂ | + |x − x̂|2)(|t − t̂ | + |x − x̂|2)

5 ω1(|t − t̂ |)|t − t̂ | + ω2(|x − x̂|)|x − x̂|2

with another modulusω1(ρ) = 2ω(2ρ), ω2(ρ) = 2ω(2ρ2). By Lemma 6.14 there
areθ1 ∈ C1[0,∞), θ2 ∈ C2[0,∞) such thatθ1(0) = θ′

1(0) = 0, θ2(0) = θ′
2(0) =

θ′′
2 (0) = 0 and that

ω1(|t − t̂ |)|t − t̂ | 5 θ1(|t − t̂ |),
ω2(|x − x̂|)|x − x̂|2 5 θ2(|x − x̂|).

We have thus observed that

ϕ(t , x) − ϕ(t̂ , x̂) 5 τ (t − t̂) + p(x − x̂) + 1
2X(x − x̂)2

+ θ1(|t − t̂ |) + θ2(|x − x̂|) in Q.

We then set

f (x) = ϕ(t̂ , x̂) + p(x − x̂) + 1
2X(x − x̂)2 + θ2(|x − x̂|),

g(t) = τ (t − t̂) + θ1(|t − t̂ |), ψ(t , x) = f (x) + g(t)

so thatf ∈ C2(R), g ∈ C1(R) and

ϕ(t̂ , x̂) = ψ(t̂ , x̂), ϕ 5 ψ in Q.

This yields
max

Q
(u∗ − ψ) = (u∗ − ψ)(t̂ , x̂),

sinceϕ is a test function ofu at (̂t , x̂). By definition of f andg, we have

τ = g′(t̂), p = f ′(x̂) |∈ P, X = f ′′(x̂).
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Sincep |∈ P, f ∈ C2(R) andg ∈ C1(R), it follows thatψ is locally admissible
near (̂t , x̂) in Q. Sinceu is a subsolution of (E) in the local sense, we have

τ + F (t̂ ,p, W′′( p)X) 5 0,

which proves (ii) in§6.6 for Case 2.

Case 3.ϕ(t̂ , ·) is P-faceted atx̂ in Ω but x̂ ∈ ∂R(ϕ(t̂ , ·), x̂). In this case,ϕ is
locally admissible near (t̂ , x̂) in Q by (C) of §6.5. Sinceu is a subsolution of
(E) in the local sense, it is clear that (iii) of§6.6 holds. The proof of Theorem
6.9 is now complete. ut
6.16. Remark.We do not use degenerate ellipticity (F2) and (F3) in proving
Theorems 6.8 and 6.9. We are forced to use an approximation argument, so the
continuity (F1) is invoked. In Theorem 6.8 we do not need even (F1); all we
need is thatF be a function from [0,T) × R × R to R.

6.17. Remark(Definition of Solutions). In Definition 6.7 for the local version,
our test functionψ at (̂t , x̂) is assumed to be inC(Q). It turns out that we may
weaken this requirement so thatψ ∈ C(Q′) is locally admissible at (t̂ , x̂) in Q′,
whereQ′ is some rectangular neighborhood of (t̂ , x̂) in Q and that

max
Q′

(u∗ − ψ) = (u∗ − ψ)(t̂ , x̂).

To see this, let̂Q be a rectangular neighborhood of (t̂ , x̂) in Q′ with ψ|Q̂ ∈ AP(Q̂).
It suffices to prove that there is̄ψ ∈ C(Q) that satisfies

(i) ψ = ψ̄ in Q̂,
(ii) ψ 5 ψ̄ in Q′,
(iii) max

Q′
(u∗ − ψ) = max

Q
(u∗ − ψ̄).

We may assume that maxQ′ (u∗ − ψ) = 0 andu∗ < ψ near∂Q′. We may also
assume thatψ ∈ C(Q̄′) by taking Q′ a little bit smaller. Our desiredψ is
constructed by using the next lemma.

6.18. Lemma.Letw be an upper-semicontinuous function in Q\Q′ with values
in [−∞,∞). Letψ ∈ C(∂Q′) satisfyw < ψ on∂Q′. Then there isψ̄ ∈ C(Q\Q′)
that satisfiesw 5 ψ̄ in Q\Q′ and ψ̄ = ψ on ∂Q′.

Proof. As in the proof of Lemma 6.11, we taked and d̄ and defineJ r = J (r )
and I r = I (r ) so thatI 0 × J 0 = Q′ and that∪r =0I r = (0,T), ∪r =0J r = Ω. We
set

h(r ) = max{w(t , x), (t , x) ∈ Q\Q′, (t , x) ∈ Ī r × J̄ r }.
SinceĪ r × J̄ r is compact andw is upper-semicontinuous withw < ∞ on Q, we
see thath is upper-semicontinuous in [0,∞). Sinceh is nondecreasing, there is
a continuous function̄h = h with h(0) = h̄(0). We then set

ψ0(t , x) = h̄(max(d(x), d̄(t)) for (t , x) ∈ Q\Q′,
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so thatw 5 ψ0 in Q\Q′. Since sup∂Q′ w < ψ, we modifyψ0 near∂Q′ to obtain
ψ̄ satisfyingψ̄ = w in Q\Q′ and ψ̄ = ψ on ∂Q′. ut

From Remark 6.17 (with Theorem 6.8) it easily follows that a restriction of
a subsolution is a subsolution.

6.19. Proposition(Restrictions).Let u be a subsolution(supersolution) of (E) in
Q. Let Q0 = I0 × J0 be an open rectangular set in Q0. Then u|Q0 is a subsolution
(supersolution) of (E) in Q0.

6.20. Proposition.Let {Qr }∞
r =1 be a sequence of rectangular domains exhaust-

ing Q, i.e., Qr ⊂ Qr +1 and ∪∞
r =1Qr = Q. For a function u on Q, assume that

u is a subsolution(supersolution) of (E) on each Qr . Then u is a subsolution
(supersolution) in Q provided that u∗ < ∞(u∗ > −∞) on [0,T) × Ω̄.

The last statement trivially follows from the definition of a subsolution in§2.

7. Proof of Comparison Theorems

The basic strategy is in finding suitable test functions ofu and v to obtain
a contradiction by assuming that the conclusionu∗ 5 v∗ were false. We use
the method developed in [CGG] and [Go]. However, for example, ifu and v
are faceted at the points in which we are interested, the standard maximum
principle [CIL] does not apply. We apply our maximum principle to overcome
this difficulty. Unfortunately,u andv are not necessarily faceted, so we need to
use sup-convolution to regularize these functions. Such a regularization is used in
proving the standard maximum principle; however, the convolution is different
from the usual one.

For z = (t , x), z′ = (s, y) ∈ Q = (0,T) × Ω we set

w(z, z′) = u(z) − v(z′).

We consider “barrier functions”

Ψζ(z, z′; ε, σ, γ, γ′) = Bε(x − y − ζ) + S(t , s;σ, γ, γ′),

Bε(x) = x2

ε , S(t , s;σ, γ, γ′) = Bσ(t − s) + γ
T−t + γ′

T−s

for positive parametersε, σ, γ, γ′ and a real parameterζ. The termS is very
large neart = T or s = T while Bε(x − y − ζ) is very large away fromx − y = ζ
if ε is sufficiently small, andBσ(t − s) is very large away fromt = s if σ is
sufficiently small. We often writeΨζ(z, z′) and S(t , s) instead of showing the
dependence on all positive parameters. As usual we shall analyze maximizers of

Φζ(z, z′) = w(z, z′) − Ψζ(z, z′).

In proving the Comparison Theorem we may assume thatu and−v are upper-
semicontinuous in̄Q with values inR∪{−∞} by consideringu∗ andv∗ instead
of u andv. For this reason, in this section we always assume that this property
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holds for u andv. SinceQ̄ is compact, there is a maximizer (zζ , z′
ζ) in Q̄ × Q̄

of Φζ over Q̄ × Q̄, i.e.,

supΦζ ≡ sup{Φζ(z, z′); (z, z′) ∈ Q̄ × Q̄} = Φζ(zζ , z
′
ζ).

Before going into the detail we summarize our method. We may assume that
F is continuous up tot = T, andu∗ 5 v∗ on ∂̄pQ(= ¯∂pQ = [0,T]×∂Ω×{0}×Ω̄)
by takingT smaller than the originalT.

We first show thatΦζ takes on a positive maximum only onQ ×Q by taking
all parameters sufficiently small. This follows from the order ofu andv on the
parabolic boundary. The argument is standard forζ = 0. We state a quantitative
version for later use (cf.§A. Choice of Parameters).

We then classify the situations depending on the derivative ofΨζ at a maxi-
mizer ofΦζ (cf. §B). To simplify the explanation we consider the caseP = {0}.
If there is a sequenceζj → 0 such that the (spatial) derivative ofΨζj at some
maximizer ofΦζj does not equal zero, then the standard maximum principle
[CIL] does apply to get a contradiction. (cf.§G). We must analyze the remaining
case (Case I), i.e., the derivative ofΨζ always equals zero at any maximizer
(t̂ζ , x̂ζ , ŝζ , ŷζ) for smallζ, which yieldsB′

ε(x̂ζ − ŷζ − ζ) = 0 (cf. §C). This implies
that g(ζ) = supΦζ is constant for smallζ (by the Constancy Lemma 7.5). From
this property we see thatu(t̂0, ·) and −v(ŝ0, ·) assume their local maxima at ˆx0

and ŷ0 respectively (Proposition 7.7).
In general,P is not a singleton andB′

ε(x̂ζ − ŷζ − ζ) is not constant asζ → 0.
Fortunately we find someζ0 (close to zero) such thatB′

ε(x̂ζ − ŷζ − ζ) is some
constantp0 ∈ P for ζ close toζ0 (Lemma 7.4). The local behavior ofu andv
should be modified as in Proposition 7.7 so extra effort is necessary (cf.§C).

We continue to discuss the caseP = {0}. The constancy ofg implies that

u(t , x) − v(s, y) − S(t , s) 5 u(t̂0, x̂0) − v(ŝ0, ŷ0) − S(t̂0, ŝ0)

for t , s ∈ (0,T) and x close toy, say |x − y| < δ. If u(t̂0, ·) and v(ŝ0, ·) are
faceted with slope zero with facet length< 1

2δ at x̂0 and ŷ0, respectively, this
inequality with t = t̂0, s = ŝ0 implies thatχu 5 0, χv = 0, so that

χu

Lu
− χv

Lv
5 0

with

χu = χ(u(t̂0, ·), x̂0), Lu = L(u(t̂0, ·), x̂0),

χv = χ(v(ŝ0, ·), ŷ0), Lv = L(v(ŝ0, ·), ŷ0).

Applying the infinitesimal version of the definition of solutions, we get from the
above inequality foru, v andS that

St (t̂0, ŝ0) + F

(
t̂0,0,

χu

Lu
∆

)
5 0,

Ss(t̂0, ŝ0) − F

(
ŝ0,0,

χv

Lv
∆

)
5 0,
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where∆ = W ′(+0) − W ′(−0). Adding the last two inequalities and using the
inequalityχu/Lu − χv/Lv 5 0 and (F2), we have

γ

(T − t̂0)2
+

γ′

(T − ŝ0)2
+ F

(
t̂0,0,

χu

Lu
∆

)
− F

(
ŝ0,0,

χu

Lu
∆

)
5 0,

yielding
(γ + γ′)/T2 5 ω(|t̂0 − ŝ0|)

whereω is a modulus of continuity ofF (t ,0,X) in t and where uniform continuity
(F3) is invoked ifF depends ont . We fix γ andγ′ and lettingσ → 0 so that
t̂0 − ŝ0 → 0 (Proposition 7.1). By the continuity ofF (up to t = T) we end up
with (γ + γ′)/T2 5 0, a contradiction (cf.§F).

Unfortunately,u andv are not necessarily faceted, so we need to take sup-
convolutions with faceted functions (cf.§D). If u(t̂0, ·) assumes a local maximum
at x̂0, the sup-convolutionuα(t̂0, ·) is faceted inR at x̂0, as we observed in§5. The
length of the facet may be very large. We should apply our maximum principle
in §4 to getχu/Lu − χv/Lv 5 0 (cf. §E). Moreover, we should be careful about
the definition of solutions in the infinitesimal version as in§6.

The proof whenu and v are spatially periodic is easier. We shall note the
necessary alterations at the end of this section (cf.§H).

A. Choice of Parameters

7.1. Proposition. Assume that u and−v are upper-semicontinuous in̄Q with
values inR ∪ {−∞}. Assume that

m0 = sup{u(z) − v(z); z ∈ Q} > 0.

(i) For each m′
0(0< m′

0 < m0) there areγ0, γ
′
0 > 0 such that

supΦζ > m′
0 for all ε > 0, σ > 0, γ0 > γ > 0, γ′

0 > γ′ > 0

and |ζ| 5 κ0(ε) = 1
2(ε(m0 − m′

0))1/2.
(ii) Let (zζ , z′

ζ) = (tζ , xζ , sζ , yζ) be a maximizer ofΦζ over Q̄ × Q̄. Then,

|tζ − sζ | 5 (Mσ)1/2, |xζ − yζ − ζ| 5 (M ε)1/2

with
M = sup{w(z, z′), (z, z′) ∈ Q̄ × Q̄}

for all ε > 0, σ > 0, γ0 > γ > 0, γ′
0 > γ′ > 0 and ζ with |ζ| 5 κ0(ε). In

particular,
lim
σ→0

|tζ − sζ | = 0, lim
ε→0

|xζ − yζ | = 0.

(iii) Assume that u5 v on ∂̄pQ (= ∂pQ) and thatΩ is a bounded open interval.
Then there areε0, σ0 such that(zζ , z′

ζ) is an (interior) point of Q× Q for all
0< ε < ε0, 0< σ < σ0, 0< γ < γ0, 0< γ′ < γ′

0 and |ζ| 5 κo(ε).
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7.2. Remark.Sincew is upper-semicontinuous, we may assume in (iii) that for
eachξ > 0

w(z, z′) 5 ξ, z ∈ ∂̄pQ or z′ ∈ ∂̄pQ

for all |x −y| < (M ε0)1/2 +κ0(ε0), |t −s| < (Mσ0)1/2 with z = (t , x), z′ = (s, y).
In what follows we assume thatm0 > 0 with ξ = 1

4m0,m′
0 = m0 − 1

2ξ and fix
ε0, σ0, γ0, γ

′
0 so that all properties (i)–(iii) and those in Remark 7.2 hold.

Proof of Proposition 7.1. The proof is standard especially forζ = 0 cf., e.g.,
[GGIS], but we give it for completeness.

(i) For eachm,m′
0 < m < m0 there is a pointz0 = (t0, x0) ∈ Q satisfying

m0 = u(z0) − v(z0) = m.

By definition we see that

supΦζ = Φζ(z0, z0) = m − ζ2/ε− S(t0, t0;σ, γ, γ′).

Takeγ0, γ
′
0 so small that

S(t0, t0;σ, γ0, γ
′
0) =

γ0

T − t0
+

γ′
0

T − t0
<

m − m′
0

2
.

If m is close tom0, saym0 − m 5 m − m′
0, thenκ0(ε)2 5 1

2ε(m − m′
0). For this

choice ofm, we end up with

supΦζ = m − 1
2(m − m′

0) − 1
2(m − m′

0) > m′
0

for γ < γ0, γ
′ < γ′

0 provided that|ζ| 5 κ0(ε).

(ii) Since supΦζ = m′
0 = 0, we see thatw = Ψζ at (zζ , z′

ζ). Sincew is upper-
semicontinuous,w is bounded onQ̄ × Q̄, sayw 5 M . The inequalityw = Ψζ

at (zζ , z′
ζ) yields

|xζ − yζ − ζ|2
ε

5 M ,
|tζ − sζ |2

σ
5 M

or
|xζ − yζ | 5 (M ε)1/2 + |ζ|, |tζ − sζ | 5 (Mσ)1/2.

SinceM is independent of all parametersε, σ, γ, γ′ andξ, this yields (ii).

(iii) We argue by contradiction. Suppose that for each 0< γ < γ0,0 < γ′ < γ′
0

there were a sequence{(εj , σj )}∞
j =1 with εj ↓ 0, σj ↓ 0 such that there is a

maximizer
(zj , z

′
j ) ∈ (Q̄ × Q̄)\(Q × Q)

of Φζj (·, ·; εj , σj , γ, γ
′) over Q̄ × Q̄ with someζj , |ζj | 5 κ0(εj ). SinceQ̄ × Q̄

is compact, we may assume thatzj → z̄, z′
j → z̄′ for some point ¯z, z̄′ ∈ Q̄ by

taking a subsequence if necessary. By (ii) we observe that ¯z = z̄′.
The condition (zj , z′

j ) |∈ Q×Q implies that eitherzj ∈ ∂̄pQ or z′
j ∈ ∂̄pQ since

the time component ofzj and z′
j cannot beT because of the presence of terms
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γ/(T − t), γ′/(T − s) in the definition ofΨξ. Since∂̄pQ is closed, ¯z belongs to
∂̄pQ. Since (zj , z′

j ) = (tj , xj , sj , yj ) is a maximizer ofΦζ , (i) implies that

0< 1
2m0 < w(tj , xj , sj , yj ) − Bεj (xj − yj − ζj ) − S(tj , sj ;σj , γ, γ

′).

By the monotonic dependence on the parametersε, σ, we see that the right-hand
side is dominated from above by

w(tj , xj , sj , yj ) − Bεj0
(xj − yj − ζj ) − Bσj0

(tj − sj )

if j = j0. Sincew is upper-semicontinuous, sendingj → ∞ yields

0< 1
2m0 5 w(z̄, z̄) = u(z̄) − v(z̄).

Sincez̄ ∈ ∂̄pQ, this contradictsu 5 v on ∂̄pQ.

B. Classification

We classify the situations depending on the value of derivative ofΨζ at a
maximizer ofΦζ . Let g denote the maximum value ofΦζ , i.e.,

g(ζ) = supΦζ = sup{Φζ(z, z′); (z, z′) ∈ Q̄ × Q̄}.
Let A(ζ) denote the set of maximizers ofΦζ over Q̄ × Q̄, i.e.,

A(ζ) = {(z, z′) ∈ Q̄ × Q̄; g(ζ) = Φζ(z, z′)}.
Let B (ζ) denote the set of values of derivativesBε(x − y − ζ) at a point of
A(ζ), i.e.,

B (ζ) = {2(x − y − ζ)/ε; (t , x, s, y) ∈ A(ζ)}.
Of course, bothA andB depend onε, σ, γ, γ′ with 0 < ε < ε0, 0< σ < σ0,
0< γ < γ0, 0< γ′ < γ′

0 ; however, we do not indicate its dependence since we
shall fix these numbers in§§B–E. We recall basic properties ofA andB :

7.3. Proposition on Maximizers.(i) The setA(ζ) is a nonempty subset of Q×Q
for ζ, |ζ| 5 κ0(ε).
(ii) The graph ofA (as a set-valued function) is compact, i.e.,

graphA = {(ζ, z, z′); (z, z′) ∈ A(ζ), |ζ| 5 κ0(ε)}
is compact in[−κ0(ε), κ0(ε)] × Q × Q.
(iii) The graph ofB is compact in[−κ0(ε), κ0(ε)] × R.

Proof. (i) Sincew is an upper-semicontinuous function andQ̄ is compact,A(ζ)
is nonempty. The assertion thatA(ζ) is contained inQ × Q has been proved in
Proposition 7.1(iv).

(ii) We note thatΦζ is continuous inζ. Since a supremum of a set of continuous
functions is lower-semicontinuous,g is lower-semicontinuous so thatΦζ − g is
upper-semicontinuous. The set of maximizers ofΦζ −g in Σ = [−κ0(ε), κ0(ε)] ×
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Q̄ × Q̄ equals graphA. SinceΦζ − g is upper-semicontinuous onΣ, graphA
is compact.

(iii) Since graphB is interpreted as the image of graphA of a linear mapping,
graphB should be compact.

The situation is divided into two cases.

Case I. There isκ1 5 κ0(ε) such thatB (ζ) is contained inP for all ζ, |ζ| 5 κ1.
Case II. This is the negation of Case I, that is, there is a sequenceζj → 0 such
that B (ζj ) is not contained inP.

We shall study Case I in§§C–F. Our maximum principle for faceted functions
will be invoked in§E.

C. Local Behavior of u andv

The next lemma is trivial ifP is a singleton.

7.4. Lemma.Consider Case I. For0< κ 5 κ1 there areζ0 with |ζ0| < κ, δ > 0
with δ + |ζ0| < κ and p0 ∈ P such thatB (ζ) contains p0 for all ζ such that
|ζ − ζ0| 5 δ, |ζ| 5 κ.

Proof. SinceP is discrete and since graphB is closed, for eachp ∈ P the set

Yp = {ζ; |ζ| 5 κ, p ∈ B (ζ)}
is closed in [−κ, κ]. We know thatB (ζ) is a nonempty subset ofP, that is,

[−κ, κ] = ∪{Yp; p ∈ P}.
SinceP is at most countable, the Baire category theorem [Y, Chapter 0] says
that Yp0 contains an interior pointζ0 for somep0 ∈ P. ut

We claim thatg(ζ)−p0(ζ−ζ0) is constant on (ζ0 −δ, ζ0 +δ). The next lemma
is general and it does not need the assumptions made so far.

7.5. Constancy Lemma.Let K be a compact set inRN and let h be a real-
valued upper-semicontinuous function on K . Letφ be a C2 function onRd with
1 5 d < N . Let G be a bounded domain inRd. For eachζ ∈ G assume that
there is a maximizer(rζ , ρζ) ∈ K of

Hζ(r , ρ) = h(r , ρ) − φ(r − ζ).

over K such that∇φ(rζ − ζ) = 0. Then,

hφ(ζ) = sup{Hζ(r , ρ); (r , ρ) ∈ K}
is constant on G.

Proof. Clearly, Hζ(rη, ρη) 5 hφ(ζ) for η ∈ G. By definition we have

Hζ(rη, ρη) = Hη(rη, ρη) + φ(rη − η) − φ(rη − ζ),

which yields
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hφ(η) 5 hφ(ζ) + φ(rη − ζ) − φ(rη − η).

Since∇φ(rη − η) = 0, this yields

hφ(η) 5 hφ(ζ) +
1
2

∫ 1

0
∇2φ(rη − η − τ (ζ − η))dτ (ζ − η) · (ζ − η)

SinceG is bounded, it follows that

hφ(η) − hφ(ζ) 5 C |η − ζ|2

with C independent ofη, ζ ∈ G. Changing the role ofη, ζ we end up with

|hφ(η) − hφ(ζ)| 5 C |η − ζ|2.
This implies thathφ is differentiable onG, whose derivative is always zero.
SinceG is connected, this means thathφ is a constant function onG. ut
Remark.In Lemma 7.5 it suffices to assume thatφ is in C1 instead ofC2. Indeed,
since∇φ is uniformly continuous on every compact setZ , there is a modulus
ωZ that satisfies

|φ(x) − φ(y) − ∇φ(y) · (x − y)| 5 ωZ (|x − y|)|x − y|
for x, y ∈ Z . Sincerη − η andrη − ζ move in some compact set, sayZ , we see
that

|φ(rη − ζ) − φ(rη − η)| 5 ωZ (|η − ζ|)|η − ζ|;
here∇φ(rη − η) = 0 is invoked. This yields, as in the proof of Lemma 7.5,

|hφ(η) − hφ(ζ)| 5 ωZ (|η − ζ|)|η − ζ|
which implies thathφ is differentiable with∇hφ ≡ 0, so thathφ is constant on
G. ut

We always use the sameκ, ζ0,p0 andδ as in Lemma 7.4. We apply Lemma
7.5 with

φ(r ) = Bε(r ) − p0r , G = (ζ0 − δ, ζ0 + δ), d = 1,

h(r , ρ) = w(t , r + y, s, y) − p0(r − ζ0) − S(t , s),

ρ = (t , s, y), N = 4,

K = {(r , ρ); (t , s) ∈ [0,T] × [0,T], r = x − y, (x, y) ∈ Ω̄ × Ω̄}
to get the constancy ofhφ(ζ) = g(ζ) − p0(ζ − ζ0).

7.6. Proposition. The functiong̃(ζ) = g(ζ) − p0(ζ − ζ0) is constant on G=
(ζ0 − δ, ζ0 + δ).

This gives information on the local behavior ofw near a maximizer ofΦζ0.

7.7. Proposition. Let (ẑ, ẑ′) = (t̂ , x̂, ŝ, ŷ) be a maximizer ofΦζ0, i.e., (ẑ, ẑ′) ∈
A(ζ0) with the property that p0 = 2(x̂ − ŷ − ζ0)/ε. Let u0 andv0 denote

u0(t , x) = u(t , x) − p0x, v0(s, y) = v(s, y) − p0(y + ζ0).
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Then u0(t̂ , ·) and−v0(ŝ, ·) take their local maxima at̂x andŷ respectively. More
precisely,

u0(t̂ , x) 5 u0(t̂ , x̂) for all x , |x − x̂| < δ, x ∈ Ω,

v0(ŝ, y) = v0(ŝ, ŷ) for all y , |y − ŷ| < δ, y ∈ Ω.

Proof. Step 1. We prove:For w0(z, z′) = u0(t , x) − v0(y, s), let E denote

E(z, z′) = w0(z, z′) − S(t , s),

where S is the same as in the definition ofΨζ . Let E1 be

E1 = sup{E(z, z′); z = (t , x) ∈ Q̄, z′ = (s, y) ∈ Q̄, (x, y) ∈ Σδ}
with Σδ = {(x, y) ∈ Ω̄ × Ω̄; |x − y − ζ0 − q0| < δ} with q0 = x̂ − ŷ − ζ0. Then
E1 = Φζ0(ẑ, ẑ′) − q2

0/ε (= E(ẑ, ẑ′)).

We first observe that

Φζ(z, z′) = w0(z, z′) − Bε(x − y − ζ) + p0(x − y − ζ0) − S(t , s).

For ζ, |ζ − ζ0| < δ recalling thatp0 = B′
ε(q0) = 2(xζ − yζ − ζ)/ε (independent of

ζ) with some (tζ , xζ , sζ , yζ) ∈ A(ζ) we rearrange

εBε(x − y − ζ) − εp0(x − y − ζ0)

= (x − y − ζ)2 − εp0(x − y − ζ) − εp0(ζ − ζ0)

= (x − y − ζ − (xζ − yζ − ζ))2

−(xζ − yζ − ζ)2 − 2(xζ − yζ − ζ)(ζ − ζ0)

= (x − y − ζ − q0)2 − q2
0 − 2q0(ζ − ζ0)

to obtain

Φζ(z, z′) = w0(z, z′) − Bε(x − y − ζ − q0) − S(t , s) + q2
0/ε + p0(ζ − ζ0).

Since Proposition 7.6 implies that ˜g(ζ) = g(ζ)−p0(ζ−ζ0) is constant for|ζ−ζ0| <
δ,

Φζ0(ẑ, ẑ′) = g̃(ζ0) = sup{g̃(ζ); |ζ − ζ0| < δ}
= sup{Φζ(z, z′) − p0(ζ − ζ0); (z, z′) ∈ Q̄ × Q̄, |ζ − ζ0| < δ}
= sup

|ζ−ζ0|<δ

sup{Φζ(t , x, s, y) − p0(ζ − ζ0);

x − y − q0 = ζ, (t , x, s, y) ∈ Q̄ × Q̄}.
If x − y − q0 = ζ, then

Φζ(z, z′) − p0(ζ − ζ0) = w0(z, z′) − Bε(0) − S(t , s) + q2
0/ε

= E(z, z′) + q2
0/ε.

We thus obtain
Φζ0(ẑ, ẑ′) = E1 + q2

0/ε.
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Sincex̂ − ŷ − q0 = ζ0, we see as above that

Φζ0(ẑ, ẑ′) = E(ẑ, ẑ′) + q2
0/ε,

which proves the last equality in Step 1. Since (ˆx, ŷ) ∈ Σδ, the converse inequal-
ity

Φζ0(ẑ, ẑ′) 5 E1 + q2
0/ε

holds. The proof of Step 1 is now complete.

Step 2. From Step 1 it follows that

w0(t̂ , x, ŝ, y) − S(t̂ , ŝ) 5 w0(t̂ , x̂, ŝ, ŷ) − S(t̂ , ŝ) = E(ẑ, ẑ′)

for (x, y) ∈ Σδ. Settingy = ŷ or x = x̂ respectively yields

u0(t̂ , x) 5 u0(t̂ , x̂) for |x − x̂| < δ,

v0(ŝ, y) = v0(ŝ, ŷ) for |y − ŷ| < δ.

7.8. Remark.If P consists of only the zero point, Lemma 7.4 is trivial with
ζ0 = 0, δ = κ and p0 = 0. In this caseq0 = 1

2εp0 = 0,u0 = u, andv0 = v so that
the proof of Proposition 7.7 is simplified. To understand the main idea of the
proof of the Comparison Theorem it is a good idea to consider this special case.

7.9. Corollary to Proposition 7.7.

u0(t , x) − v0(s, y) − S(t , s) 5 u0(t̂ , x̂) − v0(ŝ, ŷ) − S(t̂ , ŝ)

for all (x, y) ∈ Σδ, t , s ∈ [0,T], where

Σδ = {(x, y) ∈ Ω̄ × Ω̄; |x − y − (x̂ − ŷ)| < δ},

S(t , s) =
γ

T − t
+

γ′

T − s
+

(t − s)2

σ
.

This follows immediately from Step 1 of the proof of Proposition 7.7.

7.10. Proposition on the Behavior Away from a Local Maximum.Let (ẑ, ẑ′) =
(t̂ , x̂, ŝ, ŷ),u0 andv0 be the same as in Proposition 7.7. LetΩ = (a,b). Then, there
is x1 ∈ (x̂,b1) or y1 ∈ (ŷ,b2) such that

u0(t̂ , x1) < u0(t̂ , x̂) or v0(ŝ, y1) > v0(ŝ, ŷ)

with η = x̂ − ŷ, b1 = min(b, b + η), b2 = min(b, b − η). The same assertion
is valid if (x̂,b1) and (ŷ,b2) are replaced by(a1, x̂) and (a2, ŷ), respectively, with
a1 = max(a, a + η), a2 = max(a, a − η).

Proof. Here Remark 7.2 is explicitly invoked. We may assume that ˆy = x̂.
Suppose that the first assertion were false. Then

u0(t̂ , x) = u0(t̂ , x̂) for all x with x̂ < x < b + η,

v0(ŝ, y) 5 v0(x̂, ŷ) for all y with ŷ < y < b.
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Sinceu0 and−v0 are upper-semicontinuous on̄Q,

u0(t̂ ,b − η) = u0(t̂ , x̂), v0(ŝ,b) 5 v0(ŝ, ŷ).

Sinceq0 = x̂ − ŷ − ζ0,

u0(t̂ ,b − η) − v0(ŝ,b) = u(t̂ ,b − η) − p0(b − η) − v(ŝ,b) + p0(b + ζ0)

= u(t̂ ,b − η) − v(ŝ,b) + p0(ŷ − x̂ + ζ0)

= u(t̂ ,b − η) − v(ŝ,b) − q2
0/ε.

By Remark 7.2 and Proposition 7.1(ii) this yields

u0(t̂ , x̂) − v0(ŝ, ŷ) 5 u0(t̂ ,b − η) − v0(ŝ,b) 5 ξ − q2
0/ε = m0/4 − q2

0/ε.

SinceΦζ0(t̂ , x̂, ŝ, ŷ) = m0 − 1
8m0 by Proposition 7.1(i), Step 1 of the proof of

Proposition 7.7 yields

u0(t̂ , x̂) − v0(ŝ, ŷ) > E(t̂ , x̂, ŝ, ŷ) = 7
8

m0 − q2
0

ε
.

We thus obtain a contradiction:

m0

4
− q2

0

ε
= u0(t̂ , x̂) − v(ŝ, ŷ) >

7
8

m0 − q2
0

ε
.

The proof of the second assertion is the same, and so is omitted.

D. Preparation for Applying the Maximum Principle

We fix κ in Lemma 7.4, sayκ = κ1. Key properties ofu0 andv0 are summa-
rized in Proposition 7.7, Corollary 7.9 and Proposition 7.10.

7.11. Applications of sup-convolutions.Sinceu0 and v0 in Proposition 7.7 may
not be continuous, we regularize them by taking sup-convolutions introduced in
§5. Forρ = 0 andλ > 0, let ϑ(x, ρ, λ) denote

ϑ(x, ρ, λ) =




(x − ρ)2/λ, x > ρ,

0, |x| 5 ρ,

(x + ρ)2/λ, x < −ρ.
If ρ = λ (> 0), we simply write it asϑ(x, ρ). We consider sup-convolutions ofu0

and−v0 by ϑ. Forα > 0 let uα
0 by the sup-convolution ofu0 in the x-direction,

i.e.,
uα

0 (t , x) = (u0(t , ·))α = sup{u0(t , η) − ϑ(η − x, α); η ∈ R},
where we use the convention thatu0 = −∞ if η is outsideΩ̄. The inf-convolution
of v0 is defined byv0β = −(−v0)β for β > 0. Both functionsuα

0 , v0β are defined
on [0,T] × R.

7.12. Proposition.Let (t̂ , x̂, ŝ, ŷ),u0 andv0 be as in Proposition 7.7. Then there
is α0 > 0 such that for0< α 5 α0
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(i) uα
0 (t̂ , ·) andv0α(ŝ, ·) are respectively faceted atx̂ andŷ in R with slope zero,

and uα
0 (t̂ , x̂) = u0(t̂ , x̂), v0α(ŝ, ŷ) = v0(ŝ, ŷ),

(ii) the pointsx̂ and ŷ respectively belong to the interior of the faceted region
R(uα

0 (t̂ , ·), x̂) and R(v0α(ŝ, ·), ŷ),

(iii)
ŷ ∈ {R(uα

0 (t̂ , ·), x̂) − η} ∩ R(v0α(ŝ, ·), ŷ) ⊂ Ω,

x̂ ∈ R(uα
0 (t̂ , ·), x) ∩ {R(v0α(ŝ, ·), ŷ) + η} ⊂ Ω with η = x̂ − ŷ.

Proof. By Lemma 5.1, convolutionuα
0 is locally Lipschitz continuous in the

space variable. Sinceu0(t̂ , ·) assumes its local maximum at ˆx, by Theorem 5.3
on convolution with faceted functions,uα

0 (t̂ , ·) is faceted atx in R for small α
and uα

0 (t̂ , ·) is constantu0(t̂ , x̂) around ˆx from a fundamental property of our
sup-convolutions; note thatu0 and−v0 are bounded from above. This proves (i)
and (ii) for uα

0 . The proof forv0α is the same by takingα0 smaller if necessary.
It remains to prove (iii). Here we use Proposition 7.10. We again recall a

fundamental property for sup-convolution; if there is anx1 ∈ (x̂,b1) such that
u0(t̂ , x1) < u0(t̂ , x̂), then

supR(uα
0 (t̂ , ·), x̂) < b1

for sufficiently smallα (provided thatu0(t̂ , ·) is upper-semicontinuous which is
fulfilled in our setting). Thus Proposition 7.10 implies the desired inclusion by
taking smallerα0 if necessary. ut

In Corollary 7.9 we have

u0(t , x) − v0(s, y) − S(t , s) 5 u0(t̂ , x̂) − v0(ŝ, ŷ) − S(t̂ , ŝ)

for all (x, y) ∈ Σδ, t , s ∈ [0,T]. We shall derive a similar inequality foruα
0 and

v0α. We introduce a barrier for|x − y − (x̂ − ŷ)| > δ so that the region where
the inequality is valid contains allx, y ∈ R.

7.13. Proposition.Letϑ be as in§7.11. Let(t̂ , x̂, ŝ, ŷ),u0 andv0 be as in Propo-
sition 7.7.

(i) u0(t , x) − v0(s, y) − S(t , s) − ϑ(x − y − η, λ) 5 u0(t̂ , x̂) − v0(ŝ, ŷ) − S(t̂ , ŝ)

for all (t , s), (s, y) ∈ Q̄ × Q̄ provided thatλ > 0 is sufficiently small, i.e.,λ 5 λ0

for someλ0 > 0, whereη = x̂ − ŷ .

(ii) Letα0 be as in Proposition 7.12. Then

uα
0 (t , x) − v0α(s, y) 5 uα

0 (t̂ , x̂) − v0α(ŝ, ŷ) + ϑ(x − y − η, 1
2λ0)

+ S(t , s) − S(t̂ , ŝ)

for all (t , x), (s, y) ∈ [0,T] × R provided that0< α 5 α1 = min(α0,
1
4λ0).

Proof. (i) Let

E1 = sup{E(t , x, s, y); (t , x) ∈ Q̄, (s, y) ∈ Q̄, (x, y) ∈ Σδ},
E2 = sup{E(t , x, s, y); (t , x) ∈ Q̄, (s, y) ∈ Q̄, (x, y) |∈ Σδ}
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with E = u0(t , x)−v0(s, y)−S(t , s) andΣδ = {(x, y) ∈ Ω̄×Ω̄; |x−y−(x̂− ŷ)| <
δ}. Step 1 of Proposition 7.7 yieldsE1 = u0(t̂ , x̂) − v0(ŝ, ŷ) − S(t̂ , ŝ). If E2 5 E1,
the inequality in (i) is trivial sinceϑ = 0. If E2 > E1, we takeλ0 satisfying

ϑ(δ, λ0) = E2 − E1.

Sinceϑ(x − y − η, λ0) = ϑ(δ, λ0) for (x, y) |∈ Σδ and sinceϑ is monotone inλ,
the proof of (i) is complete.

(ii) From (i) it follows that

u0(t , x̃) − ϑ(x − x̃, α) − (v0(s, ỹ) + ϑ(y − ỹ, α))

5 u0(t̂ , x̂) − v0(ŝ, ŷ)

+ϑ(x̃ − ỹ − η, λ0) − ϑ(x − x̃, α) − ϑ(y − ỹ, α)

+ S(t , s) − S(t̂ , ŝ).

Sinceu0 = −v0 = +∞ outsideΩ, taking the supremum of both sides for ˜x, ỹ ∈ R
we get

uα
0 (t , x) − v0α(s, y) 5 u0(t̂ , x̂) − v0(ŝ, ŷ)

+ϑ(x − y − η, λ0 − 2α) + S(t , s) − S(t̂ , ŝ)

for all (t , x), (s, y) ∈ [0,T] × R. Here we have invoked the composition rule for
sup-convolution (Lemma 5.5 (ii)):

sup{ ϑ(x − y − η, λ0) − ϑ(x − x̃, α) − ϑ(y − ỹ, α); x̃, ỹ ∈ R}
= ϑ(x − y − η, λ0 − 2α).

Sinceuα
0 (t̂ , x̂) = u0(t̂ , x̂) andv0α(ŝ, ŷ) = v0(ŝ, ŷ) by Proposition 7.12(i) and since

λ0 − 2α 5 1
2λ0 for α 5 α1, the proof of (ii) is now complete.

E. Application of the Maximum Principle

The functionuα
0 + p0x is essentially an admissible superfunction (of the in-

finitesimal version defined in§ 6.5) at (̂t , x̂) ∈ Q except that the faceted region
R(uα

0 (t̂ , ·), x̂) may contain the boundary point ofΩ. We apply the Maximum
Principle of Time Direction 4.5 and its Corollary 4.6 to Proposition 7.13 to get
useful admissible superfunctions.

Here we use the notatioñN−1 for a semineighborhood defined in§6.3.

7.14. Proposition.Let (t̂ , x̂, ŝ, ŷ),u0 andv0 be as in Proposition 7.7. There are a
(real-valued) upper-semicontinuous function̄u and a lower-semicontinuous func-
tion v defined in Q such that

(i) ū(t , ·) ∈ C(Ω), v(s, ·) ∈ C(Ω) for each t, s ∈ (0,T); ū(t̂ , ·) andv(ŝ, ·) are
faceted atx̂ andŷ, respectively, with slope zero inΩ; uα

0 5 ū andv0α = v
in Q; ū(t̂ , x̂) = uα

0 (t̂ , x̂) andv(ŝ, ŷ) = v0α(ŝ, ŷ).
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(ii) R(ū(t̂ , ·), x̂) = R(uα
0 (t̂ , ·), x̂) ∩ {R(v0α(ŝ, ·), ŷ) + η},

R(v(ŝ, ·), ŷ) = {R(uα
0 (t̂ , ·), x̂) − η} ∩ R(v0α(ŝ, ·), ŷ),

so that L(ū(t̂ , ·), x̂) = L(v(ŝ, ·), ŷ), whereη = x̂ − ŷ .

(iii) χ(ū(t̂ , ·), x̂) + χ(−v(ŝ, ·), ŷ) 5 0.

(iv) For someÑ−1(ū(t̂ , ·), x̂) the inequality

ū(t , x) − ū(t̂ , x̂) 5 S(t , ŝ) − S(t̂ , ŝ)

holds for all (t , x) ∈ (0,T) × Ñ−1(ū(t̂ , ·), x̂); for someÑ−1((−v̄)(ŝ, ·), ŷ) the
inequality

v(s, y) − v(ŝ, ŷ) = S(t̂ , ŝ) − S(t̂ , s)

holds for all (s, y) ∈ (0,T) × Ñ−1(−v(ŝ, ·), ŷ). Hereα is chosen so thatα 5 α1,
whereα1 is as in Proposition 7.13.

Proof. We apply Corollary 4.6 of the Maximum Principle to Propositions 7.12
and 7.13 so that we find the desired ¯u andv. Hereuα

0 , and−v0α correspond to
u1, andu2 of Corollary 4.6, respectively. Note that Proposition 7.12(iii) plays an
important role in applying Corollary 4.6.

7.15. Proposition.Let

U (t , x) = ū(t , x) + p0x, V (s, y) = v(s, y) + p0(y + ζ0) for (t , x), (s, y) ∈ Q.

Then U is an admissible superfunction at(t̂ , x̂) in Q, and V is an admissible
subfunction at(t̂ , x̂) in Q. Moreover, U(t̂ , ·) is faceted at̂x ∈ int R(U (t̂ , ·), x̂) and
T +

P U (t̂ , x̂) 3 St (t̂ , ŝ); V (ŝ, ·) is faceted at̂y ∈ int R(V (ŝ, ·), ŷ) andT −
P V (ŝ, ŷ) 3

−Ss(t̂ , ŝ), whereT +
P andT −

P are as in§6.4.

Proof. We only prove thatU is an admissible superfunction since the statement
for V can be proved similarly. By Proposition 7.14(i)U is upper-semicontinuous
in Q andU (t , ·) ∈ C(Ω) for eacht ∈ (0,T). Moreover,U (t̂ , ·) is P-faceted at ˆx
in Ω with slopep0. Sincex̂ andŷ are respectively interior points ofR(uα

0 (t̂ , ·), x̂)
andR(v0α(ŝ, ·), ŷ) by Proposition 7.12(ii), we see, by Proposition 7.14(ii) that ˆx
and ŷ are resepectively interior points ofR(U (t̂ , ·), x̂) andR(V (ŝ, ·), ŷ).

It remains to prove thatT +
P U (t̂ , x̂) containsSt (t̂ , ŝ) as an element. Since

S(t , ŝ) − S(t̂ , ŝ) 5 St (t̂ , ŝ)(t − t̂) + ω(|t − t̂ |)|t − t̂ |

for all t ∈ R with some modulusω, Proposition 7.14(iv) yields

U (t , x) − U (t̂ , x̂) 5 p0(x − x̂) + St (t̂ , ŝ)(t − t̂) + ω(|t − t̂ |)|t − t̂ |

for (t , x) ∈ (0,T) × Ñ−1(U (t̂ , ·), x̂). This implies thatSt (t̂ , ŝ) ∈ T +
P U (t̂ , x̂).
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F. Completion of the Proof for Case I

By definition of sub- and supersolutionsu∗ and−v∗ are upper-semicontinuous
in [0,T) × Ω̄ with values inR ∪ {−∞}. To prove our Comparison Theorem, it
suffices to prove that the restrictions ofu∗ and v∗ to [0,T ′) × Ω̄ (denoted by
u′ andv′ respectively) satisfyu′ 5 v′ on [0,T ′) × Ω̄ for eachT ′ > 0. Clearly
(u′)∗ − (v′)∗ 5 u∗ − v∗ on [0,T ′] × Ω̄, so thatu∗ 5 v∗ on ∂pQ implies that
(u′)∗ 5 (v′)∗ on

∂̄pQ′ = ∂pQ′ = [0,T ′] × ∂Ω ∪ {0} × Ω̄.

By replacingT ′ by T, u′ by u, andv′ by v, we may assume thatu 5 v on ∂̄pQ
and thatu and−v are upper-semicontinuous in̄Q with values inR ∪ {−∞}. If
F depends ont , by replacingT ′ by T we may assume that

F is uniformly continuous on [0,T] × [−K ,K ] × R for eachK > 0.(F3′)

Suppose that the conclusion of the theorem were false. We may assume that
m0 satisfies the assumption of Proposition 7.1. We fixε0, σ0, γ0, γ

′
0 as in Remark

7.2 and assume that 0< ε < ε0, 0 < σ < σ0, 0 < γ < γ0, 0 < γ′ < γ′
0.

SinceQ̄ is compact andu and−v are upper-semicontinuous, there is always a
maximizer (tζ , xζ , sζ , yζ) of Φζ over Q̄ × Q̄ in Proposition 7.1.

If we assume Case I, we end up with Propositions 7.12–7.15. Letp0 andζ0 be
as in Lemma 7.4. Let (t̂ , x̂, ŝ, ŷ) be a maximizer ofΦζ0 with p0 = 2(x̂ − ŷ−ζ0)/ε.
Let U be as in Proposition 7.15. Then

max
Q

(u − U ) = max
Q

(u0 − ū) 5 max
Q

(u0 − uα
0 )

sinceuα
0 5 ū by Proposition 7.14(i). Note thatuα

0 (t̂ , x̂) = u0(t̂ , x̂) by Proposition
7.12(i) and thatu0 5 uα

0 by the definition of sup-convolution. We thus observe
that

max
Q

(u − U ) = 0.

Similarly, one can prove
min

Q
(v − V ) = 0.

SinceU is an admissible superfunction at (t̂ , x̂) in Q and sinceu is a sub-
solution we have, by the definition of the infinitesimal version 6.6, and Theorems
6.8 and 6.9,

St (t̂ , ŝ) + F (t̂ ,p0, ∆χU /LU ) 5 0

with χU = χ(U (t̂ , ·), x̂),LU = L(U (t̂ , ·), x̂) and∆ = W ′(p0 + 0) − W ′(p0 − 0).
Similarly,

−Ss(t̂ , ŝ) + F (ŝ,p0, ∆χV /LV ) = 0.

with χV = χ(V (ŝ, ·), ŷ),LV = L(V (ŝ, ·), ŷ). Subtracting the second inequality
from the first yields

γ

(T − t̂)2
+

γ′

(T − ŝ)2
+ F (t̂ ,p0, ∆χU /LU ) − F (ŝ,p0, ∆χV /LV ) 5 0.
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By Proposition 7.14(ii), (iii) we see that

χU = χ(ū(t̂ , ·), x̂) 5 −χ(−v(ŝ, ·), ŷ) = χ(v(ŝ, ·), ŷ) = χV ,

LU = L(ū(t̂ , ·), x̂) = L(v(ŝ, ·), ŷ) = LV ,

which yield
χU

LU
5 χV

LV
.

By the monotonicity (F2) ofF we now obtain

γ

(T − t̂)2
+

γ′

(T − ŝ)2
+ F

(
t̂ ,p0, ∆

χU

LU

)
− F

(
ŝ,p0, ∆

χU

LU

)
5 0.(7.1)

This yields
γ + γ′

T2
5 ω1(|t̂ − ŝ|; ε),

whereω1(t ; ε) is a modulus of continuity ofF (t ,p,X) for |p| 5 K and X ∈ R
with K ≡ 2M 1/2/ε1/2, provided that|p0| 5 K ; the existence of such a modulus
is guaranteed by (F3′). Indeed, since Proposition 7.1(ii) implies that

|B′
ε(xζ − yζ − ζ)| = |2(xζ − yζ − ζ)/ε| 5 2M 1/2/ε1/2 = K for ζ, |ζ| 5 κ0(ε),

we have|p0| 5 K . Note thatK depends only onε and is independent of pa-
rametersσ, γ, γ′. Thusω1 depends only onε and is independent of parameters
σ, γ, γ′. By Proposition 7.1(ii) we have

γ + γ′

T2
5 ω1(|t̂ − ŝ|; ε) 5 ω1((Mσ)1/2; ε)

for all ε, σ, γ, γ′ with 0 < ε < ε0,0 < σ < σ0,0 < γ < γ0,0 < γ′ < γ′
0

provided that Case I holds. As shown in Section G, a similar inequality (7.3)
holds for Case II with modulusω2(·, ε) independent ofσ, γ, γ′. In both cases if
σ is taken so small that

ωi ((Mσ)1/2) <
γ + γ′

T2
, i = 1,2,

then we get a contradiction. IfF is independent oft , (7.1) immediately yields a
contradiction: (γ + γ′)/T2 < 0 without using (F3′).

G. Case II

We use the same choice of parametersε, γ, γ′ andσ as in§ F. The proof for
Case II is standard so we just outline it. By the assumption of Case II there is
ζj → 0 such thatΨ̂x = 2(xj −yj −ζj )/ε does not belong toP for some maximizer
(tj , xj , sj , yj ) of Φζj . We apply the maximum principle for semicontinuous func-
tions [CIL] and observe that for eachµ > 0 there are 2× 2 symmetric matrices
X andY such that



180 M.-H.Giga & Y.Giga

(Ψ̂t , Ψ̂x ,X) ∈ J̄ 2,+
Q u(tj , xj ),

(Ψ̂s, Ψ̂y,−Y) ∈ J̄ 2,+
Q (−v)(sj , yj ),

−
(

1
µ

+ |A|
)

I 5
(

X 0

0 −Y

)
5 A + µA2

with A = D2Ψζj (tj , xj , sj , yj ) i.e., the Hessian ofΨζj , where |A| is the operator
norm of A as a self-adjoint operator andI is a 4× 4 matrix; Ψ̂t and Ψ̂y are the
derivatives ofΨζj with respect tot andy at (tj , xj , sj , yj ), respectively. HereJ 2,+

Q

denotes the set of second-order superjets andJ̄ 2,+
Q is the ‘closure’ in the sense

of semijets; see [CIL] for definitions. It is not difficult [OKS] to derive from the
first two inclusions that

(Ψ̂t , Ψ̂x ,X22) ∈ ¯P 2,+
Q u(tj , xj ),

(−Ψ̂s,−Ψ̂y,Y22) ∈ ¯P 2,−
Q v(sj , yj )

where ¯P 2,±
Q denotes the parabolic version of̄J 2,±

Q ; ¯P 2,±
Q is defined in§6.6.

Here X22 and Y22 denote the (2, 2)-components ofX and Y respectively. By a
standard argument, our matrix inequality yieldsX22 5 Y22.

Since Ψ̂x = −Ψ̂y does not belong toP and sinceu and v are sub- and
supersolutions (by Definition 6.6 and Theorems 6.8 and 6.9), we have

Ψ̂t + F (tj , Ψ̂x ,W
′′(Ψ̂x)X22) 5 0,

−Ψ̂s + F (sj ,−Ψ̂y,W
′′(−Ψ̂y)Y22) = 0,

whereX22 andY22 are the (2,2)-components ofX andY . Subtracting the second
from the first of these inequalities yields

γ

(T − tj )2
+

γ′

(T − sj )2
+ F (tj , Ψ̂x ,W ′′(Ψ̂x)X22)

− F (sj , Ψ̂x ,W ′′(Ψ̂x)X22) 5 0
(7.2)

if we useX22 5 Y22, (F2) andΨ̂x = −Ψ̂y. Since Proposition 7.1(ii) yields that
|Ψ̂x | is bounded byK in § F, as in§ F this inequality yields

γ + γ′

T2
5 ω2(|tj − sj |; ε) 5 ω2((Mσ)1/2; ε)(7.3)

with some modulusω2 for all ε, σ, γ, γ′ with 0 < ε < ε0, 0 < σ < σ0, 0 <
γ < γ0, 0 < γ′ < γ′

0, provided that Case II holds. This is what we would like
to prove. (We did not sendζj → 0; the existence of oneζj is enough to get a
contradiction.) Note that (7.2) immediately yields a contradiction (γ+γ′)/T2 < 0
if F is independent oft ; we do not invoke (F3′). We have thus proved our
Comparison Theorem.
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H. Periodic Case, Proof of Theorem 3.2

The method of the proof is essentially the same. Sinceu and v are $-
periodic in space, we observe that any maximizer (tζ , xζ , sζ , yζ) of Φζ satisfies
|xζ − yζ | 5 $; we may always assume its existence and that 05 xζ 5 $,
0 5 yζ 5 $. The conclusion of Proposition 7.1 and Remark 7.2 are still valid
for such maximizers whereΩ is replaced byR. To defineA(ζ) we replaceΩ
by R. Although graphA is only closed, graphB is still compact as claimed in
Proposition 7.3 since 05 xζ , yζ 5 $. The argument in§§7.4–7.9 is still valid
if Ω is replaced byR. Propositions 7.10 and 7.12(iii) should be altered because
there is no boundary ofR. If P does not contain zero so thatp0 |= 0, then the
faceted regionsR(uα

0 (t̂ , ·), x̂) and R(v0α(ŝ, ·), ŷ) have length less than$ since
uα

0 + p0x and v0α + p0(y + ζ0) are periodic in the space variable. We apply the
maximum principle as in Proposition 7.14. Actually, we have Proposition 7.14
with Ω replaced by

Ω′ = (x̂ −$, x̂ +$) ∪ (ŷ −$, ŷ +$),

since Proposition 7.13 does not apply to our setting withΩ = R; the rest of the
proof is the same as in§§E–G.

It remains to discuss the case thatP contains zero. Ifp0 |= 0 in Lemma 7.4,
then we argue in the same way. Ifp0 = 0, then eitherL(uα

0 (t̂ , ·), x̂) < $ or
R(uα

0 (t̂ , ·), x̂) = R and the same holds forv0α(ŝ, ·). Unless both

R(uα
0 (t̂ , ·), x̂) = R andR(v0α

(ŝ, ·), ŷ) = R

hold, Proposition 7.14 still applies withΩ replaced byΩ′. We thus assume that
both uα

0 (t̂ , ·) and v0α(ŝ, ·) are constant functions. For each largel we consider
a nonnegative continuous functionf such thatf (x) = 0 if and only if |x| 5
1
2 l . We set ¯u(t , x) = uα

0 (t , x) + f (x − x̂), v(s, y) = v0α(s, y) − f (y − ŷ) and
observe that properties (i), (iv) of Proposition 7.14 (withΩ = R) hold; note that
sinceχ(ū(t̂ , ·), x̂) > 0 andχ(−v(ŝ, ·), ŷ) > 0, it follows that (iii) is violated but
Ñ−1(ū(t̂ , ·), x̂) = R(ū(t̂ , ·), x̂) and Ñ−1(−v(ŝ, ·), ŷ) = R(v(ŝ, ·), ŷ) so (iv) trivially
follows from Proposition 7.13. We also note thatL(ū(t̂ , ·), x̂) = L(v(ŝ, ·), ŷ) = l .
We may apply Proposition 7.15 withU = ū andV = v. As in §F we end up with

γ

(T − t̂)2
+

γ′

(T − ŝ)2
+ F (t̂ ,0, ∆χU /LU ) − F (ŝ,0, ∆χV /LV ) 5 0

which yields
γ + γ′

T2
5 ω3(|2∆/l | + |t̂ − ŝ|) for large l

sinceLU = LV = l . Hereω3 is a modulus of continuity ofF (t ,0,X) on [0,T] ×
[−1,1]; here we do not invoke (F3′). Sendingl → ∞ yields

γ + γ′

T2
5 ω3(|t̂ − ŝ|),

which again leads to a contradiction as in§F.
Our argument shows at least formally that the weighted curvature

ΛW(uα
0 (t̂ , ·), x̂) = 0 if L(uα

0 (t̂ , ·), x̂) = ∞.
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8. Perron-Type Existence Theorem

We give the proof of the Perron-type Existence Theorem 3.3 and Theorem
3.4 for periodic functions. LetΩ be an open (possibly unbounded) interval and
Q = (0,T) × Ω.

8.1. Lemma. Assume that conditions(F1) and (F2) hold. Let S be a nonempty
family of subsolutions of(E). Let u be a function defined on Q by

u(t , x) = sup{v(t , x); v ∈ S} for (t , x) ∈ Q.

Suppose that u∗ < ∞ in [0,T) × Ω̄. Then u is a subsolution of(E).

8.1′. Lemma. Assume that conditions(F1) and (F2) hold. Let S be a nonempty
family of supersolutions of(E). Let u be a function defined on Q by

u(t , x) = inf {v(t , x); v ∈ S} for (t , x) ∈ Q.

Suppose that u∗ > −∞ in [0,T) × Ω̄. Then u is a supersolution of(E).

8.2. Lemma. Assume that conditions(F1) and (F2) hold. Let h : Q → R be a
supersolution of(E). Let S be the collection of all subsolutionsv of (E) with v 5 h
in Q. If v ∈ S is not a supersolution of (E) andv∗ > −∞ in [0,T) × Ω̄, then
there are a functionw ∈ S and a point(s, y) ∈ Q such thatv(s, y) < w(s, y).

Theorem 3.3 follows from these two lemmas as in [I]. We give its proof for
completeness.

Proof of Perron-Type Existence Theorems 3.3 and 3.4 under the Assumption
That Lemmas 8.1 and 8.2 Hold.Let S be{v; v is a subsolution of (E) andv 5
u+ in Q}. Sinceu− ∈ S, we see thatS |= ∅. Let u : Q → R be defined by

u(t , x) = sup{v(t , x); v ∈ S} for (t , x) ∈ Q.

By definition,u∗ 5 (u+)∗ < ∞ in [0,T) × Ω̄. By Lemma 8.1,u is a subsolution
of (E), so thatu ∈ S. Since u− ∈ S, we haveu− 5 u 5 u+ in Q and
−∞ < (u−)∗ 5 u∗ in [0,T) × Ω̄.

Suppose thatu were not a supersolution of (E). By Lemma 8.2 there would
exist w ∈ S and (s, y) ∈ Q such thatu(s, y) < w(s, y). This contradicts the
definition of u. Thereforeu is a generalized solution of (E).

Suppose thatu were not$ -periodic in x. Then there would exist a point
(t0, x0) ∈ (0,T) × R andν ∈ {−1,1} that satisfy

u(t0, x0) < u(t0, x0 + ν$).

We observe that
v(t , x) = u(t , x + ν$)

belongs toS. Indeed, since (E) is invariant under translation inx, v is a subsolu-
tion of (E) in (0,T)×R. The functionu+ is$ -periodic, sov 5 u+ in (0,T)×R,
which yields v ∈ S. By the definition ofu, the propertyv ∈ S implies that
u = v. This contradicts
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u(t0, x0) < v(t0, x0) = u(t0, x0 + ν$).

We thus concludeu is $-periodic inx. ut
To prove Lemmas 8.1 and 8.2, we extend the method found in [I] to faceted

functions. The basic strategy is to utilize the advantage of our definition ofC2
P

functions. We have arranged that the weighted curvature of aC2
P function at

the boundary of a faceted regionequals that at an interior point of the faceted
region. Moreover, we have arranged that the weighted curvature of aC2

P function
at point yk outside the faceted region tends to zero, if the pointyk tends to a
point ȳ of the boundary of the faceted region ask → +∞, since the function
is C2. These properties will be invoked to estimate the weighted curvature of
a modification of a test function, which we call an upper or a lower canonical
modification as defined below.

8.3. Notation of An Upper and a Lower Canonical Modification.Let Ω1 be an
open interval withΩ1 ⊂ Ω. Let f ∈ C(Ω) satisfy f |Ω1 ∈ C2

P(Ω1) and f ′(x̂) = 0
with x̂ ∈ Ω1. Let q1 = sup{p ∈ P ∪{−∞}; p < 0} andq2 = inf{p ∈ P ∪{+∞};
p > 0}.

Case(i) (0|∈ P). Set

f #(x) = f (x) + (x − x̂)4 for x ∈ Ω.

There exists an open intervalΩ2 ⊂ Ω1 containing ˆx such that

1
2q1 < ( f #)′(x) < 1

2q2 for all x ∈ Ω2.(8.1)

Case(ii) (0∈ P). We see thatf is P-faceted at ˆx in Ω1. We denoteΩ = (a−,a+)
and R( f , x̂) = [c−, c+]. There exists an open intervalΩ2 = (b−,b+) such that
R( f , x̂) ⊂ Ω2 ⊂ Ω1 and

f ′(x) ∈ ( 1
4q1,0) ∩ (0, 1

4q2) for all x ∈ Ω2\R( f , x̂),

b+ 5 c+ + ( 1
16q2)1/3, b− = c− − (− 1

16q1)1/3.

If χ+( f , x̂) = 1, then we set

f #(x) =

{
f (x̂) for x ∈ [x̂, c+],

f (x) + (x − c+)4 for x ∈ (c+,a+).

If χ−( f , x̂) = 1, then we set

f #(x) =

{
f (x̂) for x ∈ [c−, x̂),

f (x) + (x − c−)4 for x ∈ (a−, c−).

If χ+( f , x̂) = −1, then forε ∈ (0, ε0) we set
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f #,ε(x) =




f (x̂) for x ∈ [x̂, c+ + ε],

f (x − ε) for x ∈ (c+ + ε, b+),

f (x) + {f (b+ − ε) − f (b+)} for x ∈ (b+,a+).

If χ−( f , x̂) = −1, then forε ∈ (0, ε0) we set

f #,ε(x) =




f (x̂) for x ∈ [c− − ε, x̂),

f (x + ε) for x ∈ (b−, c− − ε),

f (x) + {f (b− + ε) − f (b−)} for x ∈ (a−,b−].

whereε0 = 1
2 dist(∂Ω2,R( f , x̂)). Here we note that (8.1) holds.

We often suppress theε-dependence off #,ε, even if it depends onε. We call
f # an upper canonical modification of f atx̂ with canonical neighborhoodΩ2.
Let −f# be an upper canonical modification of−f at x̂ with canonical neigh-
borhoodΩ2; we call f# a lower canonical modification of f at̂x with canonical
neighborhoodΩ2.

8.4. Proposition. Let Ω and Ω1 be open intervals withΩ1 ⊂ Ω. Let f ∈ C(Ω)
satisfy f|Ω1 ∈ C2

P(Ω1) and f′(x̂) = 0 with x̂ ∈ Ω1. Suppose that̃f is an upper
canonical modification f# (= f #,ε) or a lower canonical modification f# (= f#,ε) at
x̂ with canonical neighborhoodΩ2 ⊂ Ω1. Set

s =

{
1 if f̃ is an upper canonical modification,

−1 if f̃ is a lower canonical modification,

M =

{
{x̂} if 0 |∈ P,

R( f , x̂) if 0 ∈ P.
(8.2)

(i) Then
f̃ ∈ C(Ω), f̃ |Ω2 ∈ C2

P(Ω2),

(f̃ )(n)(x) = f (n)(x̂) for x ∈ M and n = 0,1,2,

sf̃ > sf in Ω\M ,

ΛW(f̃ , x̂) = ΛW( f , x̂) if sχ( f , x̂) = 0,

sΛW(f̃ , x̂) > sΛW( f , x̂) if sχ( f , x̂) = −1.

(ii) When0 ∈ P,
f̃ is P-faceted at̂x in Ω2 with slope0,

χ+(f̃ , x̂) = χ+( f , x̂), χ−(f̃ , x̂) = χ−( f , x̂),

L(f̃ , x̂) = L( f , x̂) + {1 − sχ( f , x̂)}ε.
(iii) For anyε1 > 0 andε2 > 0, there exists an open intervalΩ3 such that

M ⊂ Ω3 ⊂ Ω2,
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|(f̃ )′(x)| < ε1 for x ∈ Ω3,

|ΛW(f̃ , x) − ΛW( f , x̂)| < ε2 for x ∈ Ω3.

Proof of Lemma 8.1.Step 1. Let (̂t , x̂) ∈ Q. Letϕ ∈ C(Ω) be locally admissible
at (̂t , x̂) in Q. Suppose that

max
Q

(u∗ − ϕ) = (u∗ − ϕ)(t̂ , x̂).

Our goal is to prove that

ϕt (t̂ , x̂) + F (t̂ , ϕx(t̂ , x̂), ΛW(ϕ(t̂ , ·), x̂)) 5 0(8.3)

(cf. Theorem 6.8). Without loss of generality we may assume that (u∗−ϕ)(t̂ , x̂) =
0, sinceϕ(t , x) can be replaced byϕ(t , x) + (u∗ −ϕ)(t̂ , x̂). We may assume that
ϕx(t̂ , x̂) = 0 by Proposition 2.7 withA = ϕx(t̂ , x̂) andB = −ϕx(t̂ , x̂)x̂.

Sinceϕ is locally admissible at (t̂ , x̂) in Q, there exists a rectangular neigh-
borhoodQ1 = I × Ω1 at (̂t , x̂) in Q such thatϕ|Q1 ∈ AP(Q1). So there exist
f ∈ C2

P(Ω1) andg ∈ C1(I ) such that

ϕ(t , x) = f (x) + g(t) for (t , x) ∈ Q1.

The inequality (8.3) becomes

g′(t̂) + F (t̂ ,0, ΛW( f , x̂)) 5 0,(8.4)

which we should prove.
Let ζ be a function onQ satisfying

ζ ∈ C(Q), ζ(t̂ , x̂) = 0, ζ = 0 in Q,

{(t , x) ∈ Q; ζ(t , x) = 0} ∩ ∂̄pQ = ∅,
(8.5)

where∂̄pQ = [0,T] × ∂Ω ∩ {0} × Ω̄. The functionζ is to be determined later.
Settingψ = ϕ + ζ in Q, we see that

max
Q

(u∗ − ψ) = (u∗ − ψ)(t̂ , x̂),

so that

(u∗ − ψ)(t , x) + ζ(t , x) = (u∗ − ϕ)(t , x) 5 (u∗ − ϕ)(t̂ , x̂) = 0 for (t , x) ∈ Q,

which implies that
(u∗ − ψ) 5 −ζ in Q.

By the definition of the upper-semicontinuous envelope, there exists a se-
quence{(tk , xk)}∞

k=1 ⊂ Q such that (tk , xk) → (t̂ , x̂) ask → ∞ and

lim
k→∞

(u∗ − ψ)(tk , xk) = (u∗ − ψ)(t̂ , x̂) = 0.
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By the definition ofu, there is a sequence{vk}∞
k=1 ⊂ S such thatvk(tk , xk) >

u(tk , xk) − 1/k. So there is a sequence{(sk , yk)}∞
k=1 ⊂ Q̄ such that

max
Q̄

(v∗
k − ψ) = (v∗

k − ψ)(sk , yk).

These yield

u∗(tk , xk) − 1/k − ψ(tk , xk) < (v∗
k − ψ)(tk , xk)

5 (v∗
k − ψ)(sk , yk) 5 (u∗ − ψ)(sk , yk) 5 −ζ(sk , yk),

so that limk→∞ ζ(sk , yk) = 0 since the first term of the last inequality converges
to 0 ask tends to +∞. So we get limk→∞(u∗ − ψ)(sk , yk) = 0 and (s̄, ȳ) ∈
{(t , x) ∈ Q; ζ(t , x) = 0}, where (s̄, ȳ) = limk→∞(sk , yk) by taking a subsequence.
Since the zero set ofζ does not intersect̄∂PQ, for sufficiently largek > 0 we
have (sk , yk) ∈ Q and

max
Q

(v∗
k − ψ) = (v∗

k − ψ)(sk , yk).

Sincevk is a subsolution of (E), we have

ψt (sk , yk) + F (sk , ψx(sk , yk), ΛW(ψ(sk , ·), yk)) 5 0(8.6)

provided thatψ is locally admissible near (sk , yk) (Proposition 6.8).

Step 2. Letf # ∈ C(Ω) be an upper canonical modification off at x̂ with canonical
neighborhoodΩ2 ⊂ Ω1, so thatf #|Ω2 ∈ C2

P(Ω2) by Proposition 8.4 (i). We choose
ζ(t , x) = η(t) + {f #(x) − f (x)} for (t , x) ∈ Q with η(t) = (t − t̂)2, so that (8.5)
holds since the zero set ofζ is {t̂}×M from Proposition 8.4(i). Then we observe
that s̄ = t̂ and

ψ(t , x) = g(t) + η(t) + f #(x) for (t , x) ∈ Q2 = I × Ω2,

which belongs toAP(Q2). Inequality (8.6) becomes

g′(sk) + η′(sk) + F (sk , ( f #)′(yk), ΛW( f #, yk)) 5 0.(8.7)

Case (i) (f is not P-faceted at ˆx in Ω). By Proposition 8.4(ii), we see ¯y = x̂
and (f #)(n)(x̂) = f (n)(x̂) for n = 0,1,2. Sendingk to +∞ in inequality (8.7), we
conclude that (8.4) holds since we assumed continuity (F1) andψ is continuously
differentiable with respect tot , and is twice continuously differentiable with
respect tox.

Case (ii) (f is P-faceted at ˆx in Ω andχ( f , x̂) = 0). Let I ′ be an open interval
containingt̂ with Ī ′ ⊂ I . We see that{(t , x) ∈ Ω; ζ(t , x) = 0} = {t̂} × R( f , x̂).

(A) Suppose that there exists a sequence{kj }∞
j =1 such that (skj , ykj ) ∈ Ī ′ ×

R( f , x̂), so thatf # is P-faceted atykj in Ω2 with slope 0. Owing to the definition of
weighted curvature at the boundary of a faceted region,ΛW( f #, ykj ) = ΛW( f , x̂)
by Proposition 8.4(i). So (8.7) becomes

g′(skj ) + η′(skj ) + F (skj ,0, ΛW( f #, x̂)) 5 0.

Sendingj to +∞, we have (8.4) by the continuity assumption (F1).
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(B) Consider the negation of (A): For allk > 0, (sk , yk) ∈ {I \Ī ′} ×
{Ω2\R( f, x̂)}. We observe that ¯y ∈ ∂R( f, x̂). Setting

λ( y) = W′′(( f #)′( y))( f #)′′( y) for y ∈ Ω2,

we haveΛW( f #, yk) = λ( yk) since f # is not P-faceted atyk in Ω2. We see
that limk→+∞( f #)′( yk) = 0 = limk→+∞( f #)′′( yk) since f # ∈ C2(Ω2), so that
limk→+∞ λ( yk) = 0 sinceW ′′ is bounded on every bounded set inR\P. Since
inequality (8.7) becomes

g′(sk) + η′(sk) + F (sk , ( f #)′( yk), λ( yk)) 5 0,

we have
g′(t̂) + F (t̂ ,0,0) 5 0

by sendingk to infinity. Since assumptionχ( f , x̂) = 0 yieldsΛW( f , x̂) = 0, we
now get (8.4) by the degenerate ellipticity assumption (F2).

Case (iii) (f is P-faceted at ˆx in Ω andχ( f , x̂) = −1). Fix ε ∈ (0, ε0), where
ε0 is defined in 8.3. Since (¯s, ȳ) ∈ {t̂} × R( f , x̂) and R( f , x̂) ⊂ int R( f #,ε, x̂),
there existsk0 > 0 such that (sk , yk) ∈ I × R( f #,ε, x̂) for all k > k0. For
(sk , yk) ∈ I × R( f #,ε, x̂), (8.7) becomes

g′(sk) + η′(sk) + F (sk ,0,−∆/(L + 2ε)) 5 0,

where∆ = W ′(+0) − W ′(−0) andL = L( f , x̂). Sendingk to +∞, we get

g′(t̂) + F (t̂ ,0,−∆/(L + 2ε)) 5 0.

Since the last inequality holds for allε ∈ (0, ε0), we get (8.4). ut
Lemma 8.1′ is proved as is Lemma 8.1.

Proof of Lemma 8.2. Step 1. Let (̂t , x̂) ∈ Q and letϕ ∈ C(Ω) be locally
admissible at (̂t , x̂) in Q. Suppose that

min
Q

(v∗ − ϕ) = (v∗ − ϕ)(t̂ , x̂).

Without loss of generality we may assume that (v∗ − ϕ)(t̂ , x̂) = 0 and we may
also assume thatϕx(t̂ , x̂) = 0 by Proposition 2.7.

Let ζ be a function onQ satisfying

ζ ∈ C(Q), ζ(t̂ , x̂) = 0, ζ = 0 in Q,

ψ is a locally admissible function at (t̂ , x̂) in Q,
(8.8)

whereψ = ϕ− ζ in Q. Functionζ is to be determined later. So we see that

min
Q

(v∗ − ψ) = (v∗ − ψ)(t̂ , x̂),

ζ 5 v∗ − ψ in Q.(8.9)
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Suppose that by choosingζ suitably there exists a rectangular neighborhoodN1

at (̂t , x̂) in Q satisfying

ψt (t , x) + F (t , ψx(t , x), ΛW(ψ(t , ·), x)) < 0 for all (t , x) ∈ N1,(8.10)

ψ|N1 ∈ AP(N1),(8.11)

N0 ⊂ N1 with N0 = {(t , x) ∈ Q; ζ(t , x) = 0}.(8.12)

Let N2 be a rectangular (open) neighborhood at (t̂ , x̂) satisfying N0 ⊂ N2 and
N̄2 ⊂ N1. There existsσ1 > 0 such that

ψ + σ1 < h∗ in N2.(8.13)

In fact, from (8.9) and the definition ofS, we obtainψ 5 v∗ 5 h∗ in Q. If there
exists (t1, x1) ∈ N̄2 such thatψ(t1, x1) = h∗(t1, x1), then the locally admissible
function ψ is a test function ofh at (t1, x1) in Q, which contradicts (8.10). So
we haveψ < h∗ in N2, or there existsσ1 > 0 such that (8.13).

Sinceσ2 = inf {ζ(x); x ∈ N1\N2} > 0 by the definition ofN2, we have

ψ + σ2 5 v∗ in N1\N2,(8.14)

which yields

ψ + σ 5 h∗ in N1(8.15)

with σ = min(σ1, σ2). By Propositions 2.7 and 2.8 we conclude thatψ + σ is a
subsolution of (E) inN1.

We definew(t , x) by

w(t , x) =

{
max{ψ(t , x) + σ, v(t , x)}, (t , x) ∈ N2,

v(t , x), (t , x) ∈ Q\N2.

Inequality (8.14) yields

w(t , x) = max{ψ(t , x) + σ, v(t , x)} for (t , x) ∈ N1.

Sow is a subsolution of (E) inN1 by Lemma 8.1′.
To show thatw is a subsolution of (E) inQ, suppose thatψ1 ∈ AP(Q) satisfies

max
Q

(w − ψ1) = (w − ψ1)(t0, x0) = 0.

We may assume that

(t0, x0) ∈ N2, ψ1(t0, x0) > v(t0, x0)

since otherwiseψ1 is a test function ofv at (t0, x0) so that

(ψ1)t (t0, x0) + F (t0, (ψ1)x(t0, x0), ΛW(ψ1(t0, ·), x0)) 5 0.(2.1′)

We may assume thatψ1(t0, ·) is faceted atx0 with slope (ψ1)x(t0, ·) ∈ P and that
R = R(ψ1(t0, ·), x0) is not included in an intervalJ1 with N1 = J1 × I1. Indeed, if
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not, (2.1′) holds by Proposition 6.19 sincew is a subsolution of (E) inN1. We
may also assume that

ψ1(t0, x) > v(t0, x) for x ∈ R ∩ J1.

Indeed, if not, there isx1 ∈ R∩ J1 with ψ1(t0, x1) 5 v(t0, x1). Sincev 5 w 5 ψ1

in Q, we now observe that

max
Q

(v − ψ1) = (v − ψ1)(t0, x1)

which yields (2.1′) with x0 replaced byx1. Sincev is a subsolution of (E) inQ
and sincex1 ∈ R implies (ψ1)x(t0, x0) = (ψ1)x(t0, x1), we now have (2.1′) without
replacingx0 by x1. We may now assume that

ψ1(t , x) > v(t , x) on N1, x ∈ R ∩ J1,

by taking I1 smaller sincev is upper-semicontinuous. We now modifyψ1(t0, ·)
in R ∩ (J1\J2) with N2 = J2 × I2 to getψ2 ∈ AP(N1) satisfying

max
N1

(w − ψ2) = (w − ψ2)(t0, x0),

int R(ψ2(t0, ·), x0) ⊂ N1,

ΛW(ψ2(t0, ·), x0) 5 ΛW(ψ1(t0, ·), x0),

ψ1 = ψ2 in N2.

Sincew is a subsolution inN1 (even for the new choice ofI1 by Proposition
6.19) this yields (2.1′) with ψ1 replaced byψ2. By (F2) we now have (2.1′). By
(8.15) we now conclude thatw is a subsolution of (E) inQ and thatw ∈ S.

On the other hand, we have

0 = (v∗ − ψ)(t̂ , x̂) = lim inf
d↓0

{(v − ψ)(t , x); (t , x) ∈ N2, |t − t̂ | < d, |x − x̂| < d},

which implies that there exists (s, y) ∈ N2 such thatv(s, y) − ψ(s, y) < σ. We
now obtainv(s, y) < w(s, y).

Step 2. We prove that there existsζ satisfying (8.8) andN1 satisfying (8.10)–
(8.12). Sinceϕ is locally admissible at (t̂ , x̂) in Q, there exists a rectangular
neighborhoodQ1 = I ×Ω1 at (̂t , x̂) in Q such thatϕ|Q1 ∈ AP(Q1). So there exists
f ∈ C2

P(Ω1) andg ∈ C1(I ) such that

ϕ(t , x) = f (x) + g(t) for (t , x) ∈ Q1.

Let f# ∈ C(Ω) be a lower canonical modification off at x̂ with canonical
neighborhoodΩ2 ⊂ Ω1. We choseζ(t , x) = η(t)+{ f (x)−f#} (= 0) for (t , x) ∈ Q
with η(t) = (t − t̂)2, so that

ψ(t , x) = g(t) − η(t) + f#(x) for (t , x) ∈ N3 = I × Ω2.

Proposition 8.4(i) yields (8.8) andN0 = {t̂} × M , whereM is the same as (8.2).
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Sincev is not a supersolution of (E) andv∗ > −∞ in [0,T) × Ω̄, we have

ψt (t̂ , x̂) + F (t̂ , ψx(t̂ , x̂), ΛW(ψ(t̂ , ·), x̂)) < 0,

or
g′(t̂) − η′(t̂) + F (t̂ ,0, ΛW( f#, x̂)) < 0

by Definition 6.7 of the local version of a supersolution and by Theorem 6.8.
Clearly, there existsδ > 0 such that

g′(t̂) − η′(t̂) + F (t̂ ,0, ΛW( f#, x̂)) < −δ.
For (t , x) ∈ N3 we have

g′(t) + F (t , ( f#)′(x), ΛW( f#, x))

< {g′(t) − g′(t̂) + η′(t̂)}
+ {F (t , ( f#)′(x), ΛW( f#, x)) − F (t̂ ,0, ΛW( f , x̂))}
+ {F (t̂ ,0, ΛW( f , x̂)) − F (t̂ ,0, ΛW( f#, x̂))} − δ.

Let T1,T2 and T3 denote the first, second and third term of the right-hand side
of the last inequality. We shall show that there exists an open setN1 such that
N0 ⊂ N1 ⊂ N3 and for all (t , x) ∈ N1,T1 +T2 +T3 −δ < 0 holds. This now yields

g′(t) + F (t , ( f#)′(x), ΛW( f#, x)) < 0 for (t , x) ∈ N1,

which equals (8.10).
By Proposition 8.4(i), we see thatΛW( f#, x̂) 5 ΛW( f , x̂), so that

T3 5 0(8.16)

holds by the degenerate ellipticity condition (F2). Sinceg, η ∈ C1(I ), there exists
ρ1 ∈ (0,dist (̂t , ∂I )) such that

T1 = g′(t) − g′(t̂) + η′(t̂) < 1
2δ for all t ∈ B(t̂ , ρ1),(8.17)

whereB(t̂ , ρ1) denotes an open ball inR with centert̂ and radiusρ1. From the
continuity condition (F1), there existsρ2 > 0 such that

|F (t ,p,X) − F (t̂ ,0,0)| < 1
2δ for all t ,p andX ∈ B(0, ρ2).(8.18)

From Proposition 8.4(iii), there exists an open intervalΩ3 such that

M ⊂ Ω3 ⊂ Ω2,

|( f#)′(x)| < ρ2 for x ∈ Ω3,

|ΛW( f#, x) − ΛW( f , x̂)| < ρ2 for x ∈ Ω3.

We choseN1 = B(t̂ ,min(ρ1, ρ2)) × Ω3, so that (8.11) and (8.12) hold. Then we
get T2 <

1
2δ for (t , x) ∈ N1. We now have

T1 + T2 + T3 − δ < 0 for (t , x) ∈ N1,

so that we conclude that (8.10) holds for (t , x) ∈ N1. ut
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9. Existence Theorem for Periodic Initial Data

We give the proof of Existence Theorem 3.5 for periodic initial data. Through-
out this section, letT > 0,S ∈ (0,T) and QS = (0,S) × R. We often use the
condition

F is continuous in [0,S] × R × R with valuesR.(F1′)

The key tools to prove the Existence Theorem are Comparison Theorem 3.1
and the Perron-type Existence Theorem 3.4 together with the following lemma:

9.1. Lemma(Existence of Super- and Subsolutions).Assume that conditions(F1′)
and (F2) hold. Suppose that u0 is bounded and uniformly continuous onR. Then
for each S ∈ (0,T) there exists an upper-semicontinuous function u+(= u+,S)
and a lower-semicontinuous function u−(= u−,S) on Q̄S such that u+ and u− are
respectively a super- and subsolution of(E) in QS, and

u+(0, x) = u0(x) for x ∈ R,

u+(t , x) = u0(x) for (t , x) ∈ Q̄S.
(9.2)

u−(0, x) = u0(x) for x ∈ R,

u−(t , x) 5 u0(x) for (t , x) ∈ Q̄S.
(9.2′)

9.2. Remark.If u0 is periodic with period$, the lemma holds with the extra
property

u+(t , x +$) = u+(t , x) for (t , x) ∈ Q̄S.(9.3)
or

u−(t , x +$) = u−(t , x) for (t , x) ∈ Q̄S.(9.3′)

To prove Lemma 9.1, we extend the method developed in [CGG] and [IS] to
C2

P functions. We carry out the proof in several steps.

9.3. Proposition.Let M be a positive number. For anyδ there exists fδ (= f M
δ ) ∈

C2
P(R) such that

fδ(0) = 0, fδ, f
′′
δ = 0 in R, fδ(x) = M for x, |x| > δ.

Proof. We set

V0(x) =




(x + 1)4 for x < −1,

0 for − 1 5 x 5 1,

(x − 1)4 for 1< x.

By Lemma 6.12, there existsV1 ∈ C2
P(R) such that

V1(0) = 0 and V ′′
1 = 0, V1 = V0 in R.

Clearly there existsk = k(δ) ∈ (0, 1
2) with kV0(δ/k) = M . Setting fδ(x) =

kV1(x/k) for x ∈ R, we see thatfδ ∈ C2
P(R) since f ′

δ (x) = V ′
1(x/k) and V1 is
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P-faceted at ˆx/k in R if and only if fδ is P-faceted at ˆx in R. The other properties
are easy to prove. ut
9.4. Lemma (Modification of C2

P Functions).Let Ω1 = (a1,a′
1),Ω2 = (a2,a′

2)
and Ω3 be (nonempty) open intervals withΩ̄3 ⊂ Ω2 and Ω̄2 ⊂ Ω1. Suppose that
f ∈ C2

P(Ω1) satisfies f′′ = 0 in Ω2. Then there exists V∈ C2
P(Ω1) such that

V ′′ = 0 on Ω1, V = f on Ω3,

V ′(x) =

{
q, for x ∈ (a1,a2],

q′, for x ∈ [a′
2,a

′
1)

with some q and q′ |∈ P. In particular, the number of faceted regions of V is
finite.

Proof. We denoteΩ3 = (a3,a′
3). If there exists an open intervalI = (b1,b2) with

Ī ⊂ (a2,a3), f ′(x) |∈ P for all x ∈ I ,

then we setq = f ′(b1). Otherwise we haveq1 = f ′(x) ∈ P for all x ∈ (a2,a3).
In the latter case we choose an open intervalI with Ī ⊂ (a2,a3) and choose
q ∈ (sup{q2 ∈ P ∩ {−∞}; q2 < q1},q1).

Likewise, if there exists an open intervalI ′ = (b′
2,b

′
1) with

Ī ′ ⊂ (a′
3,a

′
2), f ′(x) |∈ P for all x ∈ I ′,

then we setq′ = f ′(b′
1). Otherwise we haveq′

1 = f ′(x) ∈ P for all x ∈ (a′
3,a

′
2).

In the latter case we choose an open intervalI ′ with Ī ′ ⊂ (a′
3,a

′
2) and choose

q′ ∈ (q′
1, inf{q′

2 ∈ P ∪ {+∞}; q′
2 > q′

1}).
Let h1 ∈ C1(Ω1) with

h1(x) =

{
q for x ∈ (a1,b2),

q′ for x ∈ (b′
2,a

′
1).

We connectf ′ andh1 in the following way. Letρ1, ρ2 ∈ C1(Ω1) satisfy

ρ1 + ρ2 = 1 onΩ1, 0 5 ρ1, ρ2 5 1 on Ω1,

ρ1(x) =

{
1 for x ∈ Ī2,

0 for x ∈ Ω1\I1,
ρ′

1(x) =

{
= 0 for x ∈ (b1,b2),

5 0 for x ∈ (b′
2,b

′
1),

ρ2(x) =

{
0 for x ∈ Ī2,

1 for x ∈ Ω1\I1,
ρ′

2(x) =

{
5 0 for x ∈ (b1,b2),

= 0 for x ∈ (b′
2,b

′
1),

where we denoteI1 = (b1,b′
1) and I2 = (b2,b′

2), so thatĪ2 ⊂ I1.
We set

h2 = ρ1 f ′ + ρ2h1 in Ω1
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to get
h′

2 = ρ′
2(h1 − f ′) + ρ1 f ′′ = 0 in Ω1,

since
h1 5 f ′ in (b1,b2), h1 = f ′ in (b′

2,b
′
1).

Thus we get the desired functionV ∈ C2
P(Ω1) by setting

V (x) = f (a) +
∫ x

a
h2(y) dy for x ∈ Ω1

with somea ∈ Ω3. ut

9.5. Lemma.Let M be a positive number.

(i) For anyδ ∈ (0, 1
2) there exists Vδ (= V M

δ ) ∈ C2
P(R) such that

Vδ(0) = 0, Vδ,V
′′
δ = 0 in R, Vδ = M for x, |x| > δ,

V ′
δ (x) =

{
qδ, for 1 5 x,

q′
δ, for x 5 −1

with some qδ (= qM
δ ) and q′

δ (= q′
δ

M ) |∈ P.

(ii) Assume that condition(F1′) holds. For each S∈ (0,T) there exists a(large) Bδ

(= BM ,S
δ ) = 0 such that V+

δ ∈ AP(QS) is a supersolution of(E) in QS = (0,S)×R
of the form

V +
δ (t , x)(= V +,M ,S

δ |QS) = Bt + Vδ(x) for (t , x) ∈ Q̄S and B = Bδ.

Here the dependence of M and S on V+
δ and Bδ is suppressed.

Proof. It is clear that Lemmas 9.3 and 9.4 withΩ1 = R,Ω2 = (−1,1) andΩ3 =
(− 1

2,
1
2) yield (i). Now we give the proof of (ii). We see thatV +,M ,S

δ |QS ∈ AP(QS)
by the definition.

Since the number of faceted regions ofVδ is finite, we have

c1 = sup{|ΛW(Vδ, x)|; x ∈ R,V ′
δ (x) ∈ P} < ∞.

We also have

c2 = sup{|ΛW(Vδ, x)|; x ∈ R,V ′
δ (x) |∈ P} < ∞,

since
sup{|V ′′

δ (x)|; |x| 5 1} < ∞,

sup{|W′′(p)|; qδ 5 p 5 q′
δ, p |∈ P} < ∞

by the assumption ofW. Thus we observe that

sup{|ΛW(Vδ, x)|; x ∈ R} < c3 < ∞
with c3 = max(c1, c2).
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Since condition (F1′) yields

c4 = inf{F (t ,p,X); t ∈ [0,S], p ∈ [qδ,q
′
δ], |X| 5 c3} > −∞,

we have
F (t ,V ′

δ (x), ΛW(Vδ, x)) = c4 for all (t , x) ∈ Q̄S.

We takeBδ so thatBδ = max (−c4,0). FunctionV +
δ is a supersolution of (E) in

QS. In fact, if ((t̂ , x̂), ψ) ∈ QS × AP(QS) satisfies

min
QS

(V +
δ − ψ) = (V +

δ − ψ)(t̂ , x̂),

then

ψt (t̂ , x̂) + F (t̂ , ψx(t̂ , x̂)), ΛW(ψ(t̂ , ·), x̂) = B + F (t̂ ,V +
δ (x̂), ΛW(V +

δ , x̂))

= B − Bδ = 0

sinceVδ ∈ C2
P(R). It is clear that (Vδ|QS)∗ = 0 = −∞ in [0,S) × R. ut

9.6. Lemma.Suppose that u0 is bounded and uniformly continuous inR, so that
for eachε ∈ (0,1) there existsδ = δ(ε) ∈ (0, 1

2) satisfying

|u0(x) − u0(ξ)| < ε for |x − ξ| < δ.(9.4)

Let Vδ(ε) ∈ C2
P(R) be as in Lemma 9.5(i) with M= maxx∈R u0(x)−minx∈R u0(x).

Then we have

u0(x) = inf{Vδ(ε)(x − ξ) + u0(ξ) + ε; ε ∈ (0,1), ξ ∈ R}.
Proof. Since (9.4) implies

u0(x) < u0(ξ) + ε for |x − ξ| 5 δ(ε)

and since the definition ofM implies

u0(x) < u0(ξ) + M 5 u0(ξ) + Vδ(ε)(x − ξ) for |x − ξ| > δ(ε),

we have

u0(x) 5 Vδ(ε)(x − ξ) + u0(ξ) + ε for x, ξ ∈ R, ε ∈ (0,1).

For eachx ∈ R andε′ > 0, we have

Vδ(ε)(x − ξ) + u0(ξ) + ε < ε′ + u0(x)

with ξ = x andε = 1
2ε

′, which yields the results. ut
Proof of Lemma 9.1.Firstly, for eachε ∈ (0,1) let Vδ(ε) ∈ C2

P(R) be the same
as in Lemma 9.6. Secondly, for eachε ∈ (0,1) andξ ∈ R we set

u+,ε(t , x; ξ) = V +
δ(ε)(t , x − ξ) + u0(ξ) + ε for (t , x) ∈ Q̄S

with B = Bδ(ε). Then u+,ε(t , x; ξ) belongs toAP(QS) and is a supersolution of
(E) in QS by Lemma 9.5(ii). Lastly, we take
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u+(t , x) = inf{u+,ε(t , x, ξ); ε ∈ (0,1), ξ ∈ R} for (t , x) ∈ Q̄S;

thenu+ is upper-semicontinuous in̄QS and

(u+|QS)∗ = min
ξ∈R

u0(ξ) > −∞ for [0,S) × R.

So, Lemma 8.1′ yields thatu+ is a supersolution of (E) inQS. Now we have
(9.2). In fact, Lemma 9.6 implies that

u+(0, x) = u0(x) for x ∈ R,

u+(t , x) = u0(x) for (t , x) ∈ Q̄S,

sinceBδ(ε) = 0 and

V +
δ(ε)(t , x − ξ) = Vδ(ε)(x − ξ) for (t , x) ∈ Q̄S, ξ ∈ R.

We can likewise get the lower-semicontinuous functionu− satisfying the
desired property. ut
Proof of Remark 9.2.If u0 is periodic with period$, the functionu+ constructed
in the proof of Lemma 9.1 satisfies (9.3), since

u+,ε(t , x +$; ξ) = V +
δ(ε)(t , x +$ − ξ) + u0(ξ) + ε

= V +
δ(ε)(t , x − (ξ −$)) + u0(ξ −$) + ε

= u+,ε(t , x, ξ −$). ut
Proof of Theorem 3.5.Step 1 (Existence onQS). Since (F1) implies (F1′) for
eachS ∈ (0,T), Lemma 9.1 is applicable. For eachS ∈ (0,T), let u+ andu− be
an upper-, and a lower-semicontinuous function inQS obtained in Lemma 9.1.
By Theorem 3.4, there exists a generalized solution ˜u of (E) in QS such that

u− 5 ũ 5 u+ in QS,

ũ(t , x +$) = ũ(t , x) for (t , x) ∈ QS.

Since u+ and u− are respectively upper- and lower-semicontinuous inQ̄S,
we have

−∞ < u− 5 ũ∗ 5 ũ∗ 5 u+ < ∞ in Q̄S.

Sinceu−(0, x) = u+(0, x) = u0(x) in R, we have

ũ∗(0, x) = ũ∗(0, x) = u0(x) in R.

Theorem 3.2 yields

ũ∗ 5 ũ∗ in QS, that is, inQ̄S,

which implies that ˜u∗ is continuous inQ̄S. We setuS = ũ∗ in [0,S). ThenuS is
a generalized solution of (E) inQS, anduS ∈ C([0,S) × R) satisfies
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uS(0, x) = u0(x) for x ∈ R,

uS(t , x +$) = uS(t , x) for (t , x) ∈ [0,S) × R.
(9.5)

Step 2 (Uniqueness onQS). Let vS ∈ C([0,S)×R) satisfy (9.5) withuS replaced
by vS, such thatvS is a generalized solution of (E) inQS. Theorem 3.2 yields
that uS = vS in [0,S) × R, which implies the uniqueness ofuS in [0,S) × R.

Step 3 (Unique Existence on (0,T) × R). If 0 < S < S′ < T, Proposition
6.19 implies thatuS′ |QS is a generalized solution of (E) inQS. By Step 2 for
t ∈ (0,T), it is possible to defineu from {uS; 0< S < T} uniquely by

u(t , x) = uS(t , x) with S ∈ (t ,T).

From Proposition 6.20 we see thatu is a generalized solution of (E) in (0,T)×R.
It is easy to see that other properties hold.ut
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