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Motivation

• Need for (visco)plasticity
Microstructure evolution induce and is controlled by local
elastic and plastic processes.

• Need for continuum plasticity models
Discrete or phase field dislocation models are possible but for
representative microstructures in metallurgy, continuum
constitutive equations are preferable.

• Need for size–dependent crystal plasticity models
In such microstructures, the plastic processes take place at the
micron scale at which they are known to be size-dependent;
strain gradient plasticity is required at this micro-level.
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Phase-field model
Total free energy functional

F (φ, ∇φ, c) =

Z
V

f (φ, ∇φ, c) dv =

Z
V

“
fch(φ, c) +

α

2
|∇φ|2

”
dv

Chemical energy density fch(c, φ) (binary alloys, 2 phases α, β)

fch(c, φ) =

h(φ)

fα(c) +

(1− h(φ))

fβ(c) +

Wg(φ)

fα,β(c) =
1

2
kα,β(c − aα,β)2 + bα,β

where h(φ) = φ2(3− 2φ)

g(φ) = φ2(1− φ)2
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Mechanical behaviour

Specific free energy
fmech(ε∼

e , V ) = fe(ε∼
e) + fp(V )

where V is the set of internal variables.

• Strain partition ε∼ = ε∼
e + ε∼

? + ε∼
p

• Elastic energy fe(ε∼
e) =

1

2
ε∼

e : C
≈

: ε∼
e

• Plasticity induced stored energy f k
p =

1

3
Ckα∼k : α∼k +

1

2
bkQk r

2
k

• Mechanical dissipation potential Ω(σ∼, A)

A: set of thermodynamical forces associated with V

State laws Complementary laws

σ∼ =
∂fmech

∂ε∼
e

ε̇∼∼
p =

∂Ω

∂σ∼

A =
∂fmech

∂V
V̇ = −∂Ω

∂A
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Enhancing classical continuum mechanics

• Within the framework of generalized continuum mechanics, we
introduce an additional degree of freedom

DOF = {u , pχ},

where pχ is a scalar plastic micromorphic variable
[Eringen and Suhubi, 1964]

• The state variables are assumed to be the elastic strain, the
accumulated plastic strain related to the isotropic hardening, the
plastic micromorphic strain pχ and its gradient:

STATE = {ε∼
e , p, pχ, ∇pχ}

• The specific Helmholtz free energy density, fmech, is a function of
these variables:

fmech(ε∼
e , p, pχ,∇pχ) =

1

2
ε∼

e : C
≈

: ε∼
e+

1

2
Hp2+

1

2
Hχ(p−pχ)2+

1

2
A∇pχ·∇pχ
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Micromorphic approach to gradient plasticity
• State laws

σ∼ =
∂fmech

∂ε∼
e

= C
≈

: ε∼
e , R =

∂fmech

∂p
= Hp + Hχ(p − pχ)

a =
∂fmech

∂pχ
= −Hχ(p − pχ), b =

∂fmech

∂∇pχ
= A∇p

• Generalized balance equation (from the principle of virtual power)

a = div b =⇒ pχ −
A

Hχ
∇2pχ = p

• Yield function g(σ∼, R) = σeq − R0 − R = 0 under plastic loading:

σeq = R0 + R = R0 + Hp + Hχ(p − pχ) = R0 + Hp − A∇2pχ

• Flow and evolution rules

ε̇∼
p = λ̇

∂g

∂σ∼
, ṗ = −λ̇

∂g

∂R
= λ̇

Aifantis model is retrieved when the constraint p ≡ pχ is enforced

[Aifantis, 1987]
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Mechanical phase-field coupling
Total free energy functional:

F =

∫
V

f (φ,∇φ, c , ε∼
e ,Vk , pχ,∇pχ) dv

=

∫
V

(
fch(φ, c) + fmech(φ, c , ε∼

e ,Vk , pχ,∇pχ) +
α

2
|∇φ|2

)
dv

Mechanical free energy contribution

fmech(φ, c , ε∼
e ,Vk , pχ) = fe(φ, c , ε∼

e) + fp(φ, c ,Vk , pχ,∇pχ)

Mechanical dissipation potential

Ω(φ, c ,σ∼ ,Ak)
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Mechanical phase-field coupling: field equations

• Local static mechanical equilibrium

∇.σ∼ = ∇.

(
∂f

∂ε∼
e

)
= 0

• Generalized balance equation

a = ∇.b =⇒ pχ − A

Hχ
∇2pχ = p

• Balance of mass

ċ + ∇. J = ċ − ∇.

[
L(φ)

(
∇∂f

∂c

)]
= 0

• Evolution equation of order parameter (Cahn/Allen,
Landau/Ginzburg equation)

−βφ̇ − ∂f

∂φ
+ ∇.

∂f

∂∇φ
= 0
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Phase field approach and “Homogenization”
Two approaches for introducing linear and nonlinear mechanical
constitutive equations into the standard phase field model:

1 Standard Khachaturyan–like Model

• The material behaviour is described by a unified set of constitutive
equations.

• Each material parameter is interpolated between the limit values known
for each phase. [Wang and Khachaturyan, 1995]

ε∼
? = φ ε∼

?
α + (1 − φ) ε∼

?
β

C
≈
(φ, c) = φC

≈α(c) + (1 − φ)C
≈β(c)

Elastic energy fe(ε∼
e , φ, c):

fe(φ, c , ε∼
e) =

1

2
ε∼

e : C
≈
(φ, c) : ε∼

e
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Phase field approach and “Homogenization”

Two approaches for introducing linear and nonlinear mechanical

constitutive equations into the standard phase field model:

2 Homogenization Approach

• One distinct set of constitutive equations is attributed to each individual
phase k at any material point.

v
a

ri
a

b
le

 Ψ

Ψα

Ψβ

α phase β phaseinterface

να

νβ

ν

distance

ν = να

ν = νβ

σ∼ = φ σ∼α + (1 − φ) σ∼β

ε∼ = φ ε∼α + (1 − φ) ε∼β

Elastic energy f (ε∼
e , φ, c):

fe(φ, c , ε∼
e) = φ feα(c) + (1 − φ) feβ(c)
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Phase field approach and “Homogenization”

2 Homogenization Approach

• Voigt/Taylor model
[Ammar et al., 2009b, Ammar et al., 2011]

ε∼α = ε∼β = ε∼
σ∼ = φ σ∼α + (1 − φ) σ∼β

• Effective elasticity tensor

C
≈

= φC
≈α + (1 − φ)C

≈β

• Plastic strain and eigenstrain:

ε∼
? = C

≈
−1 : (φC

≈α : ε∼
?
α + (1 − φ)C

≈β : ε∼
?
β)

ε∼
p = C

≈
−1 : (φC

≈α : ε∼
p
α + (1 − φ)C

≈β : ε∼
p
β)

• Reuss approach: see [Steinbach and Apel, 2006]
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Elastoplastic phase field coupling
Total free energy functional:

f (φ, ∇φ, c, ε∼
e , Vα, Vβ) = fch(φ, c) + fe(φ, c, ε∼

e) + fp(φ, Vα, Vβ) +
α

2
|∇φ|2

Plastic free energy density fp(φ, Vα, Vβ):

fp = φ f p
α (φ, pα, pχα, ∇pχα) + (1− φ)f p

β (φ, pβ , pχβ , ∇pχβ)

where f p
k =

1

2
Hkp

2
k +

1

2
Hχk(pk−pχk)

2 +
1

2
Ak∇pχk .∇pχk with k = {α, β}

Dissipation potential Ω :

Ω = φΩα(Aα) + (1− φ)Ωβ(Aβ)

Aα,β : are the set of thermodynamic forces.

Classical Von Mises yield function gα,β :

gα,β = σeq
α,β − Rα,β
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Simple shear of a two–phase laminate

γ

h 2
h 2

γ

l

1

2

O

n

s

(s) (h+)(h−)

The microstructure is composed of a hard elastic phase (h) and a
soft elasto–plastic isotropic phase (s). A mean simple shear γ̄ is
applied to the unit cell with periodicity constraints.
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Simple shear of a two–phase laminate

The displacement and micromorphic strain take the form the form:

u (x1, x2) =

8<:
u1 = γ̄x2

u2 = u2(x1)
u3 = 0

The strain, stress and plastic strain fields read:

ε∼ =
1

2

24 0 γ̄ + u2,1 0
γ̄ + u2,1 0 0

0 0 0

35 , ε∼
p =

3

2
p

s∼
J2

=

√
3

2
p

24 0 1 0
1 0 0
0 0 0

35 , J2 =
√

3σ12

σ∼ =

24 0 σ12 0
σ12 0 0
0 0 0

35 = 2µ(ε∼− ε∼
p)

These forms of matrices are valid for both phases, except that p ≡ 0 in the hard
elastic phase. Each phase possesses its own material parameters, Hχ and A, the
shear modulus µ being assumed for simplicity to be identical in both phases.
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Simple shear of a two–phase laminate

u2(x1) = γ̄, pχ(x1)

The plasticity criterion in the soft phase:

g(σ, R) =
√

3σ12 − R0 − R = 0

=
√

3σ12 − R0 − Hp − Hχ(p − pχ) = 0

∂g(σ, R)

∂x1
= 0 = (H + Hχ)

∂p

∂x1
− Hχ

∂pχ

∂x1

The balance equation for micromorphic variable:

a = div b ⇒ A
∂2pχ

∂x2
1

= Hχ(p − pχ)

We obtain the following differential equation for the micromorphic variable in
both phases:

∂3pχ

∂x3
1

− ωs2 ∂pχ

∂x1
= 0 where ωs =

s
HχH

A (Hχ + H)

where H is a linear hardening modulus and 1/ωs is the characteristic length of
the soft phase for this boundary value problem.
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Simple shear of a two–phase laminate

From the differential equation, the hyperbolic profile of pχ takes the form:

pχ = α cosh (ωx) + β

Symmetry conditions (pχ(−s/2) = pχ(s/2)) have been taken into account.

Elastic phase: In the elastic phase, where the plastic slip vanishes, an

hyperbolic profile of the micromorph variable, ph
χ, is obtained:

ph
χ = αh cosh

„
ωh(x ± (s + h)

2
)

«
, with ωh =

r
H

Ae

Plastic phase

ps
χ = αs cosh (ωsx) + βs , with ωs =

s
HHh

χ

Ah (H + Hh
χ)

where, again, αh, αs and βs are constants to be determined. It is remarkable

that the plastic microvariable, pχ, does not vanish in the elastic phase, close to

the interfaces, although no plastic deformation takes place.
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Simple shear of a two–phase laminate

The coefficients αh, αs and βs can be identified using the interface and
periodicity conditions:

• Continuity of pχ at x = ±s/2:

αh cosh

„
ωh h

2

«
= αs cosh

“
ωs s

2

”
+ βp

• Continuity of the double traction (b .n = A ∇pχ.n ) at x = ±s/2:

Ahαhωh sinh

„
ωh h

2

«
= −Asαsωs sinh

“
ωs s

2

”
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Simple shear of a two–phase laminate

Periodicity of displacement component u2.
We have the constant stress component

σ12 = µ(γ̄ + u2,1)

whose value is obtained from the plasticity criterion in the soft phase:

f (σ, R) =
√

3σ12 − R0 − Hp − Hχ(p − pχ) = 0

us
2,1 =

 
R0√
3µ

+

„√
3 +

H√
3µ

«
βs + αs

√
3Hh

χ

(H + Hh
χ)

cosh (ωsx)− γ̄

!
The average of the fluctuation on the whole structure:Z (s+h)/2

−(s+h)/2

u2,1 dx = 0

must vanish for periodicity reasons.
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Plastic micromorphic strain and plastic slip

Numerical values:
µ = 27000 MPa, s = 3µm

h = 5µm
Ah = 10 MPa.µm2,

Hs
χ = Hh

χ = 500000 MPa
γ̄ = 0.001

FE implementation
[Ammar et al., 2009a]

As = 10 MPa.µm2

As = 50 MPa.µm2 As = 100 MPa.µm2
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Application to mi-

crostructure evolution

in Ni-based superal-

loys

Cooperation M. Cot-

tura, Y. Le Bouar, A.

Finel (ONERA-LEM)

creep test along [100]
(150 MPa)

• left:
elastic PFM

• middle: strain
gradient
viscoplastic PFM

• right: standard
elastoviscoplastic
PFM

[Cottura et al. JMPS 2012]
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Application to microstructure evolution in Ni-based superalloys

[Cottura et al., JMPS, 2012]
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