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PREF ACE TO THE ENGLISH EDITION 

This work deals with elastic models of crystal defects, a field situated at the boundary 
between continuum mechanics and solid state physics. 

The understanding of the behaviour of crystal defects has become unavoidable 
for studying such processes as anelasticity, internal damping, plastic flow, rupture, 
fatigue, and radiation damage, which playa determining role in various fields of mate­
rials science and in top technological areas. On the other hand, the lattice distortion 
produced by a crystal defect can be calculated by means of elastic models, at least at 
sufficiently large distances from the defect. Furthermore, the interaction of a crystal 
defect with other defects and with applied loads is mainly due to the interaction of 
their elastic states. This explains the permanent endeavour to improve the elastic 
models of crystal defects, e.g. by taking into account anisotropic and non-linear 
elastic effects and by combining elastic with atomistic models in order to achieve a 
better description of the highly distorted regions near the defects. 

This book has grown out of a two-semester course on "Continuum Mechanics 
with Applications to Solid State Physics" held by the author some ten years ago 
at the University of Stuttgart, which was an attempt to unify the topic with recent 
developments that have made continuum mechanics a highly deductive science. Since 
then, the extension of the application area and the development of new computing 
techniques have considerably enlarged the field and changed the plan of the work. 
However, the stress is still/aid on theory and method: the problems solved are illus­
trative and intended to serre as background for approaching more complex or more 
specific applications. Moreover, their choice is inevitably influenced by the preference 
of the author for subjects to which personal contributions have been brought. 

Chapter I concerns the basic concepts and laws of the kinematics, dynamics, 
and thermodynamics of deformable continuous media, the linear and non-linear 
elastic constitutive equations, as well as the formulation and solving of the boundary­
value problems of linear elastostatics. Special attention is given to anisotropic elasti­
city, to the accurate formulation of boundary-value problems involving infinite domains 
and concentrated forces, and to the determination of Green's tensor function, in 
view of the importance of these tOpics for the simulation of crystal defects. 

Chapter II contains a systematic study of the elastic states of single straight 
or curvilinear dislocations, of the elastic interactions between single dislocations, 
and of moving dislocations. The emphasis lies on the anisotropic elasticity theory 
of dislocations, especially on the powerful methods developed during the last ten years 
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for the computation of the elastic states of dislocation loops by means of straight 
dislocation data. 

Chapter III presents the main results obtained so far in describing non-linear 
effects in the elastic field of straight dislocations, as well as in the study of the core 
configuration of dislocations by using semidiscrete methods. 

Chapter IV is devoted to the linear and non-linear theory of continuous distri­
butions of dislocations and to its application to investigating the influence of dislo­
cations on crystal density and on the low-temperature thermal conductivity of crystals. 

Chapter V deals with the modelling of point defects as rigid or elastic inclusions 
in an elastic matrix, or as force !nultipoles. Finally, some of the results Q)lailable 
on the interactions between point defects and other crystal defects are briefly reviewed. 

Although the material in the text covers mainly the mathematical theory of 
crystal defects, the author has been constantly concerned with emphasizing the 
phYSical significance of the results and some of their possible applications. The 
reader can easily enlarge his information in these directions by reference to the stan­
dard books on crystal defects by Cottrell {84J, Read {275J, Friedel [124J, Kroner 
[190J, van Bueren {365J, Indenbom {167J, Nabarro {258J, Hirth and Lathe [162J, 
or to the review articles by Seeger [286 J, Eshelby {Ill J, de Wit [385 J, and Bullough 
[50]. 

Printed jointly with Springer-Verlag, the English edition is a revised and up-dated 
version of the Romanian book "Modele elastice ale defectelor cristaline", published 
in 1977 by Editura Academiei. The present edition is supplemented by several subsec­
tions concerning the simulation of crystal dislocations by means of Volterra and Somi­
gliana dislocations, the dislocation loops in anisotropic media, the interaction of crystal 
defects, and the flexible-boundary semidiscrete methods, as well as by a review of the 
main results published in the last four years. 

The author expresses his deep gratitude to Prof A. Seeger and Prof. E. Kroner 
for continuous encouragement to writing this book and for numerous discussions on 
the application of continuum mechanics to the simulation of crystal defects. The 
author is also greatly indebted to Dr. E. S06s for his valuable detailed criticism of 
the manuscript. 



CHAPTER I 

FUNDAMENTALS OF THE THEORY 
OF ELASTICITY 

Before broaching the very subject of this chapter, we shall review briefly the basic 
elements of vector and tensor calculus that are necessary in the present work. This 
will also allow the reader to become familiar with the system of notation used in 
the following. 

1. Vectors and tensors 

1.1. Elements of vector and tensor algebra 

We denote by ~ the three-dimensional Euclidean space; its elements P, Q, ... 
are called points. The translation vector space associated with ~ is denoted by l' 
and its elements u, v, ... are called vectors. 

The scalar product of the vectors u and v is denoted by u·v. The magnitude 
of the vector u is the non-negative real number 

lIuli = Vu.u. (1.1) 

Si nee l' is also three-dimensional, any triplet of non-coplanar vectors is a 
basis of 1', and any vector of l' can be written as a linear combination of the basis 
vectors. A Cartesian co-ordinate frame consists of an orthonormal basis {ek} = 
= {el> e2' ea} and a point 0 called the origin. Then 

(1.2) 

where 

s ={I for k=m 
Ukm o for k =I: m 

(1.3) 

-is the Kronecker delta. The vector OP = x is called the position vector of the point 
pe $. Clearly, the correspondence between points and their position vectors is 
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one-to-one. Therefore, we shall sometimes label points by their position vectors, 
referring for conciseness to the point P whose position vector is x as "the point x". 

The real numbers U1, U2' Ua, uniquely defined by the relation 

(104) 

are called the Cartesian components of the vector u. 

Both direct notation, using only vector and tensor symbols, and indicial nota­
tion, making use of vector and tensor components, wiII be employed throughout. 
Whenever indicial notation is used, the subscripts are assumed to range over the 
integers 1,2,3, and summation over twice repeated subscripts is implied, e.g. 

(1.5) 

From (104) and (1.2) we see that the Cartesian components of u can be also 
defined by 

(1.6) 

The vector product of two vectors u and v is denoted by u X v. In view of (104) 
we can write 

where E klm is the alternator symbol. A direct proof shows that 

{

for kim = 123,231, 312 

E klm = 1 for kim = 132, 213, 321 

o for any other values of kim. 

From (104) and (1.7) it follows that 

We notice that the symbols Eklm satisfy the identities 

EiTel E jmn = Dkj Dkm Dkn ' 

I D,j D'm D'n 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 
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A second-order tensor A is a linear mappingl that assigns to each vector u 
a vector 

v=Au. (1.12) 

We denote by 2 the set of all second-order tensors defined on "1'". The sum 
A + B of two tensors A, BE 2 is defined by 

(A + B) u = Au + Bu, (1.13) 

and the product of a tensor A E 2 and a real number IX by 

(IXA)u = IX(Au). (l.14) 

The space 2 endowed with the composition rules (1.13) and (1.14) is also a vector 
space. 

The unit tensor 1 and the zero tensor 0 are defined by the relations 

lu = u, Ou = 0 for every u E "1'", (1.15) 

where 0 is the zero vector. 
The tensor product uv of two vectors u and v is the second-order ,Jensor 

defined by 

(uv)w = u(vow) for every WE "1'". (1.16) 

It can be shown that if fk and gm are two arbitrary bases of "1'", then the tensor 
products fkgm, k, m = 1,2,3, are a basis of 2, which is thus a nine-dimensional 
vector space. In particular, the tensor products ekem, k, m = 1,2,3, are a basis 
of 2, and we can write for every AE 2 

(1.17) 

The nine real numbers Akm, uniquely defined by (1.17), are called the Cartesian 
components of the tensor A. From (1.17), (1.16), and (1.2), we deduce the relation 

(1.18) 

which can be considered as an equivalent definition of the tensor components. 
In particular, by applying this definition to the unit tensor and taking into a~unt 
(1.15)1 and (1.2), we infer that ~km are the Cartesian components of the unit tensor, 
i.e. 

1 This definition can still be applied when 'f is an arbitrary vector space. 
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If V = Au, we also have by (1.17) and (1.16) 

and hence 
(I.l9) 

The product AB of two tensors A and B is defined by the composition rule 

(AB) u = A(Bu) for every u E "Y, 

wherefrom it follows that 
(1.20) 

The transpose of the tensor A = Akmekem is the tensor AT = A mkekcm' A 
second-order tensor A is called symmetric if AT = A, and skew or antisymmetric 
if AT = -A. By defining 

sym A = ~ (A + AT), skw A = ~ (A - AT) 

as the symmetric part and the skew part of an arbitrary second-order tensor A. 
we can always write 

A = sym A + skw A. 

Given any skew tensor n, there exists a unique vector 0> such that 

nu = 0> X u for every u E "Y. (1.21) 

Indeed, from (1.21), (1.9), and (1.11), it results that 

(1.22) 

The vector 0>, uniquely defined by (1.22)1> is called the axial vector of the skew 
tensor n. 

The trace of A E Ii' is the real number 

tr A = Amm. (1.23) 

The passing from A to tr A is called (tensor) contraction. It is easily seen that 

tr AT = tr A, tr(AB) = tr(BA). (1.24) 

The inner product A· B of two second-order tensors A and B is the real number 

(1.25) 
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while the magnitude of A is the real number 

IIAII = VA.A = VAkmAkm . (1.26) 

The determinant det A of the tensor A is defined by 

det A = det [A km], (1.27) 

where [Akml denotes the matrix of the Cartesian components of A. From this defi­
nition and some well-known rules of matrix algebra, we see that for every A, BE .P: 

det AT = det A, det(AB) = (det A)(det B). (1.28) 

If det A #- 0, there exists a unique inverse linear transformation A-I of l' on l' 
such that if v =Au then u= A-I v for every u, VE1'. From these two equations and 
(1.15)1 it follows that 

0.29) 

The tensor A-I is called the inverse tensor of A. 
A tensor Q is said to be orthogonal if 

(1.30) 

By (1.30) and (1.28) we have (det Q)2 = 1, det Q = ± 1. Hence, every orthogonal 
tensor admits an inverse and, by (1.30)1' Q- 1 = QT. The set of all orthogonal ten­
sors forms a group, called the orthogonal group; the set of all orthogonal tensors 
with determinant equal to + 1 forms a subgroup of the orthogonal group, called the 
proper orthogonal group. 

A tellsor of n'tlz order is a linear mapping that assigns to each vector u E l' 
a tensor of (n - l)'st order, 11 ;;;, 3. Combining this definition with that of a second­
order tensor given above allows the iterative introduction of tensors of an arbitrary 
order. We denote by :t'" the space of all tensors of order 11. 

The tensor product U1U2 ••• u" is a tensor of n'th order defined as a linear 
mapping of l' in !l' n -1 by the relation 

It can be shown that the tensor products ekt .•• ekn' k1> •.. , k" = 1,2,3, form a 
basis of .P II. Hence .P" is 3"-dimensional, and every tensor WE.P" can be written 
uniquely in the form 

(1.31) 

where (f>kl ••• kn are the Cartesian components of W. Moreover, if 'I' = wu, the n 
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Let us consider now the transformation rules of vector and tensor components 
when passing from the orthonormal basis {ek} to another orthonormal basis {ea. 
Denote by 

k, r = 1,2,3, (1.32) 

the direction cosines of the unit vectors ek with respect to the unit vectors e;. By 
(1.4) and (1.6), we obviously have 

(1.33) 

wherefrom 

Substituting successively (1.33) into the relation 

and taking into account the unicity of Cartesian components, we obtain the trans­
formation rule of the vector components 

(1.34) 

In a similar way, the transformation rule of the components of a second-order 
tensor A reads 

(1.35) 

the generalization for higher-order tensors being evident. 
A real number A. is said to be a principal or characteristic value of a second­

.order tensor A if there exists a unit vector 0 such that 

An = ..1.0; (1.36) 

in this case 0 is called a principal direction corresponding to A.. 
It can be shown (see, e.g. Halmos [lSI], Sect. 79) that if A is a symmetric 

second-order tensor, then there exists an orthonormal basis 01> O2, 0 3 and three 
(not necessarily distinct) principal values .,1.1> .,1.2' A.a of A such that 

If ..1.1 = ..1.2, equation (1.37) reduces to 

A = .,1.10101 + .,1.2(1 - 0 10 1), 

Finally, if .,1.1 = .,1.2 = A.a, then 

(1.37) 

(1.37a) 

(1.37b) 
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This theorem, called the spectral theorem, is of great importance for the elasticity 
theory. For instance, it implies the existence of the principal values of the strain 
tensor and of the Cauchy stress tensor for these are symmetric second-order tensors. 

1.2. Elements of vector and tensor analysis 

In this section we choose a fixed Cartesian co-ordinate frame in $, with origin 0 
and orthonormal basis {el , e2, ea}. Let (Xl' X2, xa) denote the Cartesian co-ordinates -of a point P E $ with respect to this frame. The position vector 0 P = x can be 
written as 

For the sake of simplicity we denote the partial derivative o( .)/OXk by (.).k' 
Let D be an open set in $. A function CI» that assigns to each point PE D 

a scalar, vector, or tensor CI»(P) is called scalar, vector, or tensor field on D, respective­
ly. A vector or tensor field is said to be of class C· on D if its components with 
respect to the fixed co-ordinate frame are continuous on D together with their par­
tial derivatives up to the n'th order. -Let CI» be a scalar, vector, or tensor field on $. Denoting IIOPII = r, we shall 
write CI»(P) = O(rn) as r ~ 00, or CI»(P) = o(r") as r ~ 00, according to whether 
the expression IIr- "CI»(P) II is bounded or tends to zero as r ~ 00. The same system 
of notation will be used to describe analogous properties for r ~ O. 

Consider a scalar field F of class Cl. The gradient of F is the vector field 

(1.38) 

Let u be a vector field of class Cl on D. The gradient of u is the second-order 
tensor field 1 

0.39) 

the curl of u is the vector field 

(l.40) 

and the divergence of u is the scalar field 

div u = tr(grad u) = um'm' (1.41) 

These operators, as well as those subsequently introduced in this section, can be 
also defined as linear mappings between scalar, vector, or tensor spaces (see, e.g. 
Gurtin [150], Sect. 4), and hence they are independent of the co-ordhiate system. 

1 Note that we use throughout the so-called right-hand gradients, curls, and divergences 
or vector and tensor fields (cr. Malvern [227], Sect. 2.5, Jaunzemis [433], p. 88). 

2 - 120 
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We shall also use the symmetric gradient of D, which is the symmetric part 
of grad D, i.e. 

(1.42) 

Next, let A be a second-order tensor field of class CIon D. The gradient of A 
is the third-order tensor field 

(1.43) 

the curl of A is the second-order tensor field 

(1.44) 

and the divergence of A is the vector field 

(l.4S) 

For a tensor field A of class C2 we shall also use the so-called incompatibility of A, 
which is the second-order tensor field 1 

(1.46) 

Finally, we define the Laplacian of a scalar field F and that of a vector field D, 

both of class C2 on D, by the relations 

L1 F = div(grad F) = F.mm, (1.47) 

( 1.48) 

It can be shown by a direct calculation that if F, D, and A f.re of class C2 on 
D, then they satisfy the identities 

curl (grad F) = 0, curl(grad D) = 0, (1.49) 

div(curl u) = 0, div(curl A) = 0, (1.50) 

and if u and A are of class C3 on D, then 

inc(symgrad u) = 0, div(incA) = o. (1.51) 

1 This operator has been introduced by Kroner [190]. Its name is justified by the fact 
that the compatibility equations in the linear theory of elasticity can be written as inc E = () 
where E is the infinitesimal strain tensor (cf. Sect. 2.7). In other words, infinitesimal strains are 
compatible only if the "incompatibility" of the infinitesimal strain tensor vanishes. 
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Let V be a finite region in <C, bounded by a two-sided and piecewise smooth 
surface S, and designate by n the outward unit normal to S (Fig. 1.1). It can be 

Fig. 1.1. On the application of 
Gauss' formulae. 

------ -

L 

Fig. 1.2. On the application 
of Stokes' formulae. 

shown that if u is a vector field and A is a second-order tensor field, both of which 
are of class CIon V = V U S, then 

~s u·n ds = ~v div u dv, 

( An ds = ( div A dv. 
Js )v 

(1.52) 

(1.53) 

These integral transformations, sometimes called Gauss' formulae, are still valid 
for unbounded regions, provided u and A are of bounded support. 

Let S be a closed two-sided and piecewise smooth surface, bounded by a 
closed simple and piecewise smooth curve (Fig. 1.2). Then, given any vector field 
u and any second-order tensor field A, both assumed of class Cl in some neigh-
bourhood of S = S U L, the following integral transformations, known as Stokes' 
formulae, hold 

fL u·dx = - ~s (curl u).n ds, 

fL A dx = - ~s (curl A) n ds, 

(1.54) 

(1.55) 

where n is one of the unit normals to S, and the integration sense on L is chosen 
clockwise when looking down along n. 

1.3. Orthogonal curvilinear co-ordinates. 
Physical components of vectors and tensers 

The formulation of the boundary-value problems in the elasticity theory can be sometimes sig­
nificantly simplified by passing from the Cartesian co-ordinates Xk to a suitably chosen system of 
curvilinear co-ordinates, say 0(1.' In general, such a system is introduced by the transformation 

Xk = Xk(0(l.)' k, a = 1,2,3, (1.56) 
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which is supposed to be one-to-one and continuously differentiable, except some possible singular 
points or curves. Hence, excluding from C these possible singularities, we have 

[ 
aXk ] 

det a(J« =F 0, 

and there exists an inverse transformation 

which is also continuously differentiable. 

Fig. 1.3. Curvilinear co-ordinates 
(JIX' natural basis {gg.}, and corres­
ponding orthonormal basis {e< .. >} of 
physical components, a = 1, 2, 3. 

(1.57) 

(1.58) 

If (Jl is held constant, the three equations (1.56) define parametrically a surface, giving its 
Cartesian co-ordinates as a function of the parameters (J2 and °3, This surface is called a 0l-surface; 
(J2- and (J3-surfaces are defined in a similar way. The three co-ordinate surfaces intersect by pairs in 
three co-ordinate curves, on each of which varies only one curvilinear co-ordinate. Through any 
regular point of the space there passes one and only one co-ordinate curve of each family (Fig. 1.3). 

To each point PE C we can associate a so-called natural basis composed of the three 
vectors 

(1.59) 

which are tangent at P to the co-ordinate curves, and are linearly independent by virtue of (1.57). 
However, when the curvilinear co-ordinates have different physical dimensions, the vector and 
tensor components with respect to the natural basis have also different physical dimensions, 
thus complicating the analysis. To avoid this difficulty, the vectors of the natural basis are usually 
replaced by the corresponding unit vectors 

1 
e< .. > = h g" (no sum), 

" 
(1.60) 

where h" = IIgIX II. 
In the following we consider only orthogonal curvilinear co-ordinates. In this case the co-or· 

dinate curves through any point P are mutually orthogonal, and the basis {eCl} is orthonormal 
Fig. 1.3), while its orientation is generally point-dependent. 
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The vector and tensor components with respect to the basis {e«} are called physical 
components; they will be labelled by sharp brackets < ). For example, the physical components 
A<!I{J> of a second-order tensor A will be defined by 

(1.61) 

Denoting as above by 

k, a = 1,2,3, (1.62) 

the direction cosines of the unit vectors ek with respect to the unit vectOrs eo>' we obtain from 
(1.33) the transformation formulae 

(1.63) 

Next, from (1.34) and (1.35) it follows that the physical components of a vector u and of a se­
cond-order tensor A are connected with their respective Cartesian components by the relations 

(1.64) 

By using these formulae and taking into account that now the qk<!I>'s are functions of PE e, 
it is possible to deduce the expressions in physical components of the operators defined in Sect. 1.2. 
In particular, by using (1.47), (1.39), and (1.45), it can be shown that 

(1.65) 

(1.66) 

(1.67) 

where F(P) is a scalar field, u(P) is a vector field, and A(P) is a second-order tensor field, all of them 
of elMS Cl; the symbols < a{Jy > are defined by the relation 

(1.68) 

where 

1 a a = --- (no sum) 
<<I> ha aOa • 

(1.69) 

From (1.68) and (1.63) it follows that 

(1.70) 

Since qk<p>qk<y> = 6py, equation (1.70) can be rewritten as 
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and hence the symbol (apy) is antisymmetric in the last tWO indexes. Moreover, it can be shown 
[227J that (apy) = 0, except when p oft y and a = p or a = y, and that for a oft p 

X, 

1 
~apa) = - (aap) = -a(f5>ha. 

ha. 
(no sum). 

ez 

z 

Fig. 1.4. Cylindrical co-ordinates 
p, 0, z and corresponding ortho­
normal basis rep, ea, ez} of physical 

components. 

The last formula allows the calculation of all non-zero (apy)-symbols. However, the direct use of 
the definition (1.68) sometimes leads more easily to the same result. 

We finally give the main results that are obtained when applying the above formalism to 
cylindrical and spherical co-ordinates. For the sake of simplicity we denote in this case the curvi­
linear co-ordinates 0l> 0a, Os by (p, 0, z), respectively (P, 0, '1'), and thus the sharp brackets of 
the subscripts may be omitted without possible confusion. 

We limit ourselves to indicate only the non-zero symbols qk<rt> and (apy), as well as the 
physical components of the fields H = grad u, E = symgrad u, div A, and L1F, which occur sys­
tematically in the theory of elasticity. 

Cylindrical co-ordinates (Fig. 1.4): 0l = p, Os = 0, Os = z. 

Xl = P cos 0, xa = p sin 0, Xa = z. 

hp = 1, hIJ = p, 

qap = -qlIJ = sin 0. 

1 
(OpO) = - (OOp> = - . 

p 

1 au, up 
H(J(J =---+-, 

p ao p 

(1.71) 

(1.72) 

(1.73) 

(1.74) 

(1.75) 
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. BAop 1 BAos BAoz 1 
(dlV A)o = ._- + - -- + -- + - (A s + AO ), Bp p BO Bz p p p 

Spherical co-ordinates (Fig. 1.5): 01 = r, O2 = 0, Oa = p. 

Xl = r sin ° cos ,/" X 2 = r sin 0 sin p, Xa = r cos 0, 

h, = 1, hs = r, hq> = r sin 0. 

Fig. 1.5. Spherical co-ordinates r, 
8, p and corresponding ortho­
normal basis {e" eo, eq>} of phy-

sical components. 

ql, = sin 0 cosp, q2r = sin ° sin p, 

q1(J = cos 0 cosp, q2(J = cos 0 sin p, 

q1tp = - sin p, q2tp = cos p, 

q3r = cos~. I 
q3(J = - sm 0, 

qatp = O. 

23 

(1.76) 

(1.77) 

(1.78) 

(1.79) 

(1.80) 

(1.81) 
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<''') - - <''') - <"'.) - ~ <.",)- : '} 

<",0",) = - (",,,,0) = - ctg O. 
r 

au, 
H" = Dr' 

aUo 
Ho, = Dr' 

auip 
H", = 8,' 

au, 
E,. = ar-' 

1 auo u, 
Hoo =--+ -

r ao r 

1 ( 1 au, autp utp ) 
E,tp = 2 r sin 0 a", + 8, - -;.- , 

1 aUt u., 
H =-- ---, 'ip r sin 0 a", r 

1 aus utp 
Ho =---- - - ctgO tp r sin 0 a", r • 

1 au" Us u, 
H =-.---+-ctgO + -. 

"" r sm 0 a", r T 

Eto = ~ (~ au, + auo _ !!.!..). 
2 r a(J ar r 

1 auo u, 
Eoo =- - + - ' 

r a(J r 

1 ( 1 auo 1 au" utp) 1 autp 110 II, 
Eo =- -.--- + --- --ctg(J , Etptp =-.--- + -ctgO+-. 

'I' 2 r sm (J a", r a(J r T sm (J a", r r 

aArr + _1 aA,s + _1 _ _ ~A,tp + ~ (2A, (J) 
(div A), = - Aee - Atptp + A'e ctg • aT r a(J rsin 0 a", r 

aAe, 1 aAoo 1 aAotp 1 ) 01 
(div A) = -- + - -- + -.-- -- + - [2Ao, + A,o+(Aoo - Atptp ctg • 

o ar r a(J r sm 0 a", r 

aA, 1 aAtpo 1 aAtptp 1 (A A) 01 
(div A) = -'1'- + - -- + - - .- -- + - [2Atp, + A,,, + 0'1'+ '1'0 ctg . 

'I' ar r ao r sm 0 a", r 

(1.82) 

(1.83) 

(1.84) 

(1.85) 

LlF = ~ ~ (r2 aF) + _1_ ~ (Sin 0 aF) + a2F (1.86) 
r2 ar ar r2 sin 0 ao a(J r2 sin2 0 atp2 

2. Kinematics of deformable continuous media 

2.1. Configuration, motion 

Continuum mechanics assumes that any body "fills" the spatial region it occupies 
at a given time. Therefore, each material point or particle X of a body 11 may be 
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identified with its place PE Iff in an arbitrary but fixed configuration (K) of the body. 
called reference configuration 1. Let X denote the position vector of P. 

The motion of a body 14 may be described by the mapping 

x = x(X, t), (2.1) 

where x is the position vector of the place occupied by the particle X in the current 
configuration (k) of the body at time t. Thus, the motion is a one-parameter family 
of configurations, with the time t as real parameter. We assume that the function 
X is one-to-one and of class C3• The Cartesian components Xk of X are called material 
or Lagrangian co-ordinates, whereas the components Xk of x are called spatial or 
Eulerian co-ordinates. 

Any time-dependent scalar, vector, or tensor field defined on 14 may be consi­
dered either as a function of the particle X and time t, or as a function of the 
current position vector x and time t, provided that a definite motion (2.1) is given. 
These two possible descriptions are called material description and spatial description, 
respectively 2. Material derivatives and spatial derivatives are defined accordingly. 
We shall use the symbols Grad, Div, Curl, and grad, div, curl for the gradient, 
the divergence, and the curl, calculated with respect to the co-ordinates Xk and Xk> 

respectively. 
Material time derivatives are denoted by dfdt or by superposing dots; they 

are partial time derivatives with the material co-ordinates Xk held constant. In 
particular, the velocity v and the acceleration a of the particle X are, respectively. 
the first and second material time derivatives of the motion X(X, t), i.e. 

v = x = :t x(X, t), 

d2 
a = v = - x(X, t). 

dt 2 

(2.2) 

(2.3) 

Spatial time derivatives are denoted by a/ot; they are partial time derivatives 
with the spatial co-ordinates Xk held constant. 

If «I> denotes a vector or tensor field depending on x and t, then its material 
time derivative can be expressed, by using the chain rule, as 

d 0«1> 
- «I>(x, t) = - + (grad «1» v. 
dt at 

(2.4) 

1 Through this identification, the topology of material manifolds reduces to that of the 
spatial differentiable manifolds of the three-dimensional Euclidean space ~. In particular, we 
understand by material neighbourhood of a particle X the set of all particles that occupied a 
spatial neighbourhood of X in the reference configuration (K). 

2 The spatial description is especially useful in fluid mechanics where we may observe a 
flow in a fixed region of the space. In the elasticity theorY, however, the material description is 
generally preferred, since the reference configuration can be chosen as the initial unstressed state, 
to which the body will return when it is unloaded. 
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Hence, the rate of change of the field cJ» can be decomposed into a local rate of change, 
iJt1>jot, which would be measured by an observer located at the fixed place x, and 
~ convective rate of change, (grad cJ» )v, which is generated by the motion of the particle 
X to places where the field t1> has different values. Replacing t1> by v in (2.4) yields 1 

ov 
a = -+ (grad v) v, 

ot 

where now v is considered as function of x and t. 

2.2. Deformation tensors 

(2.5) 

The mapping defined by a motion at any fixed time is called a deformation. Diffe­
rentiating (2.1) for t = const gives 

dx = FdX, 

where 

F = Grad X(X, t), F. _ oXk(X, t). 
km- oX 

m 

(2.6) 

(2.7) 

The second-order tensor field F is called the deformation gradient. Since X is one-to­
one, we have 2 

J= det F > O. (2.8) 

By inverting (2.6) it follows that 

(2.9) 

where 

F-l = grad X-lex, t), (2.10) 

1 We shall generally write all major formulae in both direct notation and component form. 
In the last case we shall always use rectangular Cartesian components and denote by X" and Xk 
material and spatial co-ordinates, respectively, with respect to a common Cartesian frame. 

I Indeed, since det F is by hypothesis a non-vanishing and continuous function throughout 
the motion for any fixed X, it must have a constant sign for any X and t. On the other hand, 
we have in the reference configuration F = 1, and hence J = 1. Consequently, (2.8) must hold 
for any X and t. 
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The keystone of the theory of finite deformation is the following theorem 1, 

which we state without proof. 

Polar decomposition theorem. Any invertible second-order tensor F as two 
unique multiplicative decompositions 

F=RU, F=VR, (2.11) 

in which R is orthogonal and U and V are symmetric aJ1d positive-definite, i.e. 

(2.12) 

When F is the deformation gradient, R is called the rotation tensor, U the 
right stretch tensor, and V the left stretch tensor of the deformation. The tensors 
C and B, defined by the relations 

(2.13) 

are called the right and the left Cauchy-Green tensors of the deformation. The moti­
vation of this terminology will result from the discussion in the next subsection. 

2.3. Length and angle changes 

Let dL and dl denote the distance between the particles X and X + dX in the con­
-figurations (K) and (k), respectively. From (2.6) and (2.13)1 it follows that 

(2.14) 

The variation of the squared length of the infinitesimal material vector dX may 
now be written in Cartesian components as 

By introducing the second-order tensor 

lIT D = 2" (C - 1) =2 (F F - 1), (2.15) 

-the last relation becomes 

(2.16) 

1 See, e.g. Truesdell and Toupin [357], Sect. 43 of the Appendix. 
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The tensor D, which gives the change in the squared length of material vectors around 
a given particle X, is called the finite strain tensor. 

A motion ofa given body is said to be rigid if it leaves unchanged the distances 
between the particles of that body. In the case of a rigid motion, the general form 
of (2.1) is 

x = c + Q(X - a), (2.17) 

where c is a time-dependent vector, Q is a time-dependent orthogonal tensor, and 
a is a fixed position vector. It can be shown that a motion of a body is rigid if 
and only if D = 0 for any particle of the body. When this is the case, it results 
from (2.15), (2.13), (2.17), and (2.11) that C = B = U = V = 1 and R = Q. 

Now let N be the unit vector of the infinitesimal material vector dX in the 
configuration (K), i.e. N = dX/dL. The ratio AN = dl/dL is called the stretch of 
dX. Dividing (2.14) by d£2, we obtain 

The ratio 

EN = dl - dL = AN - 1 
dL 

(2.18) 

(2.19) 

is called the unit extension of the material vector dX. In particular, if the material 
vector was parallel in the reference configuration to the unit vector et(l, 0, 0), then 
its stretch A (1) and its unit extension E (1) are given, respectively, by the relations 

A~l) = Cn = 1 + 2Dw E (1) = V Cn - 1 = V I + 2Dll - 1. (2.20) 

We will consider now the change in angle produced by deformation. Let 
dX' and dX" be two infinitesimal material vectors, which had in the reference confi­
guration (K) the unit vectors N', N" and the lengths dL', dL", respectively. Assume 
that these vectors become in the current configuration (k) the vectors dx', dx", 
with the unit vectors n', n", and the lengths d/', dI", respectively. By (2.6) and (2.13)1> 
we have 

dx' ·dx" 
cos(n' n") = n' • n" = - --

, d/'dl" 

wherefrom, by taking into account that 

d/'d/" 

dXk = NkdL', dX':: = N;;dL", d/' = AN,dL', d/" = AN"dL" 

and removing the common term dL'dL" from both terms of the last fraction, we 
obtain 

C N'N" cos (n', nil) = km k m • 

AN,AN" 
(2.21) 
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Since cos (N', N") can be easily calculated when the directions of the infinitesimal 
material vectors in the configuration (K) are known, the two angles determined from 
the two cosines can be subtracted to give the change in angle produced by defor­
mation. For example, if the material vectors dX' and dX" were parallel in the reference 

Fig. 2.1. Stretches and change in angle of 
two infinitesimal material vectors dX' and 
dX" that were parallel in the reference con­
figuration to the unit vectors e1 and e2' 

respectively. 

configuration to the unit vectors e1(1, 0, 0) and ez(O, 1,0), respectively, then the 
angle change produced by deformation (Fig. 2.1) is 1£/2 - Oa, where 

(2.22) 

2.4. Material curves, surfaces, and volumes 

Material curves, surfaces, and volumes are sets of particles that occupy in the refe­
rence configuration spatial curves, surfaces, and volumes, respectively. Thus, a 
material curve may be defined in the reference configuration by a relation of the 
form 

x = f(u), u E [a, b], (2.23) 

where u is a real parameter, and the vector-valued function f has to satisfy the same 
regularity conditions as in the case of a spatial curve. At the current time t, the 
material curve coincides with the spatial curve given by the equation 

x = X(f(u), t)= g(u, t). (2.24) 

Material surfaces and volumes can be defined in a similar way, by letting the function 
f depend on two or three parameters, respectively. 

Let us consider now in the reference configuration an infinitesimal material 
vector dX, an infinitesimal oriented area N dS with unit normal N, and an infini­
tesimal volume dV, and denote by dx, n ds, and dv the corresponding elements in 
the current configuration of the body at time t. 

The relation between dX and dx is given by (2.6). The change of the oriented 
element of area is given by Nanson's formula ([357], p. 249) 

IN dS = FTn ds, JNkdS = Fmknmds. (2.25) 
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Finally, by considering the deformation Xk = Xk(Xm, t) for a fixed value of t 
as a change of co-ordinates from the material co-ordinates to the spatial co-ordi­
nates of the particle X, and taking into account the change-of-variable rule of the 
integral calculus, we obtain 

dv = JdV, (2.26) 

since, by (2.6) and (2.8), J is the absolute value of the Jacobian determinant of the 
co-ordinate transformation. 

2.5. Displacement vector 

Whereas in the non-linear theory of elasticity the most important kinematical 
quantity is the motion X(X, t), in the linearized theory it proves advantageous to 
use the displacement vector u(X, t), which is defined as the translation carrying the 
particle X from its place X in the reference configuration to its place x = x(X, t) 
in the current configuration (Fig. 2.2). In Cartesian co-ordinates we have then 

Differentiating with respect to X m and taking into account (2.7) gives 

F= 1 + H, 

where 

H = Grad u(X, t), 

o 

H _ auix, t) 
km- ax . 

m 

Fig. 2.2. On the definition 
of the displacement vector u. 

(2.27) 

(2.28) 

(2.29) 

Finally, from (2.15)2 and (2.28), we deduce the expression of the finite strain tensor 
D in terms of the displacement gradient H 
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In particular, it follows from (2.30)2 that 

Dn= ~+ ~{(~)2 + (~)2 + (~)2}, 
aXl 2 aXl aXl aXl 

2.6. Linearization of the kinematic equations 

If the magnitude of the displacement gradient is small compared to unity we may 
neglect in (2.30) the squares and the products of its components in comparison 
to the linear terms. More precisely, in order to linearize the kinematic equations, 
we assume that 8 = /lH II ~ 1 and neglect all terms of order 0(82) or higher as 8-+0. 

From (2.28), (2.30), and (2.11 -13) we conclude that to within an error of 
order 0(82) as 8 -+ 0, the following relations hold 1 

C :::: B:::: 1 + 2E, U:::: V:::: 1 +E, (2.31) 

D ::::E, R:::: 1+0, (2.32} 
where 

E = ~ ( aUk aUm ) 

km 2 ax + ax 
m k 

(2.33} 

is the infinitesimal strain tensor, and 

Q =~( aUk _ au~) 
km 2 ax ax 

m k 

(2.34) 

is the infinitesimal rotation tensor. 
Next, from (2.20)2 and (2.22), it follows that 

1 From this point onward in this subsection, the sign ~ is to be interpreted as equality to 
within an error of order 0(e2) or greater in e. 
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Hence, to within an error of 0(e2), the diagonal components of the infinitesimal 
strain tensor coincide with the stretches of material vectors initially parallel to the 
co-ordinate axes, and the off-diagonal components of the same tensor coincide with 
half the changes of the angles between material vectors initially parallel to the co-or­
dinate axes. 

It is worth noting that, when the gradient of an arbitrary vector or tensor 
field <I> is of the order O(e), we may write 

(2.35) 

and hence we may identify Grad «I> with grad <1>. In particular, equations (2.33)2 
and (2.34)2 may b~ written in the linearized theory as 

(2.36) 

(2.37) 

To the same approximation, it results from (2.37), (1.22)1> and (1.40), that the axial 
vector m of Q, called the infinitesimal rotation vector, which is defined by 

(2.38) 

may be expressed in terms of the displacement vector as 

(i) = - { curl a, (2.39) 

It should be remembered that the above linearization holds for small dis­
placement gradients. Starting from a different hypothesis, for example assuming 
that either the stretches or the rotations are small, may lead to different results. 

The following identities relating the fields u, (i), E, Q may be easily proved by 
making use of (2.36-38) 

(2.40) 

(2.41) 

Finally, it can be shown (see, e.g. Gurtin [150], p. 31) that the infinitesimal 
strain tensor E vanishes at a given time if and only if the displacement field has the 
form 
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where UO and roO are constant vectors, and XO is the position vector of a fixed point. 
A vector field of the form (2.42) defined on a body ~ is called a rigid displacement 
field. It obviously consists of a translation of vector UO and a rotation of vector roO 

around the point xO. 

2.7. Compatibility conditions 

When all kinematic quantities are calculated in terms of the functions X(X, t) or 
u(X, t), the continuity of the deformed body is assured by the assumption that 
X(X, t) is one-to-one and continuously differentiable. Alternatively, if the strain 
tensor is used as fundamental kinematic quantity in the formulation of the boun­
dary-value problems, then (2.30) are six independent partial differential equations 
for the three unknown components of the displacement vector. This overdeterminate 
system will not admit a solution unless the functions Dkm satisfy some integrability 
conditions, known as compatibility equations 1. 

In the non-linear theory of elasticity the easiest way to infer the compatibility 
equations is by using the geometry of Riemann spaces (see, e.g. Eringen [105], 
Sect. 13, Malvern [227], pp. 193-195). However, since we shall not make use in 
the following of these rather sophisticated equations, we confine ourselves to indi­
cating here the reduced form assumed by the compatibility equations in the linear 
case. 

First, we note that, in view of the definition (1.42), we may rewrite (2.36) as 

E = sym grad u. 

If we apply the operator inc to this equation and take into account the identity 
(1. 51)1> we see that a necessary condition for the existence of a displacement field 
u is that E satisfy the following equations of compatibility 2 

inc E = 0, - Eikl EjmnE'n,km = 0, i,j = 1,2,3. (2.43) 

Since E is symmetric, inc E is also symmetric, and hence there are only six distinct 
equations (2.43)2. Moreover, since incE must satisfy the tensor identity (1.51)2, 
which is equivalent to three scalar equations, it follows that only three of the six 
compatibility equations (2.43)2 are independent 3. 

By virtue of (1.44) and of the symmetry of the strain tensor, equation (2.43)1 
may be also written in the equivalent form 

-curl (curl E)T = O. (2.44) 

1 The physical meaning of the compatibility conditions may be seen by imagining that 
the body is cut up into small volume elements, and then each element is given a certain strain. 
In general, the strained volume elements cannot be fitted back together to form a continuous body, 
unless the strain of each element is related to the strain of its neighbours according to the 
compatibility equations. 

2 The equations of compatibility were first derived by Saint-Venant in 1864. 
3 For a detailed analysis of this problem, see Washizu [374] and Malvern [227], p.187. 

3 - c. 120 
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Next, by (1.10), equations (2.43)z become after some calculation and rearranging 
terms 

By using this relation and considering also its trace 

we obtain 

(2.45) 

As first shown by Beltrami in 1886, if the body is simply-connected 1, conditions (2.43) 
are also sUfficient for the integrability of system (2.36), i.e. for the existence of a displacement 
field. More precisely, we have the following theorem. 

Theorem. Assume that the strain field E is single-valued, of class 0, and satisfies equations 
(2.43) in a simply-connected region 1". Then there exist single-valued vector fields u of class C3 
and co of class C2 that satisfy (2.36), and respectively (2.41), in 1". 

Proof. The reasoning proceeds along the lines of Cesaro [58]2. Let Po be a fixed point and P 
a current point in 1" with position vectors Xo = x2ek and X= xkek• respectively. From (2.41) it 
follows that 

(2.46) 

or. by (1.44), 

co(X) = COO - ~x., [curl E(y)]T dy. (2.47) 

where COO is a constant vector and y=ymem is the position vector of a current point on the integra­
tion path joining Po and P. The vector field co(x) is single-valued in 1" if the line integral in (2.47) 
is independent of the path in 1" from Xo to x. or. equivalently. if it vanishes for every closed 
curve L in the body. a condition which is always fulfilled in our case. Indeed. since 1" is simply-con­
nected, there exists a surface 1: bounded by L and lying entirely in 1". Then. by applying Stokes. 
formula (1.55) and considering (2.44). we conclude that 

f L [curl E(y)]T dy = - ~E {curl [curl E(y) ]T} n ds = 0. (2.48) 

where n is one of the unit normals to 1:. and the integration sense on L is chosen clockwise when 
looking down along n. Hence. the infinitesimal rotation vector co(x) is uniquely defined in 1"~ 
in particular. it follows from (2.47) that COO = co(Xo). 

1 An open region is said to be simply-connected if every closed curve in the region can 
be continuously deformed to a point without leaving the region; such curves will be called redu­
cible circuits. A reducible circuit has the important property that there exists at least a surface 
bounded by the circuit and lying entirely in the region. Simply-connected regions are e.g. a solid 
sphere or a cube. 

2 In this connection. see also Volterra [373]. Love [222]. Sect. 156 A. Nabarro [258]. Sect. 
1.2, de Wit [486]. Lurie [447]. § 2. and Gurtin [150]. Sect. 14. 
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In order to show that m(x) given by (2.47) satisfies (2.41) we will first prove a preliminary 
formula for the differentiation of a line integral. Let V(y, x) be a second-order tensor field of 
class CIon 'Yx 'Y. Then, for each fixed m, we have 

--- V(y, x) dy = lim - V(y, x + exem) dy - V(y, x) dy = iJ ~x 1 {~x+«em ~X} 
iJxm x. «-+0 ex Xo Xo 

wherefrom it follows (Goursat [420], Sect. 94) that 

- - V(y, x) dy = ----- dy + vex, x) em' 
iJ ~ ~ aV(y, x) 

iJxm • iJxm 
(2.49) 

Taking into account this formula, we obtain from (2.47) 

m,m(x) = - [curl E(x)]Tem, (2.50) 

which coincides with (2.41) by virtue of (1.44). Clearly, m is of class C2 since E is also of class 
C2 in 'Y. 

Next, (2.40)2 yields 

(2.51) 

or 

u(x) = UO + ~: E(y) dy +~: m(y) X dy, (2.52) 

where uO is a constant vector. Integrating by parts and taking into account (250) the last inte­
gral in (2.52) can be transformed as follows 

~o ro(y) X dy =~: m(y) X dey - x) = t d[m(y) X (y - x)] + 

+ ex (y _ x) X dro(y) = mO X (x - Xu) + ex (x - y) X {[curl E(y)]T dy}. 
~ ~ 

Substituting this result into (2.52) gives 

u(x) =uo + mO X (x - xo) + ex v (y, x) dy, 
)xo 

(253) 

where 
V(y, x) = E(y) + (x - y)x [curl E(y)]T, (2.54) 
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or, in component form, 

(2.55) 

In order to prove that (2.53) defines a single-valued vector field u(x), it is necessary and 
sufficient to show that the line integral in the right-hand side vanishes for every closed line in the 
region. Denote as above by L a closed curve in 1" and let 1: be a surface bounded by L and lying 
entirely in 1". Then, by (1.55), (1.44), and (2.55), and taking into account (1.46), we successively 
find 

- EkPq(Xp - Yp)EqijEmrsEri .js(Y)} nmds = ~E EkPixp - yp) (inc E)qmnm ds, 

and hence, by (2.43)1' 

fL U(y, x) dy = ~E (x - y) x {[inc E(y)] n} ds = o. (2.56) 

Thus, u(x) is uniquely defined in 1"; in particular, (2.53) yields UO =u(xo). To show that u(x) given 
by (2.53) satisfies (2.36) we again apply (2.49) and obtain, in view of (2.55)1 and (2.46), 

(2.57) 

The symmetric part of this equation yields (2.36). Moreover, u is of class ca since both E and (l) are 
of class C2 in 1" and this completes the proof. 

Equations (2.47) and (2.53), which allow computation of an infinitesimal rotation field 
ro(x) and of an infinitesimal displacement field u(x) corresponding to a given infinitesimal strain 
field E(x) in a simply-connected region, are called Cesaro's formulae. 

FinalIy, we notice that the compatibility equations ensure only the existence of the fields 
u and ro, but not their uniqueness. Indeed, the displacement field is not unique, since we can always 
superimpose a rigid displacement field, which does not change the strains. SpecificalIy, Cesaro's 
formulae show that if u*(x) and ro*(x) are particular solutions of equations (2.36) and (2.41) 
then the general solutions of these equations are 

u(x) = u*(x) + UO + roO x (x - xo), (2.58) 

ro(x) = ro*(x) + roo, (2.59) 

where UO and roO are arbitrary constant vectors, and Xo is the position vector of an arbitrary fixed 
point. 

In the next subsection we shall consider the significance of the compatibility equations for 
multiply-connected bodies. 
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2.8. Volterra dislocations 

Consider a multiply-connected body 1 occupying a region 'f and a single-valued infinite­
simal strain field E of class C2 in 'f that satisfies the compatibility conditions (2.43) in 'f. We can 
still construct solutions of equations (2.36) and (2.41) by using Cesaro's formulae (2.47) and (2.53). 
However, when L is an irreducible circuit we can no longer apply Stokes' formula to prove (2.50) 

Fig. 2.3. Toroidal doubly-con­
nected region. Sand S' are 
cuts rendering the region sim­
ply-connected. C and C' denote 

irreducible circuits. 

and (2.56). Consequently, the line integrals in (2.47) and (2.53) are not necessarily independent of 
path, and the fields ro(x) and u(x) defined by these equations may be multiple-valued. For example, 
assume that 'f is the toroidal doubly-connected region shown in Fig. 2.3. Let S be a two-sided 
barrier transforming 'f into a simply-connected region 'f'-....S. Arbitrarily choose a positive side s+ 
and a negative side S- of the barrier and denote by p+ and P- the points where an irreducible cir­
cuit C intersects s+ and S-, respectively. 

In the simply-connected region 'f'-....S we can still apply the theorem proved in the pre­
ceding subsection to obtain single-valued vector fields ro(x) and u(x). However, these fields may 
now be discontinuous across the barrier S. Indeed, by (2.47) and (2.53), we have 

u(P+) - u(r) = f c U(y, x) dy, (2.60) 

where x denotes the common position vector of the points p+ and P-, and the integration sense 
on C is taken from P- to P+. In view of (2.54), equations (2.60) may be rewritten as 

(2.61) 

1 An open region is said to be multiply-connected if it contains at least an irreducible circuit, 
i.e. a closed curve that cannot be contracted to a point without passing out of the region. Multi­
ply-connected regions are for instance a torus or a hollow cylinder. A multiply-connected region 
can be reduced to a simply-connected one by means of a system of cuts or barriers. For example, 
the region between the bounding cylindrical surfaces of a hollow cylinder can be rendered simply­
connected by a plane barrier passing through the axis of the cylinder and having that axis for 
an edge. If n - 1 simple non-intersecting cuts are necessary to transform a multiply-connected 
region into a simply-connected one, we say that 1" is n-tuply connected. Accordingly, the torus and 
the hollow cylinder are doubly-connected regions. 
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where d and b are constant vectors defined by 

d = - f c [curl E(y)]T dy, b = f c {E(y) - y x [curl E(y) ]T} dy. (2.62) 

It can be proved that d and b do not depend on the choice of C. Indeed, let C' denote 
another irreducible circuit and let Q+ and Q- be the points where C' cuts s+ and S-, respecti­
vely (Fig. 2.3). Clearly, the closed circuit r = P-P+Q+Q-P- is reducible, and hence there exists 
a surface }; bounded by rand lying entirely in """,S. Then, applying Stokes' formula (1.55) and 
making use of the compatibility equations (2.43), the line integrals in (2.62) vanish on r, like in 
the preceding subsection. On the other hand, the joint contribution of the paths P+Q+ and Q-P­
vanishes, since the integrands in (2.62) are continuous across S, and this implies the equality of 
the integrals taken on C and C' from S-- to S+. 

The above reasoning enables us to rewrite (2.61) as 

(2.63) 

u+(x) - u-(x) = b + dxx on S, (2.64) 

where the superscripts + and - denote the limiting values taken by the corresponding fields on 
the positive and negative sides of the cut at an arbitrary point, whereas d and b are given by (2.62), 
where C is an arbitrary irreducible closed circuit connecting the negative side of the cut with 
the positive one. Clearly, (2.64) implies that the jump of the displacement vector across S is an 
infinitesimal rigid displacement consisting of a small translation of vector b and of a small rota­
tion of vector d around the origin. Finally, it is worth noting that the jumps of ro(x) and u(x) 
across the barrier S do not depend on the choice of the barrier, for the integrands in (2.62) are 
continuous across the cuts that render ,.,. simply-connected. From this point of view the cuts S 
and S' shown in Fig. 2.3 are, therefore. equivalent. 

The extension of the above results to regions with arbitrary connectivity is straightforward, 
leading to the following theorem, due to Weingarten [380]. 

Weingarten's theorem. Let"" be an n-tuply connected region and let SI' S2' ... , Sn_l be 
n-I non-intersecting barriers rendering ,.,. simply-connected. Assume that the infinitesimal strain 
field E is single-valued and of class C2 in ,.,.. Then the jump of the displacement vector across any 
barrier Sk, k = I, ... , n - 1, is a rigid displacement given by 

(2.65) 

dk = - f " [curl E(y)]T dy, bk = f ,,{E(Y) - y x [curl E(y) ]T} dy, (2.66) 

where x is the position vector of a current point on Sk, and C" is an arbitrary irreducible circuit 
intersecting only the barrier Sk and oriented from the negative side to the positive side of St· · 
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Volterra [373] was the first 1 to consider displacement fields that are discontinuous across 
some surfaces although the corresponding infinitesimal strain fields are continuous together with 
their partial derivatives of first and second orders across these surfaces. From the theorem given 
in the preceding section it is apparent that such deformations, which are presently called Volterra 
dislocations, are impossible in a simply-connected region. Specifically, a deformation of an 
n-tuply connected body is said to be a Volterra dislocation when it has the following properties: 

(i) if Sk, k = 1, . .. , n - 1, are n - 1 regular and non-intersecting surfaces rendering 
simply-connected the region 'f' occupied by the body, then u is discontinuous across these barriers; 

(ii) the infinitesimal strain field E corresponding to u is continuous across the surfaces Sk 
and the extension (by continuity) of E to 'f' is of class C2. 

Clearly, by Weingarten's theorem, (ii) implies that the jump of u across any surface Sk is 
a rigid displacement given by (2.65) and (2.66) in terms of E. As already mentioned, these jumps 
are independent of the system of barriers chosen. Consequently, we can regard the displacement 

n-l 

as either single-valued and discontinuous at the barriers in the simply-connected region 'f'" U Sk, 
k-l 

or as multiple-valued and of class Ca in the multiply-connected region 'f', supposed without barriers. 
In the latter case, the displacement vector may be again represented by (2.53). However, the 
line integral in (2.53) generally depends on the path in 'f', and the multivaluedness of u is determined 
by the vectors dk and bk, which now play the role of (vector) cycling constants 2. From the dis­
cussion above it follows also that the compatibility equations are no longer sufficient for the 
existence of a single-valued displacement corresponding to an infinitesimal strain field E of class C2 
in a multiply-connected region 'f'. To assure the single-valuedness of u it is in fact necessary and 
sufficient to require the vanishing of the line integrals in (2.66) for k = 1, ... , n - 1, together with 
the fulfilment of the compatibility conditions (2.43) in 'f'3. 

Volterra dislocations can describe real states of self-strain in multiply-connected bodies 4. 

Indeed, assume that a body /JIJ occupying a multiply-connected region is rendered simply-connected 
by a system of non-intersecting cuts. If the two faces of each cut are given a small rigid relative 
displacement and then the continuity of the body is re-established by eventually adding or remov­
ing material and joining the faces of the cuts, the body will be again multiply-connected, but in a 
state of self-strain. As already pointed out, the position of the cuts is, to a great extent, immaterial. 
Thus, in a multiply-connected body which has suffered a Volterra dislocation, there is, in general, 
nothing to show the seat of the cuts. 

3. Dynamics of deformable continuous media 

3.1. Mass. Continuity equations 

In non-relativistic mechanics one associates with each body rJ6 a positive scalar 
quantity m(Bl) called the mass of rJ6, which is assumed as being constant throughout 
the motion. In continuum mechanics, however, we need supplementary concepts 
that are applicable to arbitrary small parts of a body. In particular, we assume that 

1 Weingarten [380] required only the continuity of the strain tensor across the barriers; dis­
locations of Weingarten's type are possible also in simply-connected regions, but under rather 
artificial restrictions on the admissible form of the cut faces (cf. also Pastori [458)). More general 
dislocations, which are possible in simply-connected bodies and correspond to more realistic 
mechanical conditions, will be discussed in Sects. 7.5. and 10.6. 

2 In this connection, see also Muskhelishvili [254], Sect. 15 and App. II, and Lurie [447), 
Sect. 2.4. 

3 For plane multiply-connected regions such conditions have been derived as early as 1900 
by Michell [246) (cf. also Gurtin [150], Sect. 47). 

4 For the application of Volterra dislocations to the modelling of single crystal dislocations 
see Sect. 7.3. 
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the mass distribution m in any configuration of the body is a positive scalar measure 
and an absolutely continuous and additive function of volume. Consequently, 
there exists a configuration-dependent mass density p, which is the ultimate ratio 
of mass to volume. More precisely, let &' If be a sequence of measurable parts of fJI 
having only one particle X in common and such that lim v(&'n) = 0, where v(&'n) 

n .... oo 
denotes the volume of f!ln in a given configuration (k) of the body. Then, the mass 
density at X in the configuration (k) is defined by the relation 

p(x) == P(k)(X) = lim m(f!I,,) , 
n .... oo v( f!I n) 

where x is the position vector of the place occupied by X in the configuration (k), 
the dependence of the mass density on the configuration being pointed out by the 
subscript (k). 

By hypothesis, the total mass of a system of bodies equals the sum of the masses 
of those bodies. Thus we can calculate the mass of a material volume &' that occu­
pies, respectively, the regions "I/o and "1/ in the reference configuration (K) and in 
the current configuration (k), by either of the formulae 

me&') = ( PodV = ( P dv, 
)1'0 )1' 

(3.1) 

where Po(X) and p(x) are the corresponding mass densities. In (3.1), dV and dv 
designate the infinitesimal volume elements occupied by the same material neigh­
bourhood of the particle X in the configurations (K) and (k), respectively. Hence, 
by virtue of the conservation of mass, we have the relation 

Pod V = pdv, (3.2) 

which may be also written, by (2.26) and (2.8), in the alternative forms 

Po = pJ = p det F. (3.3) 

By differentiating (3.3) with respect to t and using the differentiation rule of a deter­
minant, we obtain 

(3.4) 

On the other hand, differentiating (2.6) with respect to t and considering (2.2) and 
(2.9) gives 

wherefrom it follows that 
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and hence 

Ekm F;;;l = tr (FF-I) = tr(grad v) = div v. 

Substituting this result into (3.4), we obtain 

p + p div v = o. (3.5) 

Equations (3.2), (3.3), and (3.5), which express mathematically the law of 
mass conservation of a continuous body, are called continuity equations. 

Finally, we notice for further use that if "1'"0 and "I'" denote as above the regions 
occupied by a material volume ~ in the reference configuration (K) and the current 
configuration (k), respectively, then, by virtue of (3.2), we may write 

where (I) designates any continuously differentiable scalar, vector, or tensor field. 
Clearly, in (3.6), (I) is considered alternatively as a function of X or x according 
as the integral is taken over "1'"0 or "1'". 

3.2. Forces and stresses. Principles 
of continuum mechanics 

In continuum mechanics the concept of force describes the interaction between 
different bodies or between different parts of the same body. We assume that 
the force f(.1I) exerted by the outside world on a body f!J in the current configu­
ration (k) consists of body forces, which act on the elements of volume or mass 
inside the body, and surface forces, which are contact forces acting on the boun­
dary of the body. More precisely, we suppose that f(f!J) may be written in the form 

f(.1I) = ~f pb dv + ~9" t ds, (3.7) 

where "I'" is the region occupied by .11 in the configuration (k), [/ is the boundary 
of "1'", b is the body force per unit mass, and t is the surface force per unit area, or 
surface traction. 

Furthermore, we assume that there are neither body couples nor surface cou­
ples acting on the body. Consequently, the resultant moment of the forces exerted 
on .11 with respect to the origin is 

moC.1I)= ~f px X b dv + L x X t ds, (3.8) 

where x denotes as before the position vector of the particle X in the configuration (k). 
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The principles of continuum mechanics have been formulated by Euler as 
early as 1775 in the form of two integral balance equations, which generalize the 
corresponding principles of the dynamics of particle systems, namely the balance 
equation of the momentum 

.! ( pv dv = f(.1l) 
dt )1'" 

and the balance equation of the moment of momentum 

.! ( px X v dv = mo(81). 
dt )1'" 

(3.9) 

(3.10) 

Obviously, the left-hand sides of (3.9) and (3.10) are the rates of the total momen­
tum and moment of momentum, respectively. Substituting (3.7) into (3.9), (3.8) 
into (3.10), and making use of (3.6), we obtain 

~1'" pv dv = ~1'" pb dv + ~.9' t ds, (3.11) 

( px X v dv = ( px X b dv + ( x X t ds. 
~ ~ ~ 

(3.12) 

Besides the external force f(Bl), there exist interactions between different parts 
of the body, resulting from the atomic or molecular interactions. To describe these 
internalforces, Cauchy made in 1822 the basic hypothesis that the interaction between 
two arbitrary parts of a body that have a common boundary may be replaced by 
a continuous distribution of surface forces acting on both sides of the common 
boundary. These forces referred per unit area, which have by hypothesis the same 
nature as the externai surface forces, are called stress vectors; they will be denoted 
by the same symbol t as the external surface forces. Accordingly, the balance 
equations (3.9) and (3.10) may be applied to any part &' of the body. 

Cauchy's assumption, which is also known as the stress principle, plays a 
fundamental role in continuum mechanics, because it allows the unified description 
of the IOternal forces, irrespective of the peculiar atomic structure of the body. 
To better understand its simplifying character, assume that a part &' of Bl is cut 
out of the body; th~n, according to the stress principle, the action of the rest of the 
body on &' could be replaced by surface forces acting on the boundary of&' (Fig. 3.1). 
However, this is certainly not true whenever the action range I of the internal forces, 
although small, cannot be neglected, e.g. in regions of high strain gradients. In 
such cases the concepts of boundary and stress vectors should be reconsidered. 
Namely, the boundary of &' should be replaced by a "shell" or "boundary layer" 
of thickness I, containing a distribution of supplementary body forces that are 
necessary for preserving the form of &'. Clearly, this would result in a continuum 
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non-local theory which stands closer to the lattice theory of crystals than the local 
theory considered in this chapter 1. 

Let us explore now in more detail the consequences of the stress principle. 
We begin by noting that the stress vector depends not only on x but also on the 
orientation of the separation surface, i.e.2 

Fig. 3.1. On the definition of 
the stress vectors. 

t = t(x, D). (3.13) 

The set of all stress vectors t(x, D) for x fixed and all D is called the stress state around 
the point x. 

To establish the dependence of t on D, we apply the balance equation (3.11) 
to a tetrahedron which has three mutually orthogonal faces parallel to the co-ordi­
nate planes of a Cartesian system of co-ordinates and intersecting at x, and a fourth 
face with unit outward normal D (Fig. 3.2). Let h be the height of the tetrahedron 
and S the area of the oblique face PIP2PS. Then the areas of the orthogonal faces 
are Sn1, Sn2, and Sna, respectively. Assume that pv and pb are bounded and that t 
is a continuous function of both x and D. Then, by the mean-value theorem of the 
integral calculus, we deduce from (3.11) that 

(3.14) 

where K is a constant vector depending on the evaluation of the volume integrals 
in (3.11), and tt, tt, tt, and t* are stress vectors applied in certain points of the 
corresponding faces of the tetrahedron. Dividing through by S in (3.14) and letting 
h - 0 for fixed D, it follows that 

(3.15) 

where now the stress vectors t1, t2 , t3, and t are calculated at x. Equation (3.15) 
shows that the stress state around a point x of the body is completely determined 
by the stress vectors acting on three mutually orthogonal planes intersecting at x. 

1 A first step towards such a continuum non-local theory can be taken by replacing the sup­
plementary body forces by additional surface forces and double forces acting on the boundary of 
B', as it is done for instance in the so-called theory of the materials of grade two. For the modelling 
of crystal defects using this more general approach see Teodosiu [332-334]. 

2 For convenience we shall suppress the argument t in what follows. 
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If now PI -+ P, ni -+ 1, and n2, na -+ 0, then, by the continuity of t with respect 
to D, we have tl = t(x, -D), since the unit outward normal -el to SI coincides 
in the limit to -D. Substituting the limiting values into (3.15) gives 

t(x, - D) = - t(x, D). (3.16) 

Fig. 3.2. Surface forces acting 
on a tetrahedron. 

Clearly, this result does not depend on the limiting approach considered since the 
direction of the Xl-axis can be chosen arbitrarily. According to (3.16), the stress 
vectors acting at the same place on the two sides of an internal surface have the 
same magnitude, but are oppositely directed. 

Let us choose now a Cartesian frame with unit vectors el> e2' ea, and denote 
by Tkm the component parallel to the xk-axis of the stress vector - t m, which acts 
on the positive side of the plane xm = const passing through x (Fig. 3.3), i.e. 

tm(x) = - Tkm(X) ek • 

Substituting (3.17) into (3.15), we obtain 

tk(x, D) = Tkm(X) nm• 

Fig. 3.3. Positive stress components 
acting on the faces of a rectangular 
parallelepiped whose edges are parallel 

to the co-ordinate axes. 

(3.17) 

(3.18) 

Since t and D are vectors, it is seen from (3.18) that Tkm are the components of a 
second-order tensor field T, which is called the Cauchy stress tensor. Moreover, 
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as (3.18) is a tensor equation, it holds for any system of co-ordinates. In direct 
notation it reads 

t(x, n) = T(x) n, (3.19) 

showing that the stress tensor T(x) is the second-order tensor field (linear vector 
function) that assigns to each unit vector n the stress vector acting at x across the 
surface whose unit normal is n. 

It is important to note that when t(x, n) is a prescribed traction on the boundary 
of the body, equation (3.19) represents a traction boundary condition for the deter­
mination of the stress tensor. 

It can be also seen that the first subscript of Tkm identifies the component of 
the stress vector, while the second subscript identifies the plane 1. The diagonal 
components (k = m) of the stress tensor are called normal stresses, while the off-dia­
gonal components (k 1= m) are called shear stresses. 

The components Tkm are considered positive or negative according as they 
have the directions indicated in Fig. 3.3 or opposite to them. In any case, by virtue 
of (3.16), the stress components acting on the negative sides of the rectangular 
parallelepiped shown in Fig. 3.3 will have senses opposite to those on the positive 
sides. It is easily seen that positive and negative normal stresses correspond to 
tensile and compressive tractions, respectively, whereas the algebraic sign of a 
shear stress has no intrinsic physical meaning. 

Introducing now (3.19) into (3.11), we obtain the relation 

~.y pv dv = ~.y pb dv + ~9' Tnds, (3.20) 

which, by making use of (2.3) and (1.53), may be rewritten as 

~.y (div T + pb - pa) dv = O. (3.21) 

Assuming that the integrand is a continuous function and recalling that "f" can be 
any material volume of Pl, we deduce that (3.21) is equivalent to 

div T + pb = pa, (3.22) 

This equation, which represents the local form of the balance equation of momentum, 
is called Cauchy's first law of motion. 

Next, introducing (3.19) into (3.12), we have 

~.y px X v dv = ~.y px x b dv + ~9' X X (Tn) ds. (3.23) 

1 Some authors, e.g. Malvern [227], reverse this convention, using the first subscript for the 
vector component and the second subscript for the plane. Their stress tensor is then the transpose 
of the one defined here. 
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By making use again of the divergence theorem (1.53), the last integral in the right­
hand side may be transformed as follows 

C x X (Tn) ds = ek ( Ek'mX,Tmp np ds = ek ( ~(EklmXI Tmp) dv = 
~ k ~a~ 

= ek~;r EklmTml dv + ~;r (x X div T) dv. 

Substituting this result into (3.22) and rearranging terms, we find 

~;r x X (div T + pb - pv) dv = ek ~;r EklmTml dv = o. (3.24) 

By (3.21)1 the first integral vanishes and hence, since "Y is arbitrary, we deduce that 
(3.24) is equivalent to 

(3.25) 

Mu]tiplying (3.25) by E krs ' summing with respect to k, and taking into account the 
identity (1.11), we finally obtain 

T,.,. = Tsr• (3.26) 

Thus, the local form (3.26) of the balance equation of the moment of momentum, 
which is called Cauchy's second law of motion, is equivalent to the assertion that. 
the stress tensor is symmetric, in the absence of body couples and couple stresses 

3.3. The Piola-Kirchhoff stress tensors 

We have seen that the stress vector t(x, n) is the internal surface force acting at x 
per unit deformed area in the current configuration (k) across a surface with unit 
normal n. Therefore, both t and the associated Cauchy stress tensor T are adequate 
for the spatial description. On the other hand, in non-linear elasticity theory, it 
is often convenient to use the material description, in order to solve problems in 
which the initial boundary of a body is deformed in a prescribed way, or the trac­
tions keep their initial direction and magnitude per unit undeformed area in the 
reference configuration. There are two alternatives for such a material description, 
leading to the introduction of the so-called Pio]a-Kirchhoff stress tensors. 

The first Piola-Kirchhoff stress tensor, S, is defined by 

SNdS = t ds = Tn ds. 

The first of these relations may be rewritten as 

s =SN, 

(3.27) 

(3.28) 
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where s = t ds/dS. Hence, the first Piola-Kirchhoff stress tensor is the second-order 
tensor (linear vector function) that assigns to the unit normal N of the undeformed 
element of surface the actual force t ds on the deformed surface element, but reckoned 
per unit undeformed area dS. 

With the aid of (2.25), we deduce from (3.27) that the stress tensors T and 
S are related by 

(3.29) 

where j = rl. Substituting (3.29)2 into Cauchy's first law of motion (3.22)2 leads to 

D 
-- (j SkpF mp) + pbk = pak' 
oXm 

(3.30) 

On the other hand, using the differentiation rule of a determinant and the chain 
rule of differentiation, and considering (2.7), (2.8), and (2.10), we successively obtain 

o ('F ) _ oj oXm + . oFmp _ orl .0Fmp OXk_ -- ] mp ------- ]-----+]-----
oXm oXm oXp oXm oXp oXk oXm 

= _ J_ OFmk F-l + . oFmp £-1 = 0 
J oX km ] oX km , 

p k 

and hence, by (2.7) and (3.3), 

_0_ USk F ) =]. F OSkP =!!.- OSkP. OXm =!!.- OSkP._ 
~ p mp mp . 
vXm OXm Po OXm oXp Po oXp 

Putting this result into (3.30), we arrive at the simplified equation 

DivS + Pob = poa, OSkm b 
--+Po k=POak· 
oXm 

(3.31) 

(3.32) 

Thus, Cauchy's first law of motion preserves its form when passing to material 
co-ordinates, provided that T, p, and div be replaced by S, Po, and Div, 
respectively. On the contrary, Cauchy's second law of motion (3.26) combined with 
(3.29) leads to the relation 

(3.33) 

which shows that the first Piola-Kirchhoff stress tensor is not, in general, a symmetric 
tensor. By introducing the second Piola-Kirchhoff stress tensor, n, defined by the 
relations 

this difficulty is removed, since now (3.26) and (3.34) give 

n=nT, 

(3.34) 

(3.35) 
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showing that n is symmetric whenever T is symmetric, i.e. in the absence of body 
couples and couple stresses. In exchange, Cauchy's first law of motion (3.32) assumes 
in terms of n the more complicated form 

a 
Div (Fn) + Pob = Po a, -- (Fkp II pm) + PObk = PoOk. (3.36) 

aXm 

4. Thermodynamics of elastic deformation. 
Constitutive equations 

For our purposes in continuum mechanics we shall always use as thermodynamic 
system a closed system, i.e. a part of the material universe not interchanging matter 
with its surroundings. Moreover, we assume that the only energy transfers to the 
system are by mechanical work done on the system by surface tractions and body 
forces, by heat transfer through the boundary, and possibly by distributed internal 
heat sources. 

A thermodynamic state variable is any macroscopic quantity which characteri­
zes the system, e.g. the temperature or the strain tensor. The set of the instantaneous 
values of all state variables at a given time is called the thermodynamic state of the 
system at that time. Clearly, the selection of the state variables depends on and 
implies a certain idealization of the system and of its evolution. 

A thermodynamic state variable of a homogeneous system is called extensive 
or intensive according as it is proportional to or independent of the mass of the 
system. The density per unit mass of an extensive state variable is obviously an 
intensive one. 

The passing of a system from a thermodynamic state into another one is called 
a thermodynamic process. A thermodynamic process is said to be reversible or 
irreversible according as the time-reversal of the external actions exerted on the 
system leads or not to a reversal of the process. A thermodynamic process is called 
cyclic if the final and initial states of the system carried through the process coincide. 

4.1. The first law of thermodynamics 

The first law of thermodynamics relates the work done on the system and the heat 
transfer into the system to the change in energy of the system. 

Let us take as thermodynamic system an arbitrary part fJ' of a body PA and 
consider its evolution during the time interval [to, tM ], where to is the time at which 
the body occupied the reference configuration. Denote as usual by "Y the region 
occupied by fJ' in the current configuration (k) at time t E [to. tM ] and by f/ the boun­
dary of "Y. 

The mechanical power input P resulting from the surface tractions t and the 
hody forces b acting on fJ' at time t is given by 

P=~.9t'Vds+~1'"Pb'VdV. (4.1) 
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The heat input rate Q may be written in the analogous form 

Q =~.9' qds + ~oy prdv, 
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(4.2) 

where q = q(x, n, t) is the heat flux input resulting from conduction through the 
surface [/ and measured per unit surface area, and r = rex, t) is the heat supply 
per unit mass in f1I from the external world (possibly from a radiation field). 

Generalizing from many experimental observations, it is found that 

f (P + Q)dt = 0 (4.3) 

for all cyclic thermodynamic processes. In addition, it is found that the integral 

~ (P + Q) dt calculated for any process carrying a homogeneous system is propor­

tional to the total mass of the system. These experimental results imply the existence 
of an extensive state variable E, called the total energy of the system, such that 

(4.4) 

Equation (4.4), which is named the energy balance equation, represents the mathe­
matical form of the first law of thermodynamics. 

The difference 

U=E-K (4.5) 

between the total energy of the system and its kinetic energy 

(4.6) 

is called the internal energy of the system. Since E and K are extensive variables, 
U must be an extensive variable, too. Consequently, we can write 

u = ~oy pe dv (4.7) 

where e is the specific internal energy per unit mass. 
Introducing (4.1), (4.2), and (4.5-7) into (4.4), we obtain 

.! ( (-!-v2 +e)Pdv=( (t.v+q)ds+( (b·v+r)pdv. (4.8) 
dt )oy 2 ).9' )oy 

4-c. 120 
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By applying (4.8) to a tetrahedron included in "Y which has three sides inter­
secting at x and parallel to the co-ordinate planes of a Cartesian frame and using 
a reasoning similar to that leading to the existence of the stress tensor, it can be 
shown that there exists a vector q(x, t), called the heat flux vector, such that 

q(x, D, t) = - q(x, t). D. (4.9) 

The negative sign is needed because q'D is the outward heat flux per unit area of [/, 
whereas, q is the heat flux input. 

On the other hand, by virtue of (3.19), we have 

(4.10) 

Substituting now (4.9) and (4.10) into (4.8) and making use of (1.52) and (3.6) 
leads to 

~1' [pv·a + Ii - div (TTV) + div q - p (b·v + r)] dv = O. (4.11) 

Remembering that "Y is arbitrary and assuming that the integrand in the left-hand 
side of (4.11) is a continuous function on fJI, we deduce that (4.11) is equivalent to 

p(v·a + Ii) = div (TTV) - divq + p(b.v + r). 
But 

and hence, considering also (3.22), equation (4.12) reduces to 

pi = T·grad v - divq + pro 

This relation represents the local form of the energy balance equation. 

4.2. The second law of thermodynamics 

(4.12) 

(4.13) 

The first law of thermodynamics can be regarded as an expression of the intercon­
vertibility of heat and work, provided that the total energy of the system remains 
constant. Therefore, this principle places no restriction on the direction of thermo­
dynamic processes. On the contrary, the second law of thermodynamics introduces 
a severe discrimination between reversible and irreversible processes. According 
to this law there exists an extensive state variable S, called the entropy of the system, 
which satisfies the relation 

S ~ - --ds+ -dv, . ~ q'D ~ pr 
f/ () l' () 

(4.14) 
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where (}(x, t) > 0 is the absolute temperature, the equality being valid for reversible 
processes and the inequality for irreversible processes. 

The first integral in the right-hand side of (4.14) is the total entropy flux across 
ff due to conduction, whereas the second integral is the entropy supplied per unit 
time into the interior of f/ from the external world (possibly from a radiation 
field). According to the inequality in (4.14), the rate of entropy increase is greater 
than the entropy input rate, thus implying internal entropy production in an irre­
versible process. 

Denoting by 11(X, t) the specific entropy per unit mass, we can write in view 
of (3.6) 

(4.15) 

Substituting (4.15) into (4.14) and using the divergence formula (1.52) to transform 
the surface integ ral into a volume integral, we obtain 

(4.16) 

Remembering that "f" is an arbitrary material volume and assuming that the inte­
grand is a continuous function on []I, we deduce that (4.16) is equivalent to the 
relation 

. d' (q) pr 0 P11 + IV 9 - -0 ~ , 

which is called the Clausius-Duhem inequality. Since 

div (~) = ~ divq - ~ q . grad (1 
() () (}2 

and () > 0, (4.17) may be rewritten as 

p()~ + div q - pr - ~ q . grad () ~ O. 
f) 

(4.17) 

(4.18) 

Another form of this relation, which is particularly convenient for further applica­
tions, may be obtained by considering the local form (4.13) of the first law of ther­
modynamics. Namely, by solving (4.13) with respect to divq - r and substituting 
the result obtained into (4.18), it follows that 

- pi + p(}~ + T. grad v - J_ q . grad f) ;;, O. 
() 

(4.19) 
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Finally, by introducing the specific free energy per unit mass t{!(x, t), defined by 

t{! = e - tlO, (4.20) 

we deduce from (4.19) that 

" 1 
- pt{! - PtiO + T· grad v - - q . grad e ;;.. o. o 

(4.21) 

4.3. Thermoelastic materials. Elastic materials 

The principles of mechanics and the laws of thermodynamics must be satisfied by 
any thermodynamic process, irrespective of the material of the body undergoing the 
process. On the other hand, the thermomechanical behaviour of a material is cha­
racterized by some supplementary relations between the state variables and possibly 
their histories. Such specific relations are called constitutive equations. Since in 
what follows we shall deal only with elastic materials, we devote the remaining of 
this section to the constitutive equations c.haracterizing the elastic materials and 
their thermomechanical behaviour. 

A thermoelastic material is defined by four constitutive equations giving the 
specific free energy t{!, the stress tensor T, the specific entropy '1, and the heat flux 
q at each material point X in terms of the deformation gradient F, the absolute 
temperature 0, and the temperature gradient g = Grad 0 at X 

" /\ 1\ A 

t{! = t{!(F, e, g), T = T(F, 0, g), tI = tI(F, e, g), q = q(F, e, g), (4.22) 

where the argument X has been suppressed for convenience. We assume that the 

response functions ~,T, ~,q are continuously differentiable on their common 
domain. 

Let us consider first the restrictions placed on the constitutive equations (4.22) 
by the second law of thermodynamics. Differentiating the first of these equations 
with respect to t gives 

A " " 

ljJ = at{! • F + at{! iJ + at{!_ • g. 
aF ao ag 

(4.23) 

Next, by (2.7) and (2.2), we have 

F = Grad v = (grad v) F. (4.24) 

Substituting (4.24) into (4.23), and the result obtained into (4.21), we find after 
rearranging terms the inequality 
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On the other hand, it can be shown (see, e.g. Carlson [56], p. 303) that there exists 
at least a thermodynamic process which is compatible with the balance equations 
and such that F, ii, Ii take arbitrarily assigned values at a given material point and 
at a given time. Consequently, the last inequality is fulfilled only if the terms multi-
plying F,O, and g vanish identically. It then follows that the constitutive equations 
(4.22) of the thermoelastic materials must assume the reduced form 

" 
" l/I = l/I(F, 0), 

al/l(F,O) 
'1 = - --'--'----=-

00 
(4.26) 

and the heat flux must obey the heat conduction inequality 

q(F,O,g)'gradO < O. (4.27) 

Clearly, the conditions (4.26) and (4.27) are also sufficient for the fulfilment of 
(4.25) and hence of (4.21). For the restrictions placed by the residual inequality 
(4.27) on the constitutive equation (4.22)4 for the heat flux we refer to Carlson [56], 
p. 309. In particular, it can be shown by making use of (4.27) that the heat flux 
vanishes together with grad O. 

By (4.20), 

while (4.23), (4.24), and (4.26) imply that 

and hence 

. 1 . 
l/I = -T.grad V-'10, 

p 

8 = ~ T·grad v + Oit. 
p 

(4.28) 

(4.29) 

Finally, by substituting (4.29) into (4.13), we obtain the reduced form of the energy 
balance equation for thermoelastic materials 

p0it = - divq + pro (4.30) 

An alternative approach of the constitutive equations of thermoelastic mate­
rials is to choose as independent variable the' specific entropy '1 instead of the abso­
lute temperature ° and to replace the specific free energy l/I by the specific internal 
energy '1 as dependent variable, i.e. to start by adopting constitutive equations of 
the form 

e = e (F, '1, g), T = T (F, '1, g), ° = 7J (F, '1, g), q = q (F, '1, g). (4.31) 
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Then, by making use again of the Clausius-Duhem inequality and employing a 
similar reasoning as above, it can be proved that the first three constitutive equations 
(4.31) must assume the reduced form 

e = e(F, ",), T = os(F, ",) FT 
P of ' 

() = oe(F, ",) . 

0", 
(4.32) 

By comparing the constitutive equations (4.26)2 and (4.32)2' we see that, 
when ignoring the thermal variables () and "" they both reduce to the same purely 
mechanical constitutive equation 

T = . oW(F) FT 
] of ' (4.33) 

where W is the so-called the specific strain energy per unit volume in the reference 

configuration and is taken equal to Po~, respectively Pof.. Materials characterized 
by the constitutive equations (4.33) are called elastic materials 1. 

The form of (4.33) may be further simplified, by requiring that the specific 
strain energy be invariant under a superimposed rigid motion of the body. Let 

x* = X*(X, t) (4.34) 

be a motion of the body, differing from the real motion (2.1) by a rigid motion. 
By analogy with (2.17), we may write 

x*(X, t) = e(t) + Q(t)(X(X, t) - a), (4.35) 

where e is a time-dependent vector, Q is a time-dependent orthogonal tensor, and 
a is a fixed position vector. The deformation gradient of the modified motion is 

F*=QF (4.36) 

and the corresponding finite strain tensor is 

(4.37) 

since QTQ = 1. The invariance condition stated above may be written now in the 
form 

W(F*) = W(F), 
or 

W(QF) = W(F). (4.38) 

1 These materials are sometimes called hyperelastic, whereas the name elastic materials is 
preserved for the more general case when the dependence of T on F cannot be derived from a scalar 
potential like W. However, it was not possible up to now to find out elastic materials that 
are not hyperelastic, too. 
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This relation must be satisfied for every proper orthogonal tensor Q and every 
invertible tensor F in the domain of W. With the special choice Q = RT, where R 
is the rotation tensor in the polar decomposition (2.11)1' we obtain from (4.38) 
the necessary condition W(F) = W(U). Instead of U we may obviously use the 
tensor C = U2, or the finite strain tensor D = ~ (C - 1). In the last case we 

have, say, 

W(F) = WCD). (4.39) 

Clearly, by (4.37), the condition (4.39) is also sufficient for the invariance of the 
strain energy under superimposed rigid motions. 

Finally, by introducing (4.39) into (4.33) and taking into account that 

oW(F) = oWeD) oDrs = _1 (OWCD} R + oWCD) R ) = R oWCD) 
k. kr kr , 

oFkm oDr • oFkm 2 oDm• oDrm oDrm, 

we obtain the relation 

T = 'F oWeD) FT 
J oD ' 

(4.40) 

which is the non-linear constitutive equation of elastic materials. The response 
function WeD) will be also called the strain-energy function. Generally, the form 
of this function may depend on the particle X, as well as on the reference configu­
ration. If it is possible to choose a reference configuration of the body f!I so that 
WeD) is the same for all particles XE 81, we say that the body is homogeneous. 

By making use of the considerations whichhaveled us to (4.40), it can be shown 
that the theory of elasticity, which primarily concerns the purely mechanical beha­
viour of the materials, may be also applied to isothermal and adiabatic processes. 

A thermodynamic process is called isothermal when the temperature is uni­
form throughout the body and is time-independent (0 = (0)' For such processes 

" the constitutive equation (4.40) still holds provided that we set WCD) = pol/J(D, eo)' 
A thermodynamic process may be satisfactorily approximated by an isothermal 
process when it is sufficiently slow for allowing the levelling of the temperatures of 
different parts of the body with the temperature eo of the surrounding medium (ideal 
exchange of heat). An isothermal process may also be considered as a limiting case 
of a real thermodynamic process when the conductivity of the material tends to 
infinity. In this case, the heat flux is no longer determined by a constitutive equation 
but by the energy equation (4.30) combined with the thermoelastic boundary 
conditions. 

A thermodynamic process is called adiabatic when q = 0, r = O. The energy 
equation (4.30) gives in this case ~ = 0, hence '1 = '10 (const). Consequently, any 
adiabatic thermoelastic process is isentropic, too. The constitutive equation (4.40) 
still holds provided that we take WCD) = poe(D, 110)' A thermodynamic process 
may be satisfactorily approximated by an adiabatic process when it is sufficiently 
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rapid for preventing the heat exchange between the body and its surroundings 
and between different parts of the body (ideal thermal insulation). An adiabatic 
process may be also viewed as a limiting case of a real thermodynamic process 
when the conductivity of the material tends to zero. 

The isothermal and the adiabatic processes are ideal processes, but they often 
provide a rather good approximation of real thermodynamic processes. Finally, 
it should be noticed that a thermoelastic material behaves like an elastic material 
throughout isothermal processes and like a different elastic material throughout 
adiabatic processes. In particular, the elastic constants, which will be considered 
below, assume different values in these two cases, the differences between them being, 
however, small. 

Let us resume now the case of the elastic constitutive equation (4.40). Assume 
that the reference configuration is stress-free (natural state). Since in the reference 
configuration we have F = 1, hence D = 0 and j = 1, it follows from (4.40) that 

aW(D) I = o. 
aD D=O 

(4.41) 

Moreover, since W is defined (like ~ and e) to within an additive constant, we may 
always take 

W(O) = O. (4.42) 

Next, assuming that the strain energy can be expanded in a series of powers 
ofD and taking into account (4.41) and (4.42), we obtain 

(4.43) 

where 

(4.44) 

The components of the fourth-order tensor c are called second-order elastic 
constants, while the components of the sixth-order tensor C are called third-order 
elastic constants. Clearly, by (4.44), these elastic constants must satisfy the symmetry 
conditions 

Cklmn = C'kmn = Cklnm = Cmnkl' } (4.45) 
C klmnr• = C'kmlfrs = Cklnmrs = C klmlf•r = Cmnklrs = Crsmlfkl = C klr•mn• 

To linearize the constitutive equation (4.40) of the elastic materials, we assume 
that 8 = IIBII ~ 1 and neglect all terms of order 0(82) or higher, as 8 -+ 0, taking 
also into account the results obtained in Sect. 2.6. We notice first that 
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and 

j = [det (1 + H)r1 = 1 - Hmm + 0(82). (4.47) 

Substituting (2.28), (4.46), and (4.47) into (4.40), we find that, to within an error of 
0(82) as 8 -+ 0, 

(4.48) 

This constitutive equation, which is characteristic of linear elastic materials, is called 
the generalized Hooke's law. We assume in what follows that equations (4.48) may 
be solved with respect to E, thus leading to 

(4.49) 

The components of the fourth-order tensor s are called second-order elastic com­
pliances. It can be shown that they satisfy the relations 

(4.50) 

To the same approximation as above it results from (3.29) and (3.34) that 
n = S = T, and hence, in the linear theory of elasticity, the Piola-Kirchhoff stress 
tensors coincide with the Cauchy stress tensor. Moreover, if we assume that v 
and grad v are of the order 0(8), then the convective term (grad v) v may be neglected 
in comparison with the first term in the right-hand side of (2.5), i.e. 

oV 02U 
8=-=--. 

at ot2 
(4.51) 

Consequently, the three forms (3.22), (3.32), and (3.36) of the first law of motion 
are indistinguishable and reduce to 

• 02U 
dlV T + Pob = Po-· ot2 

(4.52) 

Finally, we note that in the linear theory of elasticity only the lowest-order 
terms in 8 are retained in the expression (4.43) of the specific strain energy, thus 
obtaining 

(4.53) 

Equations (4.48) and (4.52), together with the linearized kinematic equations given 
in Sects. 2.6 and 2.7, provide the field equations of the linear or infinitesimal theory 
of elasticity. 
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In order to investigate some non-linear phenomena in elastic materials sub­
jected to large deformations, without increasing too much, however, the mathe­
matical difficulties, it is customary to retain in the constitutive equation (4.40) 
besides the linear terms also the non-linear terms of lowest order, i.e. those of 
second order in 8. The effects arising from the presence of these non-linear terms 
are called second-order elastic effects. To obtain the corresponding constitutive 
equation we first note that, by (4.46)1> (2.30)1' and (2.33), 

OW(D) _ 1 1 3 
----'-----'-- - cklmn(Em" + "2 HpmHp,,) + 1" CklmnrsEmnErs + 0(8). 

ODkl 
(4.54) 

Next, by substituting (2.28), (4.47), and (4.54) into (4.40) and neglecting terms of 
third and higher order in 8 we obtain the required constitutil'e equation of second-order 
elasticity 

(4.55) 

Before closing this section, we remark that, in view of the symmetry conditions 
(4.45), it is advantageous to denote each pair of indexes of the elastic constants by a 
single index after Voigt's convention [372], namely 

(4.56) 

According to this convention, we shall write 

(4.57) 

where the small subscripts range over the values 1, 2,3, while the capital subscripts 
range over the values 1,2, ... ,6. Moreover, the symmetry conditions (4.45) assume 
now the concise form 

(4.58) 

There are several ways for extending Voigt's notation to the components of the 
tensors T, D, E, and s. The convention mostly used presently is that of Brugger 
,[44]. According to this convention, the components Tkl> Dkl, Ekl> and sklmn are re­
placed by TK, DK , EK, and SK' respectively, after the rule 

Tki = TK, 2Dk/ = (1 + 8kl) DK , 2Ek/ = (1 + 8kl) E K , 

4Sklmn = (1 + 8kl) (1 + 8m,,) SKM' 

(4.59) 

(4.60) 

in which the correspondence between the pairs of small sUbscripts and the capital 
subscripts is given by (4.56). In particular, the detailed form of (4.59)2 is 
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Unlike other conventions, Brugger's notation has the advantage that it does 
not lead to the occurrence of new numerical coefficients either in the expression 
of the specific strain energy or in the constitutive equations. Namely, (4.43) may 
be rewritten as 

1 1 
WeD) = - CKMDKDM + - CKMRDKDMDR + ... 

2! 3! 
(4.62) 

while the equations (4.48 - 50) of the linearized theory become 

(4.63) 

where K, M, P range over the values 1,2, .. " 6. 
Finally, by making use of the symmetry conditions (4.58), it can be shown 

that the maximum number of independent second-order elastic constants is 21, 
and that of independent third-order elastic constants is 56. We shall see in Sect. 5.2 
that, whenever the elastic behaviour of the material exhibits certain symmetry 
properties, the number of independent elastic constants decreases accordingly. 

5. Material symmetry 

5.1. Material symmetry of elastic solids 

All the considerations in the preceding section assumed a fixed reference confi­
guration, the dependence of the constitutive equations and in particular of the 
function Won this configuration being implied. We shall consider now this depen-

"-
dence in more detail. Let D and D be the finite strain tensors associated with the 
deformations carrying a homogeneous elastic body from two different stress-free 

"-
reference configurations (K) and respectively (K) into the current configuration (k) 
(Fig. 5.1). Since the strain energy in the configuration (k) does not depend on the 
<:hoice of the reference configuration, we must obviously have 

(5.1) 

while the response functions WK and W K may differ in general from each other. 
Now, the question naturally arises: when are the functions WK and Wx- iden­

tical? Or, in other words, what is the deformation bringing the material from a 
"-

given configuration (K) into another configuration (K) such that the response of 
the material to any further deformation from both configurations be the same? 

Experiments show that elastic solids have preferred configurations, such that 
any pure strain from a preferred configuration affects the subsequent behaviour of 
the material. Consequently, the gradient of the deformation relating the configu-

"-
rations (K) and (K) must be an orthogonal tensor Q, since only in this case the 
<:orresponding finite strain tensor vanishes identically (cf. Sect. 2.3). 
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" Denoting by F and F the gradients of the deformations bringing the configu-
" " rations (K) and (K) into the configuration (k), respectively, we have F = F Q. 

and hence 

F 
~ 

[§~EmLf I I J 
4 3 1 4 

(K) (K) (k I 

Fig. 5.1. Two different stress-free reference configurations 
(K) and (K), used to describe the deformation of an elastic 

body in the current configuration (k). 

since QTQ = 1. Substituting this result into (S.l) and assuming that the functions 
WK and W K are identical, it results that 

(S.2) 

for every symmetric tensor D. The set '§ of all orthogonal tensors Q that obey (S.2) 
for every symmetric tensor D is called the symmetry group or the isotropy group 
of the material 1. 

A homogeneous elastic solid is called isotropic if there is at least one confi­
guration such that the symmetry group '§ of the corresponding function W coincide 
with the full orthogonal group; a configuration with this property is called an un­
distorted state of the material. On the contrary, when '§ is a proper subgroup of the 
orthogonal group, the elastic solid is called aelotropic or anisotropic. 

By (S.2), when Q belongs to '§ then -Q belongs to '§, too. In fact, any sym­
metry group '§ can be represented as a direct product between the minimal symmetry 
group {I, -I}, consisting of the identity 1 and the inversion -1, and another 
group, say '§+ , which consists only of proper orthogonal deformations, i.e. rota­
tions ([3S8], Sect. 33). Consequently, the type of anisotropy is characterized by the 
type of the rotation group '§+. In particular, an elastic solid is isotropic or aniso­
tropic according as '§ + equals the proper orthogonal group or is a proper sub­
group of it. 

To characterize the material symmetry of an elastic body it is sufficient to 
indicate the so-called generators of '§+. These are defined as a set of elements of 

1 It is easily seen that if Q b Q2E:9 then Q1QaE:9, if QE:9 then Q-l = QTE :9, and that 
1 E :9, hence :9 is a group indeed. For inhomogeneous bodies, the symmetry group may generally 
vary from one material point to another. 
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<§+ having the property that any element of f§+ can be represented as a product 
of generators and, eventually, of their inverses. 

After Coleman and Noll [78] we denote the generators of cst- by R:, which 
means the (proper) orthogonal tensor corresponding to a right-handed rotation 
through the angle cp, 0 < cp < 2n, about an axis in the direction of the unit vector D. 

We say that D is a symmetry axis of order q of the material, if f§+ contains the rota­
tion R~;W. 

The anisotropic solids can be divided into twelve subsystems (subgroups 
of the proper orthogonal group) according to the symmetry of their elastic proper­
ties. The first eleven subsystems correspond to the thirty-two crystal classes. Table 
5.1 shows the symbols of these classes introduced by Schoenflies [283] (column S) 
and by Hermann [160] and Mauguin [237] (column H-M). The fifth column of 
this table shows the generators of the corresponding rotation groups, where {i, j, k} 
denotes a right-handed orthonormal basis and p = (i + j + k)/(3. 

Smith and Rivlin [309] have proved that the specific strain energy W(D) is 
invariant with respect to the rotations belonging to f§+ if and only if it depends on D 
only through a certain number of scalars II' 12, ••• , I p of D that are invariant under 
<§+, i.e. if 

W = W(/I> 12, ••• , Ip). 

In table 5.1, the scalar invariants corresponding to each of the first eleven types of 
anisotropy are listed in the last column. DI> ... , D6 denote the Cartesian components 
of D with respect to the orthonormal basis {i, j, k}; they are labelled according 
to Voigt's notation and assuming that the axes XI> X 2, and X3 of the co-ordinate 
system are chosen along the unit vectors i, j, and k, respectively. 

Smith and Rivlin [309] showed that when W(D) is a polynomial in the com­
ponents D}> .. . ,D6 it can be expressed as a polynomial in the invariant scalars 
II> ... , I p' Moreover, Smith [310] has shown that these invariants satisfy certain 
algebraic relations, which he has subsequently used to obtain unique representations 
of polynomial strain-energy functions in terms of 11' ... , Ip. 

The last type of anisotropy, called transl'erse isotropy, is characterized by the 
property that all directions perpendicular to a certain direction, e.g. that of unit 
vector k, are elastically equivalent. In this case the rotation group rJ+ consists of 
1 and all rotations R~, 0 < cp < 2n, about the axis determined by the unit vector k. 
Transverse isotropy is appropriate to real materials having a laminated or bundled 
structure. As shown by Ericksen and Rivlin [104], the strain-energy function of an 
elastic solid which is transversely isotropic with respect to the x3-axis must have 
the form 

W = W(ID, I1D' IIID, D3, D~ + DJ), (5.3) 
where 

ID = trD = DI + D2 + D3, (5.4) 

lID = ~ [(tr D)2 - tr D2] = DID2 + D2D3 + DIDa - ~ (D~ + D~ + m), (5.5) 

IIID = det D = DID2Da + -} (D4DrP6 - DIDi - D2m - DaD~) (5.6) 

are the so-called principal im'ariants of D. 
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64 I. Fundamentals of elasticity theory 

When the symmetry group contains the reflection on a plane, that plane is 
called a plane of elastic symmetry of the material. A material is called orthotropic 
if it possesses three mutually perpendicular planes of elastic symmetry, i.e. if its 
symmetry group contains reflections on three mutually perpendicular planes. Such 
a triple of reflections is -Ri, -Rj, -Rk. Since RiRj = Rk and Ri/2Rj/2 = Rk, it 
follows that the crystals listed in table 5.1 under subsystems 3,5,6, and 7 are 
particular orthotropic materials. 

Unlike anisotropic solids, the isotropic solids have no preferred directions 
in an undistorted state. For such materials, the strain energy may be expressed as a 
function of the principal invariants, i.e. 

W = W(In, lIn, IIIn), (5.7) 

provided that the reference configuration is chosen as an undistorted state of the 
material. 

Let us resume now the general case of an elastic solid, isotropic or anisotropic. 
If the strain-energy function W is a known function of the scalar invariants 
II,' .. , I p ' then the corresponding constitutive equation for the stress tensor results 
from (4.40)2 as 

T. - ~ . F, F .f ( 01" + 0/,,) oW 
km - 2] kr ms ~ aD aD Of' 

cr= 1 rs sr ri 

(5.8) 

Since the calculation of the derivatives involved in (5.8) is generally rather tedious, 
we shaH not give here the explicit form of the constitutive equation (5.8) for various 
types of anisotropy. However, we shall come back to this point below, when consi­
dering the constitutive equations of linear and second-order elasticity. 

5.2. Second-order elastic constants 

We will consider in this subsection the explicit form taken for each type of aniSO­
tropy by the first term, 

(5.9) 

of the expansion (4.62) of the strain-energy function 1. To this aim we shall retain 
from the last column of Table 5. I only the invariants and their products that are 
of second degree in the components of D. By comparing the dependence of W2 

~n DK obtained in this way with (5.9), it is possible to derive the restrictions imposed 
by each type of material symmetry on the second-order elastic constants CKM' 

For the sake of simplicity we assume again that the body is homogeneous; 
for an inhomogeneous body all the considerations below are still valid at any fixed 

1 This first term of the expansion will playa special role in what follows, since, according to 
(4.53), the strain-energy function of a linear elastic material is Wz(E). 
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point of the body, but the type of anisotropy and/or the values of the elastic constants 
may vary from one point to another. 

The triclinic system corresponds to the lowest material symmetry. As shown 
in Table 5.1, the strain-energy function can be in this case an arbitrary function of 
D. Consequently, a triclinic material has 21 independent second-order elastic con­
stants, and W2(D) has the general form (5.9). 

Materials belonging to the monoclinic system possess at any point an axis of 
symmetry of second order or a plane of elastic symmetry. Choosing the unit vector 
k along the axis of symmetry, respectively taking it perpendicular to the plane of 
elastic symmetry, the group ~+ will have the generator Rk. Considering Table 5.1, 
we infer that the function W2(D) must have in this case the form 

(5.10) 

Consequently, the quadratic form (5.9) cannot contain the terms DKD4 and DKDs, 
K = 1,2,3,6, and hence 

(5.11) 

The materials belonging to the rhombic system possess at any point two 
mutually perpendicular planes of elastic symmetry. Choosing the unit vectors i 
and j of the orthonormal basis {i, j, k} perpendicular to these planes, the generators 
of ~+ will be the rotations R'i and Ri. From Table 5.1 we deduce that 

(5.12) 

and hence the quadratic form (5.9) cannot contain the terms DKDM with K = 1,2,3 
and M = 4, 5, 6. Consequently, the elastic constants CKM that have a single index 
equal to 4, 5, or 6 must vanish. In particular, it results that the plane perpendicular 
to the unit vector k is also a plane of elastic symmetry, and hence any linearly 
elastic material with rhombic symmetry is an orthotropic material, too. 

The materials belonging to the subsystem 4 of the tetragonal system have an 
axis of symmetry of foprth order. Taking the unit vector k along this axis, it follows 
from Table 5.1 that 

(5.13) 

Clearly, the conditions (5.11) must be satisfied since (5.13) is a particular case of 
(5.10). Moreover, by comparing (5.13) with (5.9), we see that 

The materials belonging to the subsystem 5 of the tetragonal system possess, 
besides the axis of symmetry of fourth order, another axis of symmetry of second 
order, perpendicular to the former. Taking the unit vector i along the axis of sym­
metry of second order, it results that, in addition to (5.1I) and (5.14), we must have 
CIS = O. 

5-c. 120 
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Inspection of Table 5.1 re veals that the invariants of the first and second orders 
of both subsystems 5 and 6 of the cubic system coincide and that in this case 

(5.15) 

Since (5.15) is a particular case of (5.12), it follows that all conditions mentioned 
for the rhombic system must be fulfilled. Moreover, by comparing (5.15) with (5.9) 
we find 

(5.16) 

The materials belonging to the subsystem 8 of the hexagonal system have an 
axis of symmetry of third order. Taking the unit vector k along this axis and consi­
dering Table 5.1, we see that 

W2 = W2 (Dl + D2, D3, 4DID2 - m, m + D~, 
(5.17) 

Comparing this expression with (5.9) yields 

C66 = { (cll - CI 2), } 

C15 = - C25 = - C4S· 

(5.18) 

From Table 5.1 it also follows that in the case of the subsystem 9 of the hexa­
gonal system, the strain-energy function no longer depends on the combination 
DID5 - D2D5 - D4DS. Consequently, (5.18) must be supplemented by the condi­
tions 

(5.19) 

The materials belonging to the subsystems 10 and 11 of the hexagonal system 
possess an axis of symmetry of sixth order. Since in this case the strain-energy 
function 

(5.20) 

C14 = C24 = C56 = 0, (5.21) 
besides (5.18) and (5.19). 

The strain-energy function of a material with transverse isotropy has the 
form (5.3). Accordingly, the quadratic form (5.9) can contain only the combinations 

Ii> = (Dl + D2 + D3)2, D3In = Da(Dl + D2 + Da), m, 
~=~~+~~+~~-{~+~+~, m+m } (5.22) 
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and hence the only non-zero second-order elastic constants are 

(5.23) 

Therefore, linear elastic materials with transverse isotropy have the same consti­
tutive equations as materials belonging to subsystems 10 and 11 of the hexagonal 
system. Thus, an axis of symmetry of sixth order assures the transverse isotropy 
of a linear elastic material with respect to that axis. 

Table 5.2 summarizes the above results concerning the second-order elastic 
constants for all types of material symmetry. For conciseness, the symbol c of the 
elastic constants has been omitted, only the subscripts of the non-zero independent 
elastic constants being listed for each type of material symmetry. The order number 
of the subsystem is written on the first line, and the corresponding number of inde­
pendent second-order elastic constants is written in brackets on the second line 
of the table. Table 5.3 shows a compilation of experimental values of adiabatic 
(isentropic) second-order elastic constants of various single crystals. 

Table 5.2 

Independent second-order elastic constants for various types of material symmetry 

.~ 

I .~ 
.5 ~ .~ OJ Tetragonal Hexagonal c:: 0 8 C,) 0 

~ c:: 0 :0 

I 
.... 

E5 
0 .c:: ;:s "0 ::s ~ u '" ..... 

1 2 3 4 5 6,7 8 9 10,11 -
(21) (13) (9) (7) (6) (3) (7) (6) (5) (2) ------
11 11 11 11 11 11 11 11 11 A + 2ft 
12 12 12 12 12 12 12 12 12 A 
13 13 13 13 13 13 13 13 13 A 
14 0 0 0 0 0 14 14 0 0 
15 0 0 0 0 0 15 0 0 0 
16 16 0 16 0 0 0 0 0 0 
22 22 22 11 11 11 11 11 11 A + 2ft 
23 23 23 13 13 12 13 13 13 A 
24 0 0 0 0 0 -14 -14 0 0 
25 0 0 0 0 0 -15 0 0 0 
26 26 0 -16 0 0 0 0 0 0 
33 33 33 33 33 11 33 33 33 Jl 
34 

i 
0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 
36 I 36 0 0 0 0 0 0 0 0 
44 i 44 44 44 44 44 44 44 44 ft 
45 45 0 0 0 0 0 0 0 0 
46 0 0 0 0 0 -15 0 0 0 
55 55 55 44 44 44 44 44 44 Jl 
56 0 0 0 0 0 14 14 0 0 

66 66 66 66 66 44 
1 

2(11-12) 
1 1 

-(11-12) -(11-12) Jl I 2 2 
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Table 5.3 

Experimental values of adiabatic second-order elastic constants in GPa 
Cubic system, subsystem 7, crystal class Ob (m3m) 

Material I Cll c" I Temp. 1 Source I Structure type 

Ag 122.2 90.7 45.4 room [161 ] 
Al 106.43 60.35 28.21 300 K [135] 
Au 192.9 163.8 41.5 room [161 ] AI: f.c.c. 
Cu 166.1 119.9 75.6 room [161 ] 
Ni 250.8 150.0 

1 123 .5 300 K [4 ] 
Pb 49.66 42.31 I 14.98 296 K [248] 
Th 75.3 48.9 47.8 300K [6] 

Cr 350.0 67.8 100.8 298 K [34] 
a-Fe 230.1 134.6 116.6 300 K [147] 

K 3.71 3.15 1.88 295 K [312] 
Li 13.42 11.30 8.89 298 K [305] 
Mo 463 161 109 300 K [86] A2 : b.c.c. 
Na 7.69 6.47 4.34 299 K [236] 
Nb 246.5 134.5 28.73 300 K [33 ] 
Ta 266.8 161.1 82.49 300 K [417] 
V 230.98 120.17 43.76 300 K [35] 
W 523.27 204.53 160.72 300 K [417] 

a-CuZn 119.0 102.3 174.4 room [7] 
(55.1% Cu) 

C 1079 124 578 298 K [243] 
Ge 128.528 48.260 66.799 298 K [241 ] A4: Diamond 
Si 165.773 63.924 

I 
79.619 298 K [241 ] 

AgBr 56.10 32.70 7.24 300 K [217] 
AgCI 59.85 36.11 6.24 300 K [217] 
KBr 34.68 5.80 5.07 298 K [303 ] 
KCI 40.69 7.11 6.31 298 K [303] 
KF 64.80 16.00 12.52 300 K [234] 
KI 27.71 4.36 3.73 298 K [18] 
LiBr 39.20 18.90 18.85 300 K [235] 
LiCI 48.99 22.23 24.89 299 K [272] 
LiF 113.97 47.67 63.64 room [96] 
Lil 29.07 14.21 14.07 295 K [239] 
NaBr 40.37 10.13 10.15 298 K [181 ] B1 : NaCI 
NaCI 49.36 12.88 12.78 300 K [136] 
NaF 97.00 23.80 28.22 300 K [247] 
NaI 30.35 9.15 7.42 298 K [18] 
RbBr 31.630 4.672 3.840 298 K [66] 
RbCI 36.589 6.153 4.753 298 K [66] 
RbF 55.09 14.49 92.39 300 K [76] 
RbI 25.730 3.776 2.790 298 K [66] 
CaO 223 59 81 298 K [315] 
MgO 296.64 95.08 155.81 298 K [65] 
SrO 173 45 56 298 K [315] 

CsBr 30.63 8.07 7.50 room [304 ] 
30.77 8.27 7.60 286 K [64 ] 

CsCI 36.64 8.82 8.04 room [304 ] B2 : CsC! 
36.83 8.93 8.17 286 K [64 ] 

CsI 24.46 6.61 6.29 room [304] 
24.62 6.59 6.44 286 K [64 ] 



Table 5.3. (continued) 

Cubic system, subsystem 7, crystal class 0h(m3m) 

Material c« 1 Temp. I Source I Structure type 

BaFz 89.48 I 38.54 24.95 295 K [134] C1 : CaFz 
CaFz 164.94 44.62 33.80 295.5 K [164] 

YFe-g 269 107.7 76.4 room [100] Garnet 

Cubic system, subsystem 7, crystal class T.,(43m) 

GaAs 119.04 59.52 room [94] 
118.77 

53.84 
53.72 
36.49 

59.44 room [242] B3: P - ZnS 
InSb 67.00 30.19 room [95] 

Hexagonal system, subsystem 11, crystal class D6b(6jmm), structure type A3 : h.c.p. 

Material Temp. Source 

Be 288.8 20.1 4.7 354.2 154.9 298 K [278] 
Cd 115.2 39.72 40.53 51.22 20.25 300 K [125] 
Co 307.1 165.0 102.7 358.1 75.5 298 K [241] 
Er 86.3 30.5 22.7 85.5 28.1 298 K [274] 
Mg 59.40 25.61 21.44 61.60 16.40 300 K [306] 
Ti 40.80 35.4 29.0 52.80 7.26 300 K [114] 
y 77.9 28.5 21.0 76.9 24.31 300 K [311 ] 
Zn 163.68 36.4 53.0 63.47 38.79 295 K [3 ] 
Zr 143.68 73.04 65.88 165.17 32.14 298 K [116] 

AgzAl 141.5 84.7 74.6 168.5 34.08 298 K [62] 

Hexagonal system, subsystem 11, crystal class C6v(6mm), structure type B,: Q-ZnS 

BeO 460.6 126.5 88.48 491.6 147.7 298 K [77] 
CdS 84.31 52.08 45.67 91.83 14.58 300 K [133] 
edSe 74.90 46.09 39.26 84.51 13.15 298 K [77] 

a-ZnS 123.4 58.5 45.5 139.6 28.85 298 K [59] 

Hexagonal system, subsystem 9, crystal class D3d (3m) 

69 

Material Cll I Cl2 I Cl3 I C14 C33 I C3f I Temp. ISource 

Bi 63.5 1 24.7 1 24.5 1 72.3 I 38.1 1 11.3 1 301 K 1 [176] I 

Tetragonal system, subsystem 5, crystal class D4h(4jmmm), structure type A5 :TiOz 

Material I Cll I C12 I Cl3 I C33 I Cu I CGG I Temp I Source 
I 

1301 K I [176] p-Sn 1 72.0 I 58.5 I 37.4 I 88.0 I 21.9 I 24.0 
Ti02 271.4 178.0 149.6 I 484.0 124.4 194.8 298 K [228] 

Rhombic system, subsystem 3, crystal class D2h(mmm), T=298 K 

Mat. 

a-U 214.74 146.94121.77 / 198.57 1107.91 1 267.11 1124.441 73.42174.33 1 [139] 
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Finally, in the case of an isotropic material, the quadratic form W2(D) depends 
only on Ii> and IIn. Therefore, we may write 

(5.24) 

where A. and J1 are Lame's constants1• With Voigt's notation, (5.24) becomes 

(5.25) 

and comparing this expression with (5.9) it results that the only non-zero second­
order elastic constants of an isotropic material are 

As already mentioned in Sect. 4.4, in the linear elasticity, the strain-energy 
function is given by W2(E) and the constitutive equation is given by (4.63)1. By 
using the results above, and in particular Table 5.2, it is a simple matter to write 
the explicit form of this constitutive equation for each type of material symmetry. 
In parti cular, by comparing (5.24)2 to (4.53), we deduce that the tensor c of the 
second-order elastic constants has the components 

(5.26) 

Finally, by substituting (5.26) into (4.48), we obtain the constitutive equation of an 
isotropic linear elastic material 

T = A. (trE) 1 + 2J1E, (5.27) 

5.3. Higher-order elastic constants 

We shall see in chapter III that the solving of non-linear elastic problems requires 
the knowledge of higher-order elastic constants and in the first place that of the 
third-order elastic constants. That is why we will devote most of this subsection 
to a closer examination of third-order elastic constants for various types of mate­
rial symmetry. To this end we make use of a similar reasoning as before, starting 
from the results of Smith and Rivlin indicated in Table 5.1 and retaining for each 

1 It can be shown that W2(D) is positive definite if and only if p. > 0, 3). + 2 p. > o. 
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type of anisotropy only the invariants and their products that are of third 
degree in the components of D. The expressions thus obtained are subsequently 
compared with the terms of third-order degree in the expansion (4.62) of the 
strain-energy function, 

(5.28) 

and this leads to the restrictions imposed on the third-order elastic constants CKMR 
by each type of material symmetry. 

Since this method has been repeatedly used in the preceding subsection, we 
confine ourselves to illustrating its application for materials with highest cubic 
symmetry and for isotropic materials. 

In the case of subsystem 7 of the cubic system, Wa(D) may depend only on the 
following combinations of the invariants listed in the last column of Table 5.1 

(Dl + D2 + Da)a, (Dl + D2 + Da) (DlD2 + D2Da + DaDl), } 

DlD2Da, D4D5D6' (Dl + D2 + Da) (D~ + m + m), 

(D2 + Da) m + (Da + D1) D~ + (Dl + D2) m· 
(5.29) 

By comparing (5.29) to (5.28), it results that the only non-zero third-order elastic 
constants are 

Therefore, a material with highest cubic symmetry has six independent third-order 
elastic constants. 

Table 5.4 shows the results obtained by a similar reasoning for all other types 
of anisotropy. They coincide with those derived in a different way by Fumi and 
Hearmon (see Hearmon [159], where a different notation is used, however, for the 
components of the tensors C and D). For conciseness the symbol C is again omitted 
in Table 5.4, only the indexes of the non-zero elastic constants being listed. The 
number of independent third-order elastic constants is written in brackets under 
the order number of each system. Table 5.5 shows a compilation of experimental 
values of the adiabatic (isentropic) third-order elastic constants for various single 
crystals. 

In the case of isotropic materials, Wa(D) may contain only the products of 
third degree in the components of D of the principal invariants In' lIn' and 
HIn, i.e. 

Ii> = (Dl + Dz + Da)3, 

In lin = (Dl + Dz + Da) [DlDz + D2Da + DaDl - :f (D~ + D~ + Dm, 
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Table 5.5 

Experimental "alues of adiabatic third-order elastic constants in GPa for cubic 
materialsl , at room temperature 

Material I Cm I Cm I CI23 I Cu , I CIM I C'56 I Sourcelstructure type 

Cu -1271 -814 -SO - 3 -780 -95 [161 ] 
Ag - 843 -529 189 56 -637 83 [161 ] AI: f.c.c. 
AI -1076 -315 36 -23 -340 -30 [350] 
Au -1729 -922 -233 -13 -648 -12 [161] ------ - -

Ge - 710 -389 - 18 -23 -292 -53 [241 ] 
- 681 -363 - 9 9 -306 -43 [ 92] A,: Diamond 

Si - 825 -451 -64 12 -310 -64 [241] 
- 744 -418 2 29 -315 -70 [93 ] 

1-=-1423 
----------- -- -

LiF -264 15.6 85 -273 94 [96] 
KCI I - 701 - 22.4 13.3 12.7 - 24.5 11.8 [63] 

- 726 - 24 11 23.0 - 26.0 16.0 [96] 
NaCI I - 880 - 57.1 28.4 25.8 -61.1 2-7.1 [63] BI : NaCI 1- 823 20.0 53.0 23.0 - 61 20 [140] 

- 863.6 - 49.6 9.3 7.1 - 58.7 13.2 [326] 
- 843 - 50.0 46.0 29.0 -60 26.0 [96] 

MgO -4895 - 95 - 69.0 113 -659 147 [32] ----- - -----
BaF2 - 584 -299 -206 -121 - 88.9 -27.1 [134] CI : CaF2 ------------

YFe-g -2330 -717 - 33 -148 -306 -97 [100] Garnet ------ ---- --
GaAs 1- 675 -402 - 4 -70 -320 -69 [94] 

- 622 -387 - 57 2 -269 -39 [242] B3: fJ-ZnS 
InSb - 314 -210 - 48 9 -ll8 0.2 [95] 

1 All materials listed in this table belong to subsystem 7 and they per­
tain to the crystal class Oh (m3m), except GaAs and InSb that belong to the 

crystal class Td (43m). 

Comparing these expressions with (5.28), we see that the six independent third-order 
elastic constants of subsystem 7 must be related by three supplementary equations, 
namely 

(5.31) 

By choosing after Toupin and Bernstein [355] as independent elastic constants 

(5.32) 

we obtain from (5.31) the expressions of the other three elastic constants 
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It can be shown that the tensor C of an isotropic material has the Cartesian 
components 

Ck/",nrs = V10k10m"Ors + V2 {Okl(OmrOn. + om.o"r) + OmiOkr(j1s + (jks(jlr) + 
+ (jr.((jkm(jln + (jkn(jlm)} + V3 {(jkm((jlr(j". + (jls(jnr) + (jln((jkr(jm. + 
+ (jks(jm,) + (jkn((jl,(jms + (jis(jm,) + (jlm((jk,(jns + (jks(j",)} . 

(5.33) 

Finally, by substituting (5.26) and (5.33) into (4.55), we deduce that the 
constitutive equation of second-order elasticity for isotropic materials is 

Tkl = AEmm(jU + 2Jl.EkI + { ~ H mnH mn + (~ -- A) (Emm)2 + V2EmnEmn} (jkl + 
(5.34) 

Going a step further in the expansion (4.43) of the strain-energy function, 
we consider the terms of fourth-order degree in the components of the finite strain 
tensor, WiD) = (1/24) Lijklmn,.DijDklDmnD,., where 

Lijklmn,. = a4 W(D) I 
aDij aDu aDmn aD,s D=O 

are the fourth-order elastic constants. The number of independent fourth-order 
elastic constants for all crystal classes and for the isotropic case have been obtained 
independently by Markenscoff [450] and by Brendel [402]. The latter author has 
also developed computer programs that allow to obtain the dependence relations 
between the elastic constants of n'th order, as well as the independent and the zero 
constants for each crystal class. 

Fourth-order elastic constants are used to describe higher-order non-linearities 
occurring in such phenomena as generation of higher-harmonics in finite-amplitude 
waves, pressure dependence of elastic constants at higher pressures, temperature 
dependence of the second-order elastic constants, and shock waves in solids that 
can sustain large compressions. 

The most precise method for the determination of higher-order elastic con­
stants is based on the accurate measurement of the velocity of small-amplitude 
waves superposed on homogeneously prestressed media (Thurston and Brugger 
[481], Markenscoff [449]). The third- and fourth-order elastic constants are related, 
respectively, to the first and second derivative of the wave velocity with respect to 
the initially applied stress, both taken at the zero stress. 

It is interesting to note that some of the experimental results available to 
date (see, e.g. Chang and Barsch [66,406,407], Graham [421]) show that partial 
contractions Cjjklmm and Ljjklmmr, of the third- and fourth-order elastic constants 
are about 10 to 25 times, respectively 200 to 500 times, larger than the corresponding 
second-order elastic constants. This clearly illustrates the rather slow convergence 
of the expansion (4.43), at least in the cases investigated so far. 
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5.4. Transformation of elastic constants 
under a change of co-ordinates 

Until now we have constantly assumed that the Cartesian axes of co-ordinates 
Xl, X2' X3 are taken, respectively, along the unit vectors i, j, k that are associated 
with the preferred directions of the elastic material, in order to take the maximum 
advantage of the material symmetry for simplifying the form of the constitutive 
equations. An alternative approach, which proves to be particularly useful in con­
tinuum mechanics, is to choose a co-ordinate frame that exploits the geometric 
symmetry of the body and/or the symmetry of stress state. In such situations it is 
necessary to know the rules governing the change of the elastic constants under a 
transformation of co-ordinates. 

For the sake of convenience, in what follows, the unit vectors i, j, k, which 
are associated with the preferred directions of the material in the reference configu­
ration, will be denoted by e1> e2, ea, respectively. Let Dkb cklmn' Cklmn,s be the com­
ponents of the tensors D, c, C in the bases eke/, eke/emen, and eke/emene,es, res­
pectively, and D~l> c~/mn' C~/mn's the components of the same tensors in the bases 
e~e;, e~e;e;"e~, and eke;e;"e~e;e;, respectively. We denote, as in Sect. 1.1, by qk/S 
the direction cosines of the unit vectors ek with respect to the unit vectors e;, i.e. 

(5.35) 

We have then, by (1.35)1> 

(5.36) 

By making use of Voigt's notation, the last relation gives for typical components 
ofD 

Dl = qi1D{ + qi2D~ + q~3D~ + q12ql3D~ + q13qllD; + qnq12D~, 
D4 = 2q2lqalD~ + 2q22q32D~ + 2q23q33D~ + (q22q33 + q23q32) D~ + 

+ (q23q31 + q21q33) D; + (q21q32 + q22q31) D~ 
and, in general, 

DK = QKpD~, 

where the transformation matrix Q = [QKP] is given by 

qil qi2 qi3 q12q13 ql3qn qnql2 

q~l q~2 q~3 q22q23 q23q21 q21q22 

qil q~2 q~3 q32q33 q33q31 q31q32 
Q= 

2q21q31 2q22q32 2q23q33 q22q33 + q23q32 q23q31 + q21q33 q21q32 + q22q31 

2q31qn 2q32q12 2q33q13 q32ql3 + qaaql2 q33qn + q31qla q3lql2 + q32qn 

2qllq21 2ql2q22 2q13q23 q12q23 + q13q22 q13q21 + qnq23 qnq22 + q12q21 

(5.37) 

(5.38) 
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Since the strain-energy function WeD) must be invariant under a change of 
co-ordinate frame, it follows from (4.62) that 

1 , D' D' 1 C' D' D' , = - CpT P T + - PTV P TDV + .. , 
2! 3! 

Substituting (5.37) into this relation and equating coefficients of D~DT and 
D~DTDv leads to the transformation rule of the elastic constants of second and 
third order under a change of co-ordinates l 

(5.39) 

Although the application of these transformation rules requires the previous cal­
culation of the matrix Q = [QKM] by (5.38), it is generally more convenient than the 
use of the direct transformation rules of the components Cklmn and Cklmnrs by means 
of the formulae given in Sect. 1.1 and of the matrix q = [qkm]' 

6. Linear theory of elasticity 

6.1. Fundamental field equations 

The linearization of the kinematic equations and of the elastic constitutive equations 
has been done in Sects. 2.6 and 4.3, respectively. We have also remarked that in 
the linear theory the spatial co-ordinates of the particles can be identified with their 
material co-ordinates when calculating the gradients of scalar, vector, or tensor 
fields. Consequently, we shall adopt in the linear theory of elasticity the simplified 
notation 

Moreover, by using Lagrange's theorem, it may be shown that, if 
~1(Grad «I»)ull ~ 11«1»11 at any point X of the body, where «I» is an arbitrary vector or 
tensor field of class C1 and u is the displacement vector, then «I»(X, t) :::::: «I»(x, t). 
In the linear theory of elasticity it is assumed that all fields occurring in the for-

1 It is interesting to note thatDK, CKM, and CKMR follow, under a change of co-ordinate frame, 
the transformation rules of the Cartesian components of a vector, a second-order tensor, and a 
third-order tensor, respectively. It should be remembered, however, that capital Latin subscripts 
range over the values 1,2, ... ,6, and hence the dimensions of the corresponding vector and tensor 
spaces increase accordingly. 
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mulation of the boundary-value problems satisfy this condition; consequently, no 
distinction is being made between material and spatial co-ordinates of the particles. 

In what follows we shall consider mostly applications of linear elastostatics 1 

to the modelling of crystal defects. Therefore, we recollect below for convenience 
the basic field equations of linear elastostatics, namely the kinematic equations 

(6.1) 

the equilibrium equations 

(6.2) 

and the constitutive equations 

(6.3) 
or 

(6.4) 

We recall that u is the displacement vector, E is the infinitesimal strain tensor, T 
is the stress tensor, f = Pob is the body force per unit volume, c is the tensor of 
second-order elastic constants, and s is the tensor of second-order elastic complian­
ces. We assume throughout that the body is homogeneous, i.e. the tensors c and s 
do not depend on x. 

For isotropic bodies, (6.3) reduces to 

(6.5) 

where A and Jl are Lame's constants. By contraction, (6.5) leads to 

(6.6) 

where 

(6.7) 

is the bulk modulus. In view of (6.6), we can solve equations (6.5) with respect to 
Ek/, thus obtaining 

(6.8) 

where 
A 

V=---
2(A. + Jl) 

(6.9) 

is Poisson's ratio. 

1 Linear elastostatics deals with the equilibrium of linear elastic bodies. 
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As already shown in Sect. 2.7, the components of the infinitesimal strain tensor 
E must satisfy the compatibility equations 

(6.10) 

which can be also written as 

(6.11) 

We have also seen in Sect. 4.3 that the strain energy density of a linear elastic 
material may be expressed as a quadratic form in the components of E, namely 

(6.12) 

In view of (6.3) and (6.4), this relation may be rewritten in the alternative forms 

(6.13) 

In the isotropic case, the strain-energy function takes the form (5.24) with 
D replaced by E, i.e. 

(6.14) 

Throughout the remainder of this chapter we assume that f is a continuous 
vector field on "Y = "Y U 9', where "Y is the region occupied by the elastic body 
in the current configuration and 9' denotes its boundary. We also assume that 9' 
is the union of a finite number of non-intersecting closed surfaces that are two-sided 
and piecewise smooth. 

By an admissible state we mean an ordered array {} = [u, E, T], where u is 
of class C2 on "Y, while E and T are of class C2 on "Y. An admissible state that sa­
tisfies equations (6.1-3) is called an elastic state corresponding to the body force f. 
Clearly, by (6.1-3), when u is the displacement field of an elastic state, the regu­
larity conditions adopted for u imply those assumed for E, T, and f. 

By virtue of (3.18), the surface traction t on 9' corresponding to the stress 
tensor T is 

t(x) = T(x)n(x), (6.15) 

where n(x) is the outward unit normal to 9' at x. We call the pair [f, t] the external 
force system for the elastic state {}. 

The following two theorems are consequences of the equations of equilibrium 
(6.2). 

Theorem of work and energy. If the elastic state [u, E, T] corresponds to the 
external force system [f, t] then 

if" = ( W dv = .!.- ( T· E dv = ~ ( t· u ds + ~ ( f· u dv. (6.16) 
).,. 2 ).,. • 2 J9' 2 ).,. 
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Proof By (6.13) and (6.1), we have 

Now, by making use of (1.52) and taking into account (6.2) and (6.15), we obtain 
(6.16) and the theorem is proved. 

Betti's reciprocal theorem [25]. Let [u, E, T] and [u*, E*, T*] be two elastic 
states corresponding to the external force systems [f, t] and [f*, t*], respectively. 
Then 

~.yT.E* dv = ~9't.U*dS+~.y f · u* dv = ~.y T·E* dv = 

(6.17) 

= ~9' t*· uds + ~y f*·udv. 

Proof By using an analogous reasoning as in the proof of the preceding theorem it 
is easy to see that 

~.yT.E*dV=~9' t.U*dS+~.yf.U*dV' 

~.y T*·E dv = ~9' t*·u ds +~.y f*.u dv. 

On the other hand, the symmetry of c implies that T ·E* = T*·E and this completes 
the proof. 

6.2. Boundary-value problems of linear elastostatics 

The field equations (6.1-3) of linear elastostatics constitute a system of 15 scalar 
equations with 15 unknowns: six components of the stress tensor, six components 
of the strain tensor, and three components of the displacement vector. A boundary­
value problem is the problem of finding solutions of the field equations that satisfy 
certain boundary conditions. 

The main boundary-value problems occurring in linear elastostatics are of 
the following three types: 

1. The displacement boundary-value problem. The displacement vector is 
prescribed on the boundary of the body, i.e. 

u = UO on fI'. (6.18) 
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2. The traction boundary-value problem. The surface traction is prescribed 
on the boundary of the body, i.e. 

Tn = to on!/. (6.19) 

3. The mixed boundary-value problem. The displacement vector is prescribed 
on a part !/ 1 of the boundary and the surface traction is prescribed on the comple­
mentary part !/2 of !/(!/I U !/2 = !/'!/I and !/2 have no common interior 
points), i.e. 

(6.20) 

Clearly, the displacement boundary conditions (6.18) or (6.20)1 correspond to 
constraining the boundary !/ of the body, or a part !/I of it, to assume a given 
shape in the deformed configuration, whereas the traction boundary conditions (6.19) 
or (6.20)2 correspond to prescribing the loading on the surface !/ of the body, or 
a part !/ 2 of it, respectively. 

Any solution of a boundary-value problem in statics must be such that the 
total force and the total torque acting on the body in the configuration of equili­
brium vanish: 

~/ ds + ~;r r dv = 0, ~.9" X X t ds + ~;r x X r dv = o. 

We shall consider now shortly the uniqueness question appropriate to the 
boundary-value problems of elastostatics formulated above I. 

Kirchhoff's uniqueness theorem (179]. If the elastic body is simply-connected 
and the density of its strain energy W = W2(E) is positive definite, then 

(i) the displacement boundary-value problem has at most one solution; 

(ii) the mixed boundary-value problem has at most one solution; 

(iii) two solutions of the traction boundary-value problem differ by an infini­
tesimal rigid displacement. 

Proof. Consider first the mixed boundary conditions (6.20), which include as 
particular cases the displacement and the traction boundary conditions (!/ 2 = 0 
and !/I = 0, respectively). Let u' and u" be two displacement fields that satisfy 
equations (6.1-3) and the boundary conditions (6.20). We denote by E', E" the 

1 The extension of the uniqueness theorems to the dynamic case may be done without 
great difficulty provided that the boundary conditions be supplemented by initial conditions of the 
type u(:I, to) = 0(:1), u(:I, to) =i(x) for :lE;Y, and the time-variation of the functions UO and to be 
equally prescribed (see, e.g. Sokolnikoff [313], Sect. 27). 
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infinitesimal strain tensors and by T', T" the stress tensors corresponding to the 
.displacement vectors u' and u", respectively. Let 

u = u' - u", E = E' - E", T = T' - T". (6.21) 

From (6.1-3), (6.20), and (6.21) it follows that 

(6.22) 

and that 

u = 0 on [/'t, t = 0 on [1'2' (6.23) 

By (6.23) we have also u' t = 0 on [1', since [1'1 and [1'2 are complementary subsets 
of [1'. Substituting this result into (6.16) and taking into account that the stress 
field T corresponds, by (6.22)2' to zero body forces, it results that 

~f W dv = O. (6.24) 

Consequently, since W = W2(E) is by hypothesis a positive definite quadratic form 
in the components of E, we deduce that E = 0 and, by (6.22)3' that T = 0, too. 
Moreover, as already mentioned in Sect. 2.7, E = 0 implies that u is a rigid dis­
placement. By (6.21), we conclude that E' = E", T' = T" in 1'" and that u' and 
u" differ by a rigid displacement. In the case of the displacement boundary condi­
tions, we must have u = 0 on [I' or a part of it, and hence u must vanish identi­
<cally. On the other hand, the solution of the traction boundary-value problem, 
if any, is unique to within a rigid displacement. 

Let us consider now a multiply-connected elastic body fJI. We have seen in 
Sect. 2.8 that it is possible to produce in such a body a state of self-stress, i.e. a 
non-zero stress state corresponding to vanishing external forces. Assume that the 
body fJI occupies an n-tuply connected region 1'" and let SIt S2' . .. , Sn -1 be n - 1 
<cuts rendering 1'" simply-connected. Let the faces of each cut be relatively displaced 
by a small rigid displacement, and the opposing faces of the cuts be joined, by 
removal or insertion, if necessary, of a thin sheet of matter of the same kind as 
that forming the original body. Then the body will be again multiply-connected, 
but in a state of self-strain, called a Volterra dislocation. As shown in Sect. 2.8, 
the displacement u may be defined as a single-valued vector field of class C3 on 

n-l 
f""U Sk' the jumps of u across the surfaces Sk being equal to the relative rigid 

k=l 

displacements of the cut faces, whereas the infinitesimal strain field E corresponding 
to u is continuous across the surfaces Sk' and the extension (by continuity) of E 
to 1'" is of class 0. Alternatively, the displacement may be considered as a mul­
tiple-valued vector field of class C3 on 1'" with cyclic constants given again by the 
translation and rotation vectors of the relative rigid displacements of the cut faces. 

For a multiply-connected body, Kirchhoff's uniqueness theorem must be 
replaced by the following theorem, which we give without proof. 
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Volterra's uniqueness theorem [373]. Suppose that an elastic body fJl occupies 
an n-tuply connected region "Y, that its strain-energy density W = W2(E) is a positive 
definite function, and that the jumps of the displacement vector u across n - 1 cuts 
transforming "Y into a simply-connected region are prescribed. Then 

(i) the displacement boundary-value problem has at most one solution; 
(ii) the mixed boundary-value problem has at most one solution; 

(iii) two solutions of the traction boundary-value problem differ by an infini­
tesimal rigid displacement. 

Finally, let us consider the case when the region "Y occupied by the elastic 
body is infinite, but its boundary // consists of a finite number of closed, bounded, 
piecewise smooth, and non-intersecting surfaces. Besides the boundary conditions 
(6.18), (6.19), or (6.20) on //, we consider also the following alternative comple­
mentary conditions: 

(C1) lim Ilu(x) - ull = 0, 
Ilxl j-+oo 

(C2) lim IIT(x) - Til = 0, (,;tdS= f, ('IX X t ds = ~, 
[jxJ!-+oo )J)o7 

(Ca) lim IIT(x) - Til = 0, (t ds = C, lim 1I00(x) - mil = 0, 
I :x;: -+00 )[1' Ilxl l-+oo 

" 1\ " 1\ 1\ 

where u, f, m, and 0> are constant vectors, T is a constant symmetric second-order 
tensor, and 0>= -+ curl u is the infinitesimal rotation vector. With the above 
notation we can formulate the following uniqueness theorem, which holds for the 
solutions u(x) that are uniform and of class C2 in ;Y = "Y U //. 

Bezier's uniqueness theorem [26]. Suppose that the strain-energy density 
W = W2(E) of the body fJl is positive definite and that fJl occupies an infinite region 
"Y, whose boundary // consists of afinite number of closed, bounded, piecewise smooth, 
and non-intersecting surfaces. Then: 

(i) the displacement, the traction, and the mixed boundary-value problems 
have at most one solution that satisfies the complementary condition (C1); 

(ii) the displacement and the mixed boundary-value problems have at most 
one solution that satisfies the complementary conditions (Cz) or (C3); 

(iii) two solutions of the traction boundary-value problem differ by an infini­
tesimal rigid displacement if they satisfy the complementary condition (C2), and by 
an infinitesimal rigid translation if they satisfy the complementary condition (C3). 

For a proof of this theorem in the isotropic case we refer to Fichera [115], 
GUftin and Sternberg [149], and Gurtin [ISO], Sect. 50. An analogous theorem holds 
for the plane problem of linear elastostatics (see MuskheIishvili [254], Sect. 41). 

6.3. Stress and displacement formulations 
of the boundary-value problems 

The stress formulation of the boundary-value problem is generally used in conjunction 
with the traction boundary condition (6.19). This formulation can be obtained in 
the following way. By substituting (6.4) into (6.10), we obtain the compatibility 
conditions in terms of stresses 

- EiklEjmnslnpqTpq,ktr. = O. 

6 - 120 
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In the isotropic case, these equations take a much simpler form. Namely, by intro­
ducing (6.8) into (6.11) and considering (6.2), it follows that 

1 
LlTkl + I + v (Tmm•kl - vOkl LlTmm) + Al + f,.k = 0, 

wherefrom it results by contraction 

1 + v 
LlT,mm = - I' 

1 Jm.m· 
-v 

Combining the last two relations yields the Beltrami-Michell compatibility equationsl 

I V 
LlTkl + T mm.kl + h..1 + h .k + 1 ok! fm.m=O. 

l+v -v 
(6.25) 

Besides the boundary conditions (6.19), the six unknown stresses must satisfy the 
three equilibrium equations (6.2) and the six compatibility conditions (6.25), i.e. 
nine field equations; however, equations (6.25) represent only three independent 
conditions, as already noticed in Sect. 2.7. 

In the absence of body forces 2, the equilibrium equations (6.2) can be identi­
cally satisfied, in view of (1.51)2' by using Beltrami's solution [23] 

T = inc"/., (6.26) 

where"/. is the (symmetric) stress function tensor. 
It can be shown (see Schaefer [282] and Gurtin [150], Sect. 17) that Beltrami's 

solution is complete, i.e. any stress field admits a representation as a Beltrami solu­
tion, if either the body ~s simply-connected or it is multiply-connected, bu~ the 
resultant force and the resultant moment vanish on each closed surface in "Y (in 
particular, on each closed surface of the boundary)3. On the other hand, if the 
body is simply-connected, the six distinct scalar stress functions Xkm may be sub­
jected to three supplementary conditions, provided that these conditions be ad­
missible, in the sense of not restricting the generality of the possible stress states. 
On using as before a Cartesian frame, and putting Xn = X22 = X33 into (6.26), 
Morera's solution results [251]; alternatively, setting XI2 = X23 = X3I = 0, one obtains 
Maxwell's solution [238]; both these sets of supplementary conditions can be shown 
to be admissible. 

Any general solution of the equilibrium equations in terms of stress functions 
must still satisfy the compatibility conditions (6.25) and the boundary conditions 
(6.19). While the uncoupling of equations (6.25) by stress functions can be done 

1 Derived by Beltrami [23J for t = 0, and by Michell [246J in the general case. 
2 The general case may be reduced to this particular one. by finding out a particular solution 

of the equations of equilibrium [282 J, [331 J. 
3 A stress field having this property is called self-equilibrated. 
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by a suitable choice of the admissible supplementary conditions (see Sect. 18.2), 
the simultaneous uncoupling of the boundary conditions is rarely possible. 

The displacement formulation of the boundary-value problems is generally 
used in conjunction with the boundary conditions (6.18) or (6.20), i.e. when the 
displacement is prescribed on the boundary of the body or on a part of it. However, 
it can be also applied, without much difficulty, in the case of the traction boundary­
value problem. 

By substituting (6.1) into (6.3), and the result obtained into (6.2), we obtain 

Cklmnum,nl + fk = 0, k = 1,2,3. (6.27) 

The boundary-value problems of linear elastostatics can now be formulated as 
follows: Find a class C2 vector field u(x) that satisfies the equations (6.27) in 1/ 
and the boundary conditions (6.18), or (6.19), or (6.20) on fI'. These boundary­
value problems can be simplified to a certain extent by solving equations (6.27) 
in terms of displacement potentials that are solutions of simpler field equations. We 
illustrate below this procedure, limiting ourselves for the sake of simplicity to the 
isotropic case. Substituting (5.26) into (6.27) yields Navier's equations 

These equations can be solved for instance by setting 

1 
Uk = tPk - (xmtPm+tPo) k' k = 1,2,3, 

4(1 - v) • 

(6.28) 

where cIl is a vector field, and tPo is a scalar field, both of class C3 in 1/, and that 
satisfy the equations of Poisson type 

j.u1tPo = xmfm' j.lAtPk = -t,., k = 1,2,3. 

The above solution of the field equations in terms of the potentials tPo and cIl is 
called the Papkovitch-Neuber representation, since Papkovitch [263] and Neuber 
[259] have proved independently that this solution is complete, i.e. every sufficiently 
regular solution of Navier's equations admits a representation of this form 1. 

6.4. Green's tensor function of an infinite elastic medium 

In this subsection we consider an elastic body occupying the entire space C, referred 
to a rectangular Cartesian system of co-ordinates Xk' 

We call fundamental singular solution or Green's tensor function of the infinite 
elastic medium the second-order tensor field G(x) with the following properties 2: 

(i) For any point of C with position vector x =1= 0 and for each p = 1,2,3, 
the displacement field uJt>(x)= Gkix) defines a (regular) elastic state corresponding 

1 For the admissible supplementary conditions that may be imposed on the Papkovitch-Neu­
ber potentials we refer to Eubanks and Sternberg [113]. 

2 As shown by Sternberg and Eubanks [321], properties (i)-(iii) uniquely characterize G(x). 
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to zero body force. In particular, by (6.27), 

Cjjk,GkP.,j(x) = 0, i, P = 1,2,3. (6.29) 

(ii) G(x) is a homogeneous function of degree -I in Xk' In particular, we 
have 

G(x) = 0(r-1), T(P)(x) = 0(r-2) as r -+ 0 and also as r -+ 00, (6.30) 

where r = IIxll, and TIP =Cjjk,GkP,Z are the components of the stress tensor corres­
ponding to the displacement u(P) . 

(iii) For all '1 > 0 and p = 1,2,3, 

( T<p) D ds = ep' ( T/I/nj ds = ~jp, (6.31) 
Jrll FII 

where II'} is the sphere with radius '1 centred at the origin, and D is the inward unit 
normal to II'}' 

Equation (6.31) shows that the resultant of the stress vectors corresponding 
to the displacement u<C)(x)=Gkix) and acting on any sphere centred at the origin 
equals ep- That is why Gkix) is also said to be the component in the direction of 
the xk-axis of the displacement produced by a unit concentrated force acting at the 
origin and directed along the x p-axis. Since the elastic medium occupies the entire 
space, it may be seen that a unit concentrated force acting at an arbitrary point 
with position vector x' and directed along the x p -axis produces a displacement field 
u'l)(x)=GkP(x- x'). Finally, it results that an arbitrary concentrated force P acting 
at x' produces the displacement field 

u(x) = G(x - x')P, Uk (x) = GkP(x - x')Pp- (6.32) 

Of a special interest is the differential equations satisfied by the Green's tensor 
function in the sense of the theory of distributions. Let cp(x) be an arbitrary function 
of class COO and of bounded support on S. According to the definition of the deri­
vatives of a distribution 1 we have 

Denote by Dr the exterior domain bounded by the sphere Ir of radius r and the 
centre at the origin. Integrating by parts twice, taking into account that cp vanishes 
together with all its derivatives for sufficiently large values of r, we successively 
obtain 

( CijUGkp(X) CP.jz(x) dv = ( (Cijk,Gkix)cp.lx»" dv - ( Cijk,Gkp.,(x)Cp'/x) dv = 
JOr JOr Jar 

= ( Cijk/Gkp(x)cp'/x)n,ds - ( (cijk/Gkp,,(x)Cp(x» .jdv + ( Cijk' Gkp.,/x) cp(x) dv Jrr JOr JOr 

1 For the basic results of the theory of distributions used below see, e.g. Gelfand and Shilov 
[137] or Kecs and Teodorescu [178]. 
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and hence, considering also (6.29), 

Next, by making use of the mean theorem of the integral calculus and taking into 
consideration (6.30) and (6.31), it results that 

and hence 

Combining this result with (6.33), we conclude that the regular functionals associat­
ed to CijkPkp./j(X) on the regions Q r tend to -bipb(X) as r-tO, where b(X) is Dirac's 
distribution. Consequently, the components of the distribution associated to G(x) 
satisfy the system of equations 1 

(6.34) 

Assume now that the elastic medium is sUbjected to the action of a body 
force f(x) of class Cl in Iff and that satisfies the condition 

f(x) =OV3) as r -t 00. (6.35) 

Making use of the properties of the convolution and considering (6.34) we may 
write 

where the derivatives are taken with respect to XI and Xj' By comparing this relation 
with (6.27), we deduce that 

(6.36) 

1 The Green's tensor function is sometimes defined as the particular solution of (6.34), in 
the sense of the theory of distributions, that vanishes at infinity. The definition adopted above has 
the advantage that it needs not the regularization of the solution of (6.34). 
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is the unique solution of (6.27) that satisfies the supplementary condition 

lim Ilu(x) II = O. (6.37) 
r ... O 

Finally, by taking into account the way in which the distribution G(x) has 
been generated, as well as the continuity of the convolution, (6.36) may be rewritten 
as 

(6.38) 

the convergence of this integral being granted by the conditions (6.30)1 and (6.35). 
The properties (i) and (ii) imply that the partial derivatives of n'th order 

GkP.kl ... kn of G(x) define certain displacement fields that are homogeneous functions 
of degree -n + 1 of the co-ordinates Xk and such that the corresponding elastic 
states are regular for all points of tff except the origin. As shown by Fredholm [123], 
these functions play in the anisotropic elasticity theory the same role as the spherical 
harmonics of negative degree in the potential theory. Namely, it can be proved that 
if u(x) satisfies the equations of equilibrium with null body forces, 

Cijkl Uk.lj = 0, (6.39) 

outside a sphere Ir. of radius '0 and with centre at the origin, then each component 
Uk (X) of the displacement field may be written as a sum of two series: a power 
series and a series of derivatives of Green's function. These expansions, which are 
analogous to Laurent's series, are uniformly convergent in any closed region that 
is exterior to the ball bounded by I,/. 

Let us consider now in more detail the physical significance of the partial 
derivatives of first order of G(x). We can obviously write 

(6.40) 

Consequently, the elastic state associated to the displacement field 

(6.41) 

is the limiting value as h -+ 0 of a sum of two elastic states: the first corresponds to 
the concentrated force ep/h acting at the origin; the second corresponds to a con­
centrated load -ep/h acting at the point with position vector h em (Fig. 6.1). A 
straightforward calculation shows that the resultant of the stress vectors acting 
on any sphere I" with radius 1] and centre at the origin is zero, while their resulting 
couple equals -em X ep- Following the terminology introduced by Love [222], 

1 See also Bezier [26 J. An analogous theorem that is valid in the isotropic case has been 
proved by Kelvin as early as 1863. 
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Sect. 132, we say that the elastic state corresponding to the displacement (6.41) 
is produced by a unit double force, which is statically equivalent to a directed concen­
trated couple 1 or to 0 according as m :j; p or m = p. In the latter case we say that 
the singularity at the origin is a unit double force without moment. 

Fig. 6.1. On the definition 
of a unit double force by 

a limiting process. 

The elastic state corresponding to the displacement field 

(6.42) 

which is produced by three mutually orthogonal unit double forces without moment 
acting at the origin, is called a centre of compression, whereas the elastic state corres­
ponding to the opposite of (6.42) is called a centre of dilatation. 

As has been shown by Sternberg and Eubanks [321], the part of (6.30) con­
cerning the behaviour of G as r -+ 0 is indispensable for a unique characterization 
of the singular elastic state produced by a unit concentrated force. In fact, this 
condition eliminates the possibility of superimposing self-equilibrated singular 
elastic states, such as those produced by double forces without moment; indeed, 
it is apparent from the reasoning above that such states correspond to displacement 
fields of the order O(r-n), n ;;;. 2, as r -+ 00, and hence do not satisfy (6.30). 

Green's tensor functions are particularly important for the modelling of 
crystal defects, since they correspond to singular elastic states. That is why we will 
consider in the following in more detail the most powerful methods of determining 
Green's tensor functions for various types of material symmetry, namely Fred­
holm's method and the method of Fourier transformation. 

Fredholm's method. The Green's tensor function of an infinite isotropic elastic 
medium was determined by Kelvin [351] in 1848. Later on, Fredholm [123] deduced 
the form of G(x) in terms of the roots of a sextic algebraic equation, for an elastic 
medium with general anisotropy. We cannot follow here the rather intricate rea­
soning of Fredholm and content ourselves, therefore, with explaining his result. 
Putting 

(6.43) 

1 For a detailed discussion of the elastic states produced by double forces in an isotropic 
elastic medium we refer to Gurtin [150], Sect. 51 and to Kecs and Teodorescu [178], Chap. 5 and 
Sect. 10.1. 
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the equations of equilibrium (6.39) may be rewritten in the symbolic form 

-~-) Uk = 0. 
8xa 

(6.44) 

Let 

(6.45) 

and denote by D1k(Xl' X2, xa) the algebraic complement of Diixl> X~, xa) in the 
symmetric matrix (Dik(Xl> X2' xa)]. Then, Green's tensor function of an infinite 
anisotropic elastic medium is given by 

(6.46) 

where ~v, l1v are the roots of the system of equations 

D(~, 11, 1) = 0, ~Xl + l1x2 + Xa = 0, (6.47) 

and the sum in the right-hand side of (6.46) is extended to the three roots with 
1m ~v > 0, which are assumed to be simple. By eliminating 11 between equations 
(6.47), it results that ~v are the roots of the sextic algebraic equation 

whereas (6.47)2 yields l1v = -(~vXl + Xa)!X2. 
It can be shown that equation (6.48) has real coefficients; moreover, by intro­

ducing the spherical co-ordinates r, (), qJ, it may be seen that these coefficients do 
not depend on r. Consequently, it results that the function G(x) determined by 
(6.46) is indeed a homogeneous function of degree -1 in the co-ordinates Xk' and 
we may write 

(6.49) 

As shown by Gebbia [126], the roots of equation (6.48) can be obtained in 
closed form only for isotropic materials and for hexagonal crystals. The expression 
of Green's tensor function for materials with hexagonal symmetry has been inde­
pendently derived by Lifshits and Rozentsveig [216] and by Kroner [186]; later on, 
the same result has been reobtained in a different way by Willis [381]. 

Starting from Fredholm's formula, Mann, v. Jan, and Seeger [229] evaluated 
numerically for copper the components of Green's tensor function as well as its 
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derivatives corresponding to unit double forces without moment directed along 
the axes of the cubic lattice. Lie and Koehler [215] performed a similar calculation 
for AI, Cu, and Li. In order to obtain the derivatives of Gkp' they fitted the function 
Hkp(O, <p) in (6.49) to a truncated double Fourier series 

(6.50) 

where Akpqr are the Fourier coefficients, and the Fkpq's and Gkp:s are some known 
polynomials of first degree in q, respectively r, depending on k and p, while the 
summation is performed only over the subscripts q and r. It should be mentioned. 
however, that the error introduced by the subsequent differentiation term by term 
of this series increases rapidly with the order of differentiation. Similar techniques 
have been used by Bullough, Norgett, and Webb [51]. 

More recently, Meissner [244] substantially improved the Fredholm technique, 
by deriving explicit formulae for calculating the coefficients ak of the sextic polyno­
mial in (6.48), as well as the algebraic complements D'tp , and by elaborating pro­
grammes for the numerical calculation of Green's tensor function for materials 
belonging to the rhombic system and for the general anisotropic case. He also worked 
out programmes allowing a very precise evaluation of the coefficients Akpqr of the 
double Fourier series (6.50) for rhombic crystals and applied them to a-uranium. 
Meissner's results yield accuracies of at least 0.01 % for Gkp and 0.1 % for its first 
order derivatives. 

The Fourier transform method. The Fourier transform of (6.34) is 

(6.51) 

where k is the Fourier wave vector; G(k) is the Fourier transform of G(x) and is 
given by the integral 

(6. 52} 

whose convergence for IIx II -+ 0 is again assured by the first condition (6.30). 
By making use of the notation (6.43) we may rewrite (6.51) in the tensor form 

D(k) G(k) = 1, (6.53) 

wherefrom it results that 

G(k) = D-l(k), (6.54) 

with D-l = D*/D, and D given by (6.45). Now, by the Fourier inversion theorem 
and taking into account that G(x) is a real-valued function, we obtain from (6.54} 

G(x) = _ 1_ Re ( G(k) e- ik.x dv = _1_ Re ( D-l(k) e- ik .x di}, 
8n3 )i 8n3 )8 

(6.55) 

where i is the phase space, and dv is the volume element in i. 
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In the isotropic case, by introducing (5.26) into (6.51), we obtain 

where k = Ilkll. MUltiplying both sides of this equation by k j and summing over j 
yields 

By eliminating kmGmik) between the last two relations and using (6.9), we deduce 
that 

Gjp(k) = _1_ ( 2~jp __ 1 __ k j kp ) • 
2J.l k 2 1 - V k4 

(6.56) 

Next, from the relation 1 

- -e-"X V= -r, 1 ~ 1 'k d-
n2 -; k4 

where r = IIx II, it results by differentiation that 

1 ~ kJ.kp 'k -- -- e-' , X dv = r . , 
2 - k4 ·JP n 8 

1 ~ 1 'k d-- _e-"x v=r . 
n2 i k2 .pp 

(6.57) 

Substituting now (6.56) into (6.55) and considering (6.57), we obtain 

1 
Gjix) = [2(1 - v)~jpr.mm - r.jp)' (6.58) 

16 nJ.l(1 - v) 

Finally, by taking into account that r = (xf + x~ + XDl/2, we deduce that 

Gjix) = - (3 - 4v)~jp + ~ , 1 1 [ X,X ] 

16 nJ.l(l - v) r r2 
(6.59) 

and hence Green's tensor function for an infinite isotropic elastic medium is 

G(x) = - (3 - 4v)1 + - . 1 1 [ XX] 
16nJ.l(l - v) r 1'2 

(6.60) 

It can be easily verified that this function has indeed the properties (iHiii) given 
at the beginning of this subsection. 

1 See, e.g. Jones [175], p. 222. 
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Although the relation (6.55)2 has been derived by Zeilon [390] as early as 
1911, it has not been effectively used until much later. Lifshits and Rozentsveig 
{216] and Leibfried [213] employed a perturbation method in order to determine 
first-order contributions of cubic anisotropy to the Green's tensor function (6.60) 
and to the dilatation produced by a dilatation centre. The same problem was re­
<:onsidered more recently by Barnett [14], who obtained various representations 
of the cubic Green's tensor components as power series in the anisotropy factor 
for cubic materials 

H= 1-

It should be noticed, however, that such expansions have a rather limited range of 
applicability, since H takes sufficiently low values only for a small number of cubic 
<:rystals, such as aluminium and diamond. 

From (6.43) and (6.53) it is easily seen that D(k) and D-l(k) are homogeneous 
functions of degree 2 and -2 in k;, respectively. As shown by Kroner [186], this 
property can be exploited to obtain expansions of Green's tensor components as 
series of surface spherical harmonics. This method has been applied by Mann, 
v. Jan and Seeger [229], who calculated numerically the coefficients of the expan­
sions for copper and compared the results obtained with those given by Fredholm's 
formula. Bross [42] used a similar procedure to derive expansions for Green's tensor 
<:omponents in terms of cubic harmonics. 

As shown by Barnett [16], a considerable progress in the numerical calculation 
·of Green's tensor function and of its derivatives can be achieved by transforming 
the triple improper integrals in (6.55) into ordinary line integrals about the unit 
drcle in a plane orthogonal to x. To obtain this transformation we first write (6.55) 
in the form 

G(x) = - -D- (;)cos(kr;·p)dv, 1 ~ 1 1 -

8n3 8 k 2 

Fig. 6.2. Orthogonal frames used 
for the calculation of Green's 

tensor function. 

(6.61) 

b 

where; and P are unit vectors in the directions of k and x, respectively. For any fixed 
x, we choose an orthogonal frame {a, b, p}, with a lying in the plane X 1X 2 (Fig. 6.2). 
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It can be shown [16] that the components of the unit vectors a, b, p with 
respect to the basis eI, e2, ea, to which Cijkl are referred, are given by 

°1 = sin lP, 02 = -cos lP, °a = 0, . 1 
bi = cos () cos lP, b2 = cos () sin lP, ba = - sm ()'I 
PI = sin () cos lP, P2 = sin () sin lP, Pa = cos (), 

(6.62) 

where lP and () are the angular spherical co-ordinates associated to {ek}. We shall 
calculate now the integral (6.61) by making use of the spherical co-ordinates k, u, t/J 
associated to the new basis {a, b, p}. Since 

dv = k 2 sin u dk du dt/J, ;. p = cos u, 

we obtain from (6.61) 

G(x) = _1_ (2'" dt/J ('" n-I(;) sinu du (00 cos (kr cosu) dk. 
8na )0)0 )0 

(6.63) 

On the other hand, we have 1 

~oo n 
cos (k cosu) dk = n J(cos u) = - .-- J(u - nI2), 

o ~nu 

and hence (6.63) reduces to 

G(x) = ---- n-I[;(t/J)] dt/J, 1 ~2'" 
8n2r 0 

(6.64) 

where the integrand must be calculated for u = n12, i.e. in the plane defined by the 
unit vectors a and b. Hence we must take in the right-hand side of (6.64) 

;(t/J) = a cos t/J + b sin t/J, 

with a and b given by (6.62). Finally, as n-I is an even function of ;, the integration 
interval in (6.64) may be reduced to [0, n] and we obtain 

(6.65) 

Formula (6.64) has been derived for the first time by Synge [327] and later 
reobtained in a different way by Vogel and Rizzo [371]. It has been used by Willis 
[381] to obtain the explicit form of Green's tensor function for materials with hexa­
gonal symmetry. The form of the integral in (6.65) is very well suited to rapid and 

1 See, for example, Jones [175J, p. 254. 
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accurate numerical integration by standard Romberg procedures and has been 
successfully used by Barnett and Swanger [15] for calculations of the energy of 
straight dislocations in anisotropic media. Moreover, Barnett [16] has shown that 
the first two derivatives of the Green's tensor function can be calculated by similar 
integrals, namely 

(6.66) 

where 
Fip = Cj'nqDi:/D;;pl(~,pq + ~qP,), 

A jp = Cj'nq[(~,Pq + ~qp,)(FijD;;pl + FnpDi./) - Dj/D;;plpqp,]. 

As pointed out by Willis [381] and Barnett [16], Fredholm's formula (6.46) 
can be obtained from (6.65) by the substitution y=ei'P, which converts the integrals 
over'" into line integrals about the circle Iyl = I, and by using subsequently the 
residue theorem to evaluate the line integrals in terms of the roots of a sextic poly­
nomial occurring in the integrand. Formula (6.65) has the advantage that it holds 
even when this polynomial has multiple roots, e.g. in the isotropic case. Moreover, 
the integrands in (6.65-67) have no singularities, and hence Green's tensor function 
and its partial derivatives of the first and second orders can be easily calculated 
using standard numerical techniques. Thus, the errors occurring in former variants 
of Fredholm's method when differentiating truncated double Fourier series are 
completely avoided. Equations (6.65-67) have been applied by Barnett [16] to 
eu and by Meissner [244] to IX-U. The accuracy obtained by using a Romberg 
integration scheme was in both cases between 0.1 and 0.01 %. 

The considerations above show that the numerical calculation of the Green's 
tensor function of an infinite elastic medium with general anisotropy by Fredholm's 
method, as well as by the Fourier transform method, has been reduced at present 
to the application of some standard programmes. 

Finally, we mention that for boundary-value elastic problems that are inde­
pendent of one co-ordinate, Green's tensor function is known in finite form for the 
general anisotropic case (Eshelby, Read, and Shockley [109], Stroh [324]). This 
stimulated a series of investigations concerning the expression of three-dimensional 
Green's tensor functions in terms of the angular derivatives of two-dimensional 
Green's tensor functions (Indenbom and Orlov [169], [170], Malen [224], Malen 
and Lothe [225]). 

6.5. Concentrated loads. Integral representation 
of solutions to concentrated load problems 

In the previous subsection we have introduced the notions of concentrated force 
and associated singular elastic state for an infinite elastic medium. We will consider 
now the concepts of concentrated force and Green's tensor function in the case 
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of a finite elastic body "Y, bounded by a surface g. Let P be a vector-valued 
function whose domain ~ is a finite set of points of "Y = "Y u g. Interpreting P 
as a system of concentrated loads we say that [u, E, T] is a singular elastic state 
corresponding to the external force system [f, t, P] if 

(i) [u, E, T] is a (regular) elastic state on j/'""n corresponding to the external 
force system [f, t]. 

(ii) For each x' E ~, we have 

u(x) = OV1), T(x) = 0(r-2) as r = IIx - x' II ~ o. (6.68) 

(iii) For each x' E f!), 

(6.69) 

where 1:~(x') is the sphere of radius 1] and centre at x', and n is the inward unit 
normal to 1:~(x'). 

For singular elastic states holds the following generalization of Betti's theorem, 
due to Turteltaub and Sternberg [362]. 

Reciprocal theorem for singular elastic states. Let P and p* be systems of 
concentrated loads with disjoint domains ~ and ~*. If [u, E, T] and [u*, E*, T*J 
are singular elastic states corresponding to the external force systems [f, t, P] and 
[f*, t*, P*], respectively, then 

( T· E* dv = ( t . u* ds + ( f ·u*dv + 'E P(x')· u*(x') = 
)1'" J9' )1'" x, EiP 

(6.70) 

= ( T*· E dv = ( t*· u ds + ( f*· u dv + t P*(x')· u(x'). 
)1'" )9' )1' x, E!»* 

The proof of this theorem is based on the application of Betti's reciprocal 
theorem for a domain that is obtained from .y by eliminating disjoint balls centred 
at the points of ~ and f!)*, and of a sufficiently small radius 1]. Then, letting 1] ~ 0 
and making use of the properties (i)-(iii) in the definition above yields (6.70). 
When some of the points of f!) and/or f!)* belong to g, the surface integrals in (6.70) 
are to be interpreted as Cauchy principal values. 

The reciprocal theorem for singular elastic states is still valid in the case of 
an infinite media with finite boundary provided that 

u(x), u*(x) = O(r-l); T(x), T*(x) = 0(r-2); f(x), f*(x) = 0(r-3) (6.71) 

as r = Ilxll ~ 00. 
Next, we introduce after Turteltaub and Sternberg [362] the notion of 

Green's tensor function for the boundary-value problems corresponding to the 
boundary conditions (6.18-20) in the presence of concentrated loads. To this end 
we need the following 
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Lemma (Gurtin [150], p. 185). Let C and m be two vectors. Then there exists 
a unique rigid displacement field w(x) that satisfies the system of equations 

~.9' W ds = C, ~.9' (x - c) X w ds = m, (6.72) 

where c is the position vector of the centroid of [1/. This solution is given by 

(6.73) 

where a is the area of [1/, and I is the centroidal inertia tensor, whose components 
are the moments of inertia of [1/ with respect to the principal axes of [1/ passing through 
its centroid. 

A 

A second-order tensor field with components denoted by Gkp(x; x') is called 
Green's tensor function of the region "Y provided 

(i) The elastic displacement 

~(p)(x' x') = G (x ' x') k' kp , (6.74) 

and the corresponding stress tensor 

A A 

1'W(x; x') = CiJkPkP,I(X; x') (6.75) 

represent the singular elastic state corresponding to vanishing body forces and to 
a concentrated load ep acting at x'. 

(ii) If [1/1 is not empty (displacement or mixed boundary-value problem), 
then 

(6.76) 

if [1/1 is empty (traction boundary-value problem), then 

" 
T(II)n = w on [1/2' (6.77) 

where w is given by (6.73) with C = -ep and m = -(x' - c)xep' 

Substituting (6.77) into (6.72) it may be easily shown that the boundary condi­
tion (6.77) insures that balance of forces and moments are satisfied when [1/1 is 
empty. 

The Green's tensor function defined above depends not only on the material, 
as in the case of the infinite elastic medium, but also on the region occupied by the 
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elastic body, as well on the boundary conditions. On the other hand it is obvious 
that it admits the decomposition 

(6.78) 

where G(x - x') is the Green's tensor function of the infinite elastic medium, and 
ii(p)(x; x') is the (regular) displacement field corresponding to vanishing body and 
concentrated forces and such that G(x; x') satisfies the boundary conditions (6.76) 
or (6.77). 

We say that an integrable vector field u(x) on [I' is normalized if 

~/ ds = 0, ~~ (x - c) X u ds = o. (6.79) 

Given a solution u of the traction problem, the field u + w with w rigid is also a 
solution. On the other hand, according to the above lemma, there exists a unique 
rigid displacement w such that u + w is normalized. Therefore, we may always 
assume, without loss in generality, that the solutions of the traction problem are 
normalized. 

The following theorem gives an integral representation of the solution to 
boundary-value problems of linear elastostatics in terms of Green's tensor function. 

Integral representation theorem 1. Let u(x) be the solution of one of the 
boundary-value problems (6.18-20) corresponding to the external force system 
If, t, Pl, and assume that u is normalized if [1'1 is empty. Then for any x' E "1/"'-.. g; 

U p(X/) = - ( cf(p)o)' UO ds + ( u(p), e ds + ( u (p)· f dv + 
)91 )90 )f 

(6.80) 

+ ~ u(P)(x; x') . P(x), 
xe~ 

where u(p) and T(p) are given by (6.74) and (6.75). 
Prool First assume that [1'1 is not empty. By making use of the reciprocal 

theorem (6.70) and taking into account (6.76), we obtain 

( cT(p)n) 'uods + UiX/) = ( to ' u(p)ds + ( f·u(p) dv + I; P(x)' u(p)(x; x'), 
19'1 )90)f xE~ 

1 This theorem was given in the isotropic case by Lauricella [209] for the displacement and 
traction boundary-value problems without concentrated loads and by Turteltaub and Sternberg 
[362] for the traction problem with concentrated loads. Fredholm [123] derived the representation 
formula (6.80) in the anisotropic case for the displacement and mixed boundary-value problems 
without concentrated loads. 
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and the theorem is proved. On the other hand, if fI't is empty, then from (6.77), 
(6.73), and (6.79), we find that 

( (T<p)n)' u ds = W O • ( u ds + roO • ( (x - c) X u ds = 0, 
)7 )7)7 

(6.81) 

and the reciprocal theorem leads again to (6.80). 
The advantage of using Green's tensor functions is that, after solving the 

particular boundary-value problem whose solution is ii(P)(x; x'), the general solu­
tion corresponding to any other boundary-value problem may be obtained by 
quadratures, provided that the subboundaries [/1 and [/2 remain unchanged. 

By applying the integral representation formula (6.80) to the singular elastic 
state corresponding to the displacement ~~)(x'; x), it results that Green's tensor 
function has the symmetry property 

~ " 
Gkp(x; x')= Gkp(x'; x). (6.82) 

Finally, by taking into account (6.74) and (6.82), it can be shown that the repre­
sentation formula (6.80) generalizes the relations (6.32) and (6.38) established above 
for the infinite elastic medium. 

7-120 



CHAPTER II 

THE LINEAR ELASTIC FIELD 
OF SINGLE DISLOCATIONS 

7, The elastic model of a single dislocation 

7.1. Introduction of the dislocation concept 

The X-rays experiments made by Max von Laue in 1912 have definitely proved 
the atomistic and periodic nature of crystalline substances. It was reckoned by 
then that the structure plays a determining part in the physical and mechanical 
behaviour of such materials. However, most of the natural and artificial crystalline 
materials are polycrystals, i.e. they consist of randomly oriented single crystals 
and have isotropic macroscopic properties. This fact has somehow delayed the 
interpretation of the behaviour of polycrystalline materials in terms of the pheno­
mena taking place inside the individual grains. It was the artificial growth of single 
crystals that has opened new prospects to the understanding of the correlation 
between the structure and the properties of crystalline materials. It has subsequently 
been proved for instance that the plastic deformation of metals takes place along 
certain preferred planes, called glide planes, and along certain preferred directions 
within these planes, called glide directions. As a rule, the glide planes have the 
maximum atomic density, and the glide directions have the closest atomic package, 

One of tbe problems the physicists have been most concerned with from the 
very beginning of their studies on single crystals has been the explanation of the 
experimental value of the yield stress, i.e. of the stress level at which plastic defor_ 
mation begins. Indeed, lattice calculations done by Frenkel, Polanyi, and Schmid 
between 1926 and 1929 led to theoretical values of the yield stress 100 to 1000 
times higher than the experimental ones. However, these calculations assumed the 
crystalline structure to be perfect and the crystalline planes to glide along each 
other as a whole, like playing cards, hypotheses which proved later to be unsuitable 
to real materials. Almost in the same period it has been recognized that crystalline 
defects playa fundamental role in all phenomena taking place with material trans­
port, e.g. in plastic deformation. Thus, Prandtl and Dehlinger succeeded as early 
as 1928 in explaining anelastic and recrystallization phenomena by using defect 
models very similar to what is presently called a dislocation. 

In 1934, Orowan [262], Taylor [330], and Polanyi [271] imagined for the 
first time, independently of each other, the model of a linear crystalline defect 
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called edge dislocation. Here is the explanation given by Taylor for the formation 
of an edge dislocation in an ideal crystal acted on by a shear stress (Fig. 7.1 a). 
When the shear stress attains a certain critical value, a glide step appears at the 
surface of the crystal, while a supplementary atomic half-plane, whose boundary 
is the dislocation line, occurs inside the crystal (Fig. 7.1. b). The subsequent glide 
propagation may be conceived as the dislocation motion through the crystal. At 
each stage of the plastic deformation, the dislocation line separates the region of 

0000 0 

0000 0 

0000 0 0000 0 

00 00 0 o 0 0 0 0 

0000 0 o 0 0 0 0 

(a) (b) !c) 

Fig. 7.1. Taylor's model of the atomic positions (a) be­
fore, (b) during, and (c) after the passage of an edge dis­

location across a cubic lattice. 

the glide plane on which the glide already took place from the one on which glide 
has not yet occurred. When the dislocation leaves the crystal, the crystalline struc­
ture resumes its initial regularity, but the two parts of the crystal separated by 
the glide plane preserve a relative displacement equal to one atomic spacing (Fi~. 
7.1 c). The glide lines occurring atthe surface of a deformed single crystal are the 
result of a large number of dislocations emerging at the crystal surface along the 
boundary of the same glide plane. 

Assuming that every crystal contains a large number of grown-in dislocations, 
Taylor was able to calculate the yield stress as the necessary stress to move a dislo­
cation through the elastic field of all other dislocations, thus obtaining an evaluation 
in satisfactory agreement with the experimental result. On the other hand, Taylor 
noticed that the elastic field of the dislocations immobilized inside the crystal by 
various obstacles hinders the further motion of the gliding dislocations. Thus, 
the slip can proceed only under the action of an increasing applied stress, a phe­
nomenon called work-hardening or strain-hardening. Moreover, by assuming that 
the number of the immobilized dislocations increases proportionally to the amount 
of glide, Taylor inferred that the flow stress should increase after a parabolic law, 
in agreement with the general aspect of the stress-plastic strain curve for an f.c.c. 
metal and a sufficiently high initial dislocation density. 

Taylor's theory, based upon the hypothesis of the step-by-step propagation 
of plastic glide, succeeded in giving a first quali tative as well as quantitative expla­
nation of the process of plastic deformation by means of the motion and interaction 
of dislocations. Subsequently, several other aspects concerning the origin of disloca­
tions, the mechanism of their multiplication during plastic deformation, and the 
characteristic stages of work-hardening for various types of single crystals have 
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been elucidated. It is interesting to note that most of these studies were of theoretical 
and predictive nature; it was only by 1950 that dislocation lines could be directly 
observed by making use of the electron microscope 1 . 

7.2. The Burgers vector 

In a real crystal, dislocations generally occur as closed lines called dislocation loops, 
or as lines ending at the surface of the crystal. 

A dislocation is characterized by its line and by the elementary glide vector 
associated with the dislocation, the so-called Burgers vector. The first correct defi­
nition of the Burgers vector was given by Frank [122] in 1951. We shall explain 
this definition in the case of an edge dislocation in a crystal with primitive cubic 
lattice; however, it is valid for an arbitrary curvilinear dislocation line and for an 
arbitrary crystalline lattice. The left side of Fig. 7.2 shows a perfect crystal and 
the right side a distorted crystal containing an edge dislocation. To define the Burgers 
vector we proceed as follows. Choose an arbitrary positive sense on the dislocation 
line L and denote by I the unit vector tangent to L at a current point and pointing 
in the positive direction. Describe within the distorted crystal a closed atomic circuit 
PQ, called the Burgers circuit, directed clockwise when looking down along the 
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Fig. 7.2. Burgers circuits used to define the true Burgers 
vector b in a crystal. (a) Perfect lattice. (b) Crystal with 

an edge dislocation. 

positive sense on L (Fig. 7.2 b). Then, repeat the atomic circuit in the same sense 
within the perfect crystal, thus obtaining a closure failure (Fig. 7.2 a). The vector 
closing the last circuit and directed from the starting point P' to the final point 
Q' of the circuit is called the true Burgers vector 2 and is denoted by b. From this 

1 For various theories of plastic deformation based on the laws of motion, multiplication, 
and interaction of crystal defects see Cottrell [84], Seeger [286], Kronmtiller [196], Zarka [387-
389], Teodosiu [335, 344], Bullough [50), Perzyna [268, 269], Teodosiu and Sidoroff [345], 
where further references on this subject can be also found . 

2 There is no generally accepted convention for the sense of b. The convention adopted by 
us is known as the SF/RH rule, since b is directed from the starting point of the Burgers circuit to 
its finish whereas the Burgers circuit appears right-handed with respect to the positive sense chosen 
on the dislocation line. The same convention has been used for instance by BUrgers [541, Read 
(275), Seeger (286), J. Weertman and J. R. Weertman [379], Nabarro [2581, and more recently 
by Kosevich [440] and Gairola [418]. For further comments concerning the conventions used in 
various standard books on dislocation theory see de Wit [384] and Hirth and Lothe [162], p. 22. 
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definition it follows that b is always a vector of the perfect lattice. Moreover, it 
is easily seen that the true Burgers vector does not depend on the point chosen along 
the dislocation line 1, and hence it can be really considered as a characteristic of 
the dislocation. 

i>-Y--i- ... >---<> >--<;>-

~ 

-
1 1 

.f 
PI a, --1)-

} 1 ~ j p" jb"j O; 
//1 

(o) (b ) (c) 

Fig. 7.3. Burgers circuits used to define the local Burgers vector b* in a crystal. 
(a) Perfect lattice. (b) Crystal with an edge dislocation. (c) Crystal with a screw dislocation. 

To define the Burgers vector we may proceed the other way round. Namely, 
we can choose a closed atomic circuit PIQI within the perfect crystal (Fig. 7.3 a), 
such that the corresponding circuit in the distorted crystal encircle the dislocation 
line in a clockwise sense when looking down along the positive sense on L. The 
final point Q~ and the starting point P{ of the circuit in the distorted crystal do no 

~ 

longer coincide, and the vector b* = Q~P~, called the local Burgers vector, defines 
now the lattice defect. It is obvious from Fig. 7.3 b that, due to the lattice distortio n 
in the neighbourhood of the dislocation, the local Burgers vector does depend on 
the choice of the starting point PI of the circuit, which explains its name 2. 

If the Burgers vector is perpendicular to the dislocation line (b -L I), as 
shown in Fig. 7.2, the dislocation is called an edge dislocation. Inspection of Fig. 
7.2 b reveals that this type of dislocation is characterized by the presence of a supple­
mentary atomic half-plane. The vectors band 1 determine the glide plane, whereas 
the vector b defines the glide direction associated with the dislocation motion. The 
position of the edge dislocation is marked by the symbol -L or T, the horizontal 
line showing the direction of the glide plane and the vertical one the position of the 
supplementary atomic half-plane situated above or below the glide plane, res­
pectively. 

If the Burgers vector is parallel to the dislocation line (b III), the dislocation 
is called a screw dislocation, due to the resemblance of the atomic planes distorted 
by the dislocation to the spiral ridge of a screw of axis 1 and pitch IIbll. This type of 
lattice defect has been first imagined by Burgers [54] in 1939. Fig. 7.3 c shows a 

1 More precisely, b does not depend on the choice of the Burgers circuit as long as it sur­
rounds the same dislocation line. In particular, the true Burgers vector is independent of the lattice 
distortion. 

2 Inspection of Figs. 7.3 band 7.2 a reveals that the local Burgers vector b* may be con­
sidered as the true Burgers vector applied at PI and deformed together with the lattice. This rela­
tion will be given a more quantitative form in the following subsection. 
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Burgers circuit and the corresponding local Burgers vector in the case of a screw 
dislocation. The position of a screw dislocation is marked by the symbol ®, res­
pectively 0, according as the Burgers vector is directed towards or out of the figure, 
that is according as the crystal planes build a right-handed or a left-handed screw 
with respect to the positive sense chosen on the dislocation line. 

The edge and the screw dislocations are merely special types of dislocations. 
In the general case of a curvilinear dislocation, the vector b is still constant, but I 
varies along the dislocation line, which means that various segments of the dislo­
cation line may be of different type. If the angle between b and I is not 0° or 90° the 
dislocation segment is said to be of a mixed type. 

Since a dislocation line is the boundary between a region which has slipped 
and another region which has not slipped, it is intuitively obvious that it cannot 
end within an otherwise perfect crystal region. Thus, a dislocation line must be 
either a closed line, or a line terminated at a free surface, another dislocation line, 
an inclusion, a grain boundary, or some other defect. For instance, if one attempts 
to end the dislocation shown in Fig. 7.2 b by completing the supplementary lower 
lattice half-plane of the edge dislocation by an upper half-plane, one finds that 
this is possible only with the introduction of another edge dislocation with its line 
perpendicular to the initial dislocation (Hirth and Lothe [162], p. 23). 

If the Burgers circuit surrounds more than one dislocation, and if it appears 
clockwise when looking down the positive sense chosen on each dislocation line, 
then the corresponding Burgers vector equals the sum of the Burgers vectors of 
all dislocations encircled by the circuit. Thus, the Burgers vectors of the individual 
dislocations can be summed up to obtain the resultant Burgers vector of a group 
of dislocations. This property will be used in Sect. 17 in order to extend the concept 
of Burgers vector to continuous distributions of dislocations. 

7.3. Simulation of crystal dislocations 
by Volterra dislocations 

As shown in Figs. 7.2 and 7.3, any dislocation produces a lattice deformation, which 
decreases with increasing distance from the dislocation line. In order to evaluate 
the deformation of a dislocated crystal it is advantageous to consider the crystal 
as a linear elastic continuum, at least at sufficiently large distances from the dislo­
cation line. This approach must be given up, however, when considering the region 
of the crystal close to the dislocation line; indeed, in this highly distorted region, 
which is called the dislocation core and amounts to a few atomic spacings around 
the dislocation line, even the non-linear elasticity theory proves to be inappro­
priate 1. 

Since dislocations and the accompanying lattice deformations can persist 
in the unloaded state of a body, the stresses produced by dislocations are called 
self-stresses or residual stresses. 

1 We shall come back to this point in Sect. 16, where several methods will be presented for 
studying the dislocation core by combining the continuum elastic model with the atomic model 
of the dislocation. 
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In his pioneering work, Taylor [330] realized the possibility of evaluating 
such self-stresses by the linear elasticity theory and approximated the long-range 
stress field of an edge dislocation by the linear elastic stress field corresponding 
to a Volterra dislocation in an isotropic hollow cylinder. Actually, this solution was 
available ever since 1907, long before the dislocation was considered as a crystal 
defect. Indeed, Volterra [373] determined the elastic state that occurs in a hollow 
circular isotropic cylinder when this is subjected to the following operations (cf. 

(a) (b) (e) 

Fig. 7.4. Volterra dislocations of translational type in a hollow 
cylinder. 

Sect. 2.8). First, the doubly-connected region occupied by the elastic body is rendered 
simply-connected by cutting it along a smooth surface joining the bounding cylin­
drical surfaces, e.g. a plane passing through the axis of the cylinder, and having 
that axis for an edge (Fig. 7.4). Next, one face of the cut is displaced with respect 
to the other by a small rigid displacement. Then, the opposing faces of the cut are 
joined, by removing or inserting, if necessary, a thin layer of material of the same 
kind as that of the cylinder. Finally, the external forces that have acted on the 
cylinder during these operations are removed. The body thus deformed will be, 
in general, in a state of self-stress 1. 

Let us choose a Cartesian system of co-ordinates as shown in Fig. 7.4, with 
the cut taken as the xlx3-plane. The rigid relative displacement of the opposite 
faces of the cut may be decomposed into three translations along and three rotations 
around the axes of co-ordinates. It is easily seen that the deformation resulted after 
a rigid translation of the cut faces can be used to simulate a crystal dislocation (Fig. 
7.4 a, b, c). Indeed, by removing a thin cylinder corresponding to the core of the 
edge dislocation shown in Fig. 7.3 b one obtains a configuration of the crystal 
which is similar to that of the dislocated cylinder in Fig. 7.4 a. Analogously, the 
screw dislocation in Fig. 7.3 c corresponds to the Volterra dislocation of the cylinder 
shown in Fig. 7.4 c. Finally, the deformation of the cylinder in Fig. 7.4 b can be 
produced in a crystal by inserting a supplementary atomic half-plane XIX2, and hence 
corresponds to an edge dislocation with the glide plane X 2X 3• 

A Volterra dislocation obtained after rigidly rotating the faces of the cut 
corresponds to a defect which is presently named a disclination. It seems, however, 

1 Such deformations of multiply-connected bodies, which are presently called Volterra dis­
locations, have been named by Volterra "distorsioni". The name "dislocation" is due to Love 
[222], Sect. 156 A. 
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that no disclination can appear in a crystalline lattice, on account of the high 
self-energy required 1. Therefore, we shall limit ourselves in the following to consi­
dering only Volterra dislocations of translational type. 

The simulation of crystal dislocations by means of Volterra dislocations in 
an elastic continuum may be easily generalized to arbitrary dislocation loops. Assume 
that an elastic body PJ occupies a simply-connected region :y of boundary fj in 

Fig. 7.5. Simulation of a dislocation loop L by a Volterra 
dislocation. 

the natural state, and let L be a smooth closed line in i' and S a smooth and two­
sided surface bounded by L (Fig. 7.5). Arbitrarily choose a positive sense on I 
and denote by ii the unit normal to S directed according to the right-hand rule 
with respect to the positive sense on i. Exclude a thin tube of boundary .Eo around 
the dislocation line and cut the elastic body along the surface S, so as to render 
it again simply-connected. Translate the positive cut face §+ , into which Ii points, 
by a vector b with respect to the negative face S-. Finally, add or remove material, 
and join the two faces of the cut, thus re-establishing the continuity of the body. 
The result is a dislocation loop of line L and true Burgers vector b, the tube inside 
.Eo playing the role of the dislocation core. The only difference against the case 
of the straight dislocation considered above is that now the surface S may be closed 
within the elastic body, as a consequence of the line L being also closed inside 
the body. 

As already mentioned, dislocations cannot end within an otherwise perfect 
region of a crystal. This property becomes obvious when simulating crystal dislo­
cations by Volterra dislocations. Indeed, assume that a simply-connected body 
contains a finite dislocation line terminating within the body. Clearly, by cutting 
out a thin tube corresponding to the dislocation core the connectivity of the body 
does not change. On the other hand, cf. Sect. 2.8, Volterra dislocations are not 
possible in a simply-connected body and this indirectly proves that crystal disloca­
tions cannot end within a perfect crystal region (cf. also Nabarro [258], p. 13). 

1 In exchange, disclinations may be used for modelling defects occurring in polymers, in 
inhomogeneous magnetoelastic fields, or in the flux lines of the magnetic field within a superconduct­
ing material (see, e.g. Anthony [5], Anthony and Kroner [393 J, Kroner and Anthony [444 n. 
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For the dislocation lines ending at the free surface of the body, we shall use 
the following convention for the orientation of the cut surface. We consider the 
dislocation line 1 and the cut surface as imaginarily continued outside the body 
untilL becomes a closed line. Then, the choice of the unit normal ii, of the positive 
and negative sides of S, and the generation of the corresponding Volterra dislo­
cation may proceed like in the case of a dislocation loop. This convention is illus­
trated in Fig. 7.6 for an edge dislocation lying in the axis of a circular cylinder. 

Fig. 7.6. Illustration of the convention used for the orientation 
of the cut surface of a Volterra dislocation, when the corres­

ponding crystal dislocation ends at the free surface 
of the crystal. 

The connection between crystal dislocations and Volterra dislocations is 
rendered more explicit by defining Burgers vectors of the latter with the help of 
line integrals whose integration paths are similar to Burgers circuits in a crystal. 
Let us denote by (K) and (k) the configurations of a simply-connected body f!J 
in the natural and the dislocated state, and let X and x be the position vectors of 
a current material point in the configurations (K) and (k), respectively. Denote by 
.; the region occupied by the elastic body in the configuration (K), by fj the boun­
dary of .y, and by .yo the doubly-connected region obtained after excluding the 
dislocation core by cutting out a thin tube of boundary 'Eo around the dislocation 
line. Let S be a_ smooth and two-sided barrier connecting the surfaces 20 and ;; 
and rendering "1'"0 simply-connected. To simplify the following discussion, we will 
again think of i as being an edge dislocation lying in the axis of a cylinder :;-; 
moreover, we shall assume that S is a plane cut passing through L, the positive 
and negative faces of which are defined as shown in Fig. 7.6. However, the basic 
relations given below are general, not restricted to this particular example. 

In the simply-connected region :Yo" ii the deformation is uniquely defined. 
Let "1'"0 and [/' be the images of';o and ii, respectively, in the configuration (k). 
Assuming as usual that the deformation X::;-0" S --. "1'"0"-. S is one-to-one and of 
class C3, we can write, with the notation in Sect. 2.5, 

x = X(X) = X + u(X), 

F= 1 +H, 

(7.1) 

(7.2) 
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where u(X) is the displacement field, and 

F(X) = Grad X(X), H(X) = Grad u(X). (7.3) 

Alternatively, we may describe the deformation in terms of the positions 
assumed by the material points in the deformed configuration (k). Denoting by 
1,- 1 : "yo "-S -+ .yo '-... S the inverse of the mapping (7.1), we have 

x = X-lex) = x - u(x), 

F-l(X) = 1 - grad u(x), 
where 

(7.4) 

(7.5) 

(7.6) 

Clearly, u(X) and u(x) must be considered as different functions, expressing the 
displacement vector field in terms of the positions of the material points in the con­
figurations (K) and (k), respectively, which are related in their turn by (7.1) and (7.4). 

Let now C be a closed curve in "Yo, which encircles the dislocation line L 
in a right-handed sense and intersects S+ and S- in the points P and Q, respectively 
(Fig. 7.7 b). Then, the curve C' corresponding to C through (7.4) will encircle Eo 

(K) (k) 

(a) (b) 

Fig. 7.7. Burgers circuits used to define the true Burgers vector b 
of an edge dislocation lying in the axis of an elastic hollow cylinder. 
(a) Cross-section of the cylinder in the natural state. (b) Cross-sec-

tion of the dislocated cylinder. 

from a point, say P' E S+ , to a point Q' E S- (Fig. 7.8 a). By analogy with the 
definition adopted for the crystal lattice and illustrated in Fig. 7.2, we define the 
t rue Burgers vector b as the sum of the infinitesimal vectors dX that correspond 
through the mapping (7.4) to the infinitesimal vectors dx taken along C. Thus 
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since f c dx = O. This relation may be rewritten as 

u+(x) - u-(x) = b on S, (7.7) 

where x is the position vector of a current point on S, whereas u+(x) and u- (x) 
denote the limiting values of the displacement field u(x) on S+ and S-, respectively. 
Since the faces of the un deformed cut S have been relatively displaced by a rigid 
translation, the true Burgers vector b is independent of the choice of P, as it should be. 

IKI Ikl 

101 Ibl 

Fig. 7.8. Burgers circuits used to define the local BUrgers vector b* of an 
edge dislocation lying in the axis of an elastic hollow cylinder. (a) Cross­
section of the cylinder in the natural state. (b) Cross-section of the dis-

located cylinder. 

Next, let C1 be a closed curve in the configuration (K), cutting S+ and s­
in the points PI and Q1> respectively (Fig. 7.8 a), and such that its image C{ in (k) 
encircle the dislocation line from a point, say P{ E S+ , to a point Q~ E S- (Fig. 7.8 b). 
Similarly to the definition adopted for the crystal lattice and illustrated in Fig. 7.3, 
we define the local Burgers vector b* as the opposite of the sum of the infinitesimal 
vectors dx that correspond by the mapping (7.1) to the infinitesimal vectors dX 
on C1• Thus 

b* = QiP{ = -l. dx(X) = -l. du(X) = u(Pl) - U(Ql)' 
Jlci Jlc i 

since l. dX = o. This equation may be rewritten as 
Jlci 

u+(X) - u- (X) = b*(X) on S, (7.8) 

where X is the position vector of a current point on S, whereas u+(X) and u- (X) 
denote the limiting values of the displacement field u(X) on S+ and S- , respectively. 
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Clearly, the local Burgers vector b* depends on the strain around PI' since both 
PI and Q1 lie on the deformed surface of the cut. 

It is now easy to establish the relation between the true and local Burgers 
vectors associated with a Volterra dislocation. To this end, let us denote by X 
and X + b the position vectors of the points P' and Q', respectively. Since their 
images P and Q in (k) coincide, we have 

1!(X) = 1.,-(X + b) on S, (7.9) 

whence, by (7.1), 

u+(X) - u-(X + b) = b on S. (7.10) 

Next, neglecting terms of the order O(b2), where b = II b II is the magnitude 
.of the true Burgers vector, and taking into account (7.3)2' we may write 

u+(X) - u-(X) - H-(X) b = b on S. 

Finally, by making use of (7.8) and (7.2), we deduce that 

b*(X) = F- (X)b, (7.11) 

which is the desired result (Teodosiu [337], vol. 1). Alternatively, by replacing X 
with X - bin (7.9) and using a similar reasoning as above, it may be shown that, 
to within terms of second order in b, we have 

b*(X) = F+ (X)b, (7.l2) 

and hence 1 

(7.l3) 

We have already remarked that the local Burgers vector depends on the lattice 
·deformation, and hence on the choice of the starting point of the Burgers circuit. 
Equations (7.II) and (7.12) give now a quantitative form to this dependence. 
Actually, they show that the local Burgers vector at X results by deforming together 
with the elastic body a material vector equal to the true Burgers vector b and applied 
at X. 

In the particular example considered above the cut S was straight and its 
faces were rigidly displaced in their own plane. Consequently, it was possible to 
assume that they are rejoined with perfect fit, i.e. without adding or removing mate­
rial. When this is not the case, the correct definition of the mapping 1., requires a 
more sophisticated discussion. However, it may be shown (Teodosiu and So os 
{479]) that the basic relations (7.7), (7.8), (7.10), and (7.11) derived above are still 
valid in the general case of an arbitrary dislocation loop and of an arbitrary cut. 

1 Generally, one assumes a priori that F is of class Cl in '1'0. Then, of course, the 
left-hand side of (7.13) vanishes identically on any cut surface § [479]. 
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7.4. Linear elastostatics of single dislocations 

At sufficiently large distances from the dislocation line, say 5 to 10 atomic spacings. 
it may be assumed that IIH II ~ 1 and thus one may apply the linear theory of elasti­
city. Then, by virtue of (7.2) and (7.11), we may identify the local Burgers vector 
b* with the true Burgers vector b and the position vectors of the material points 
in the configuration (k) with those in the reference configuration (K). Consequently. 
neglecting terms of the order O(b2) or higher, (7.7) and (7.11) yield 

u+ (x) - u- (x) = b = b*, (7.14) 

where x denotes the position vector of a current point on a cut S = S transforming 
"f" 0 = .yo into a simply-connected region, whereas u+ (x) and u- (x) are the limiting 
values of the displacement vector field u(x) on the positive and negative face of the 
cut, respectively 1. 

The basic field equations are (cf. Sect. 6.1) 

E = sym grad u, (7.15) 

div T = 0, Tkm,m = 0, (7.16) 

(7.17) 

where E is the strain tensor, T is the Cauchy stress tensor, and c is the tensor of the 
second-order elastic constants. According to the theory of Volterra dislocations 
(Sect. 2.8), we shall assume that the strain field E is continuous across S and its 
extension (by continuity) to "f" 0 is of class C2. 

The solution of the above field equations must also fulfil certain boundary 
conditions. For instance, when the surface tractions are prescribed on the external 
boundary g of "f" 0 and on the boundary 1:0 of the dislocation core, the boundary 
condition reads 

Tn = t*, (7.18) 

where t* is the surface traction and n is the outward unit normal to the boundary 
of "f"o. More sophisticated boundary conditions can be also considered, e.g. the 
tractions prescribed on g and the displacements on 1:0, The uniqueness of the 
solution of such boundary-value problems is generally covered by Volterra's uni­
queness theorem for multiply-connected regions (see Sect. 6.2). 

1 As shown in Sect. 2.8, it is open to us to consider the displacement field either as single­
valued and discontinuous in the simply-connected region"" 0 "S, with a jump equal to b across the 
barrier S, or as multiple-valued and continuous in the doubly-connected region ""0' with a vector 
cyclic constant b. However, the former point of view will be constantly adopted throughout this 
book, since it corresponds better to the physical way crystal dislocations are generated. 
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If we are interested merely in calculating the self-stresses produced by dislo­
cations, we can take t* = 0 on the external boundary [f' of the body 1. On the 
contrary, the boundary Lo of the tube used to isolate the dislocation line is acted 
on by forces arising from the dislocation core, which can be determined only 
by a combined continuum and atomistic calculation (see Sect. 16). It may be shown, 
however, that terms corresponding to these forces in the stress field decay much 
more rapidly with increasing distance from the dislocation line than those depending 
only on Land b, the latter characterizing thus the long-range stress field of the dislo­
cation. That is why, many of the calculations done in the elastic theory of disloca­
tions assume in general that t* = 0 on Lo or even ignore altogether the boundary 
conditions on Lo. 

We shall devote the remaining part of this chapter to the calculation of the 
linear elastic field and of the linear elastic interactions of stationary and moving 
dislocations: Non-linear effects in the elastic field of dislocations will be considered 
in Chapters III and IV. 

7.5. Somigliana dislocations 

Volterra dislocations require the continuity of the strain components and of their partial deriva­
tives of first and second orders across the dislocation cut. We have seen that this condition implies 
that the relative displacement of the cut faces be rigid; moreover, as shown in Sect. 2.8, Volterra 
dislocations are possible only in multiply-connected bodies. 

However, in order to re-establish the continuity of a cut body it is not even necessary to 
require the continuity of the strain or stress tensor across the cut. Actually, as shown by Somi­
gliana [475,476], it is sufficient that the tractions acting on the cut faces be in equilibrium at any 
point of the cut. 

Let 8iJ be an elastic body of arbitrary connectivity, occupying a region 'Y of boundary [f, and 
let S denote a regular surface, which is contained in 'Y or has a part of its boundar~ on [f. Assume 
that 8iJ is cut along S, then a thin sheet of material of the same kind as that of 8iJ is introduced 
or removed, and the continuity of the body is re-established, leaving an arbitrary discontinuity 
of the displacement across S, restricted only by the equilibrium and boundary conditions. The 
resulted state of self-strain is called a Somigliana dislocation 2. 

Suppose that the displacement discontinuity across S is sufficiently small to allow the appli­
cation of linear elasticity. Then, arbitrarily choosing a positive and a negative face of S, we may 
write the jump conditions across the cut under the form 

u+(x) - u-(x) = g(x), 

t+(x) + qx) = 0, 

(7.19) 

(7.20) 

where the superscripts + and - denote the limiting values of the corresponding fields on the posi­
tive and negative face of S, respectively, x is the position vector of an arbitrary point of S, and 
g(x) denotes the prescribed jump of u across S. 

The boundary-value problem associated with conditions (7.19) and (7.20) is slightly more 
complicated than the mixed boundary-value problem of linear elasticity. Indeed, while the cut is 
open, the tractions or the displacements may be prescribed at all points of the boundary, including 
the faces of the cut. On the other hand, when the cut is closed, the six scalar equations correspond­
ing to (7.19) and (7.20) replace a set of three equations on each side of the cut. 

1 For a straight dislocation lying in an infinite elastic medium we shall require that stresses 
vanish as r-1 as r ~ 00, where r is the distance from the dislocation line. 

2 The possibility of such states of self-strain has been recognized by Somigliana as early 
as 1905, i.e. immediately after the publication of the first notes by Volterra (cf. V. Volterra and 
E. Volterra [485], p. 13). 
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Somigliana dislocations in an isotropic hollow cylinder have been thoroughly studied by 
Yoffe [448,489], who also applied them to discuss the structure of the dislocation core by a phy­
sically realistic non-linear model. Bogdanoff [400] pointed out the contribution of the disconti­
nuities allowed in the first-order derivatives of the strain field, whereas Ju [434] treated plane pro­
blems corresponding to Somigliana dislocations with straight or logarithmic spiral cuts by means 
of complex variable techniques. Somigliana dislocations in an anisotropic elastic medium and their 
.application to the determination of second-order effects in the elastic field of dislocations have 
been recently considered by Teodosiu [478] and by Teodosiu and S06s [479] (see also Sects. 10.6 
and 14). 

8. Straight dislocations in isotropic media 

Even in polycrystalline materials, the influence of the elastic field of dislocations is 
significant mostly within the grains, which frequently exhibit a high anisotropy, 
thus limiting the applicability of the isotropic approximation. However, owing to 
the extreme simplicity of the solutions of isotropic elasticity, they have been almost 
exclusively used in the first thirty years of dislocation theory and are still being widely 
employed. 

That is why we will consider in this section the case of straight dislocations 
lying in isotropic elastic cylinders or in an infinite isotropic elastic medium. We 
:shall make use almost exclusively of complex-variable techniques, which allow a 
unitary and systematic solution of boundary-value problems. 

8.1. Edge dislocation in an elastic cylinder 

Consider an edge dislocation whose line L has infinite length and coincides with 
the axis of an isotropic elastic circular cylinder of radius R. Choose the dislocation 

Fig. 8.1. Cut along the strip X2 = 0. 
-R ~ Xl ~ -ro, used to define a 
single-valued displacement field around 
a straight dislocation lying along the 
axis of an elastic cylinder, taken as 

xa-axis. 

line as xa-axis, and the direction of the Burgers vector as xl-axis of a rectangular 
Cartesian system of co-ordinates (Fig. 8.1). 

Let us apply the linear theory of elasticity outside an infinite circular cylindrical 
surface Eo of axis Xs and radius,o < R. We assume that the surface tractions acting 
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on :Eo and on the outer boundary of the cylinder are known I and do not depend 
on X3• Then the displacement vector field must be also independent of X3 and its 
direction must be parallel to the xlx2-plane, i.e. 

(8.1) 

The elastic state of the cylinder, characterized by (8.1), is said to be a state olp/ane 
strain. 

We shall also make use of the cylindrical co-ordinates p, e, z related to the 
Cartesian co-ordinates Xl' X2, X3 by 

Xl = P cos e, X2 = p sin e, (8.2) 

where e E (-n, n] is the polar angle in the xlx2-plane, measured in a clockwise 
sense when looking down along the x3-axis. 

Let ro and r be the circles situated in the xlx2-plane, with centre at the origin 
and of radius ro, and respectively R, and let LI be the region between ro and r. 
We consider u as being single-valued and of class C3 in the simply-connected region 
obtained from LI by eliminating its points belonging to the negative xl-axis (Fig. 8.1). 
Then the component U2 of the displacement vector will be continuous across the 
cut X2 = 0, - R ~ Xl ~ -ro, while the component Ul will have a jump across this 
cut, given by 

(8.3) 

where b is the magnitude of the true Burgers vector. 
Substituting (8.1) into (7.15)2, it follows that the infinitesimal strain tensor 

has the non-zero components 

E = oUI E _ OU2 El2 = _1_ ( OUI + OU2 ), (8.4) 
11 ",' 22 - '" ' 2 '" '" uXI uX2 UX2 uXI 

whereas El3 = E 23 = E33 = O. Next, by introducing (8.4) into (6.5), we find that 
the non-zero components of the stress tensor are 

11-.11. --+ -- ft--, T - 1 ( oUI oU2 ) + 2 OUI 

OXI oX2 OXl 

1'22 = .it ( OUI + OU2 ) + 2ft OU2, 

OXI OX2 OX2 
(8.5) 

Tl2 = ft (OUI + OU2 ), 
OX z OXI 

./.. .II. v(Tn + T22 , ""33 = 1 (OUI + OU2 ) = ) 
OXl OX2 

(8.6) 

1 As already mentioned above, the surface forces exerted on Eo from the dislocation core 
may be obtained only by a combined atomic and continuum calculation, which in its turn requires 
the solving of the boundary-value problem formulated below. 

8-120 
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whereas TIa = T2a = o. Since the components of the stress tensor are also indepen­
dent of Xa, the first two equilibrium equations (7.16). assume the reduced 
form 

(8.7) 

and the third one is identically satisfied. 
Since we have assumed that t: = t: = 0 for p = ro and p = R, we shall 

consider only the physical components t: and t: of the surface tractions acting on 
the bounding cylindrical surfaces of the elastic body. In addition, we shall suppose 
that these components may be expanded in complex Fourier series of the polar 
angle (), i.e. I 

00 

I: 41) eikO for p = ro 
k=-oo t: + it: = (8.8) 

00 

I: t~2) eikO for p = R. 
k=-oo 

Since both the dislocation core and the remaining part of the elastic cylinder 
are in equilibrium, the total force and the total couple acting on each of the surfaces 
p = ro and p = R vanish, and this implies that 

(211 
)0 (t: cos () - t: sin () d() = 0, ~~(t: sin () + t: cos () d() = 0, 

(8.9) 

~~ to· d() = O. 

The first two of these conditions may be written in the equivalent complex form 

(8.10) 

Introducing (8.8) into (8.9) and (8.10), yields 

t~i = t!:l = 0, 1m t~l} = 1m t~2} = O. (8.11) 

1 For more generality we have assumed in (8.8) that the outer cylindrical surface is acted 
by surface tractions, too. When this is not the case, one should take t12} = 0 for all integers k. 
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On the other hand, by making use of (1.64). and (1.73), it may be shown that 

and hence the boundary conditions (7.IS) can be written in the equivalent complex 
form 

(S.12) 

for p = ro and p = R, 

the right-hand side of this eq uation being given by (S.S). 
The easiest way to solve the above formulated boundary-value problem is 

based on the representation of the elastic solution with the aid of complex poten­
tials (see also Muskhelishvili [254], Sect. 30-32 and 45, and Gurtin [ISO], Sect. 47). 
Let us first introduce the complex variables 

Z = Xl + i X2' Z = Xl - iX2' 

the complex displacement 

and the complex stresses 

e= TIl + T22, 

By using the relations 

_~ ___ I (_0 _i_o ) 
OZ - 2 OXI OX2' 

we deduce from (S.14) that 

~ = _I (_0_ + i _0_), 
OZ 2 OXI OX2 

oU = _I [OUI_ + oUz _ i (~~ _ oU2 )], 

OZ 2 OXI OX2 OX2 OXI 

(S.13) 

(S.14) 

(S.15) 

(S.16) 

(S.17) 

Next, by using (S.13-17), we derive the equivalent complex form of the jump 
condition (S.3) 

U(XI' 0+) -U(XI' 0- ) = -b, -R:::; Xl :::; -ro' 

of the constitutive equations (S.5) 

( oU oU ) e = 2(}' + Jl) az + oz ' 
oU 

{P = 4Jl OZ ' 

(S.IS) 

(S.19) 
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of the equilibrium equations (8.7) 

and of the boundary conditions (8.12) 

-} (8 + 4ie-2i8) = t: + itt for p = ro and p = R. 

Equation (8.20) may be identically satisfied by putting 

02F 
4i = -4--, 

O-Z2 

(8.20) 

(8.21) 

(8.22) 

where F is a real-valued function of class C', which is called Airy's stress function. 
The function Fmust also satisfy the Beltrami-Michell compatibility equations (6.25). 
To derive their complex equivalent for the state of plane strain, we directly elimi­
nate U between equations (8.19), thus obtaining 

wherefrom, by (8.22), it results that 1 

=0 (8.23) 

By successively integrating this equation with respect to z and z, and taking into 

account that F and 02 F are real-valued functions, we obtain 
ozoz 

02F 
--_ = Re ep'(z), 
ozoz 

of t ---
o-Z = T {ep(z) + zep'(z) + I/I(z)}, 

F(z, -Z) = Re{zep(z) + X(z)}, 

1 It is easily seen from (8.16) that 

a2 a2 a2 

4--=-+-azaz axi ax~ , 
and hence (8.23) implies that F is a biharmonic function in .10• 

(8.24) 

(8.25) 
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where qJ(z) and t/I(z) are arbitrary analytic functions of z in .10 and x(z) = ~:t/I(Z)dZ. 
Substituting (8.24)2 into (8.22) yields the representation of complex stresses in 
terms of the complex potentials ep(z) and t/I(z) 

Tn + T22 = e = 4Re ep'(z), } 

Tn - T22 + 2iT12 = IP = -2Izep"(z) + t/I'(z)}. 

Next, we have from (8.19) and (8.26) 

2 au ------,,-( ) '/"( ) JI. oz = - zep z - 'I' Z, 

au + _ au = 1 - } 
oz oz 2 + JI. I qJ'(z) + ep'(z) . 

Integrating the first of these equations with respect to z gives 

2J1. U(z, z) = zep'(z) - t/I(z) + '1(z), 

(8.26) 

(8.27) 

(8.28) 

where '1(z) is an arbitrary analytic function of z. Introducing (8.28) into (8.27):>. 
and making use of (6.9), we find 

- 2+3J1. _. - --
'1'(z) + '1'(z) = --- {ep'(z) + ep'(z)} = (3 - 4v){ep'(z) + ep'(z)}, 

2+JI. 

wherefrom, by integration, it results that 1 

'1(z) = (3 - 4v)ep(z) + 2jJ.(woiz + Uo + ivo), (8.29) 

where wo, uo, and Vo are arbitrary real constants. Finally, by substituting (8.29) 
into (8.28), we obtain 

2jJ.U(z, z) = (3 - 4v)ep(z) - zep'(z) - t/I(z) + 2jJ.(woiz + Uo + ivo). (8.30) 

The expression woiz + Uo + ivo is an infinitesimal complex rigid displacement, 
composed of an infinitesimal translation of components uo' Vo and of an infinitesimal 
rotation of angle Wo around the xa-axis. Clearly, this expression could be included 

1 In deriving (8.29) we have taken into account that the imaginary part of an analytic func­
tion whose real part vanishes must be a constant. 
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in the arbitrary functions <p(z) and I/I(z). However, we prefer to preserve the form 
(8.30) of the complex displacement and to impose the supplementary conditions 

<p(0) = 0, 1/1(0) = 0, Im<p'(O) = 0, (8.31) 

which exhaust the arbitrariness in the choice of the functions <p(z) and I/I(z) corres­
ponding to a given elastic state [254]. 

We also notice that from (2.39)2' (8.1), (8.17)1' and (8.30) it follows that the 
only non-zero component of the elastic rotation vector is 

W3 = - _1 ( OUI _ OU2 ) = 1m oU = 2(1 - v) Im<p'(z) + WO. (8.32) 
2 OX2 OXI OZ ~ 

The relations (8.26) and (8.30) give Kolosov's representation of the solution 
of the plane strain problem of linear elasticity in terms of the complex potentials 
<p(z) and 1/1 (z). 

Substituting (8.26) and (8.8) into (8.21) yields 

00 

~ t~l) eiklJ for z = '0 e:1J 

k=-oo 
<p'(z) + <p'(z) - e-2ilJ {z<p"(z) + I/I'(z)} = (8.33) 

00 

~ tl/} e iklJ for z = R e ilJ • 

. k=-oo 

The boundary-value problem may be given now the following formulation: Find 
the functions <p(z) and I/I(z) that are analytic in ..10 and continuous in ..10 = ..10 u ro u r 
and that satisfy the jump condition (8.18) and the boundary conditions (8.33). 

Since the stress components and the elastic rotation are continuous across 
the negative xl-axis, equations (8.26) and (8.32) imply that the analytic functions 
<p'(z) and I/I'(z) must be continuous and single-valued in A and hence they can be 
expanded in Laurent power series of z 

00 

<p'(z) = ~ akzk, 
k=-oo 

Termwise integration of these series gives 

00 a Zk+l 
<p(z) = a_I In z + ~ k , 

k=-oo k + 1 
k",-l 

00 

t//(z) = 1: bkzk• (8.34) 
k=-oo 

00 b zk+l 
t/I(z) = b_Ilnz + 1: k ,(8.35) 

k=-oo k + 1 
k",-l 

the constants of integration being zero owing to the first two conditions (8.31). 
It is well known (see, e.g. Knopp [436]) that one may choose a single-valued deter-
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mination of the multiple-valued function In z by introducing a suitable cut in the 
z-plane. For example, by choosing the cut X2 = 0, Xl < 0, we can take 

where 1 

In z = Inlzl + i argz, 

Izi = p = V x~ + x~ , 

{

cotan-l(Xl/X2) 

argz = () = 0 

cotan-1(xl/X2) - n 

for X2 > 0 

for X2 = 0, Xl > 0 

for X2 < O. 

(8.36) 

(8.37) 

According to this definition, the limiting values of arg z on the upper and lower 
faces of the cut are nand -n, respectively. Consequently, by introducing (8.34) 
and (8.35) into (8.30), and the result obtained into the jump condition (8.18), it 
follows that 

(3 - 4v)a_1 + b_1 = - iJlb/n. (8.38) 

Next, by substituting (8.34) into (8.33) and equating coefficients of eiklJ for 
k = 0, ±1, ±2, ... , we obtain for k = 0: 

2a - -b -2 - t(l) o _2'0 - 0, 2a - -b R-2 - t(2) 
" -2 - 0, (8.39) 

since 1m ao = 0 on account of (8.31)3; for k = -1, considering also (8.11)1: 

(8.40) 

for k = 1: 

(8.41) 

for k = ±2, ±3, ... : 

k + -a ,-k(1 + k) -b ,-k-2 - t(l) } ak , 0 -k 0 - -k-2 0 - k' 

a Rk+7i R-k(1 + k) - b R-k-2 = t(2). k -k -k-2 k 

(8.42) 

1 This definition of the logarithm has the advantage of being also valid for real values of 
the argument and of giving arg z = -arg z. In addition, the cut chosen for In z coincides with 
that adopted above to make the displacement single-valued. 
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From (8.38-40) we deduce that 

R2t~2) - r~t~l) 

0 0 = 2(R2 - r~) 

2R2(-(l) _ -(1» 
b - rO tot 0 

_2 - R2 - r~ , 

Next, introducing (8.43)a into (8.4l) yields 

and from (8.42) it results that 

0_1 = b_1 = ipb 
4n(1 - -v) 

(8.43) 

(8.44) 

_ (R2-2k - rX-2k)(Rk+21i2) - r~+21il» - (l + k)(R2 -r~)(R~-kt~~ -r~-kt~l) } 
Ok - (R2k+2 _ r~k+2)(R2 2k _ r~-2k) _ (1 _ k2)(R2 _ r~)2 , 

b = r2k+2{i + (1 + k),.20 - rk+2-t(I) -k-2 0 k 0 -k 0 k' 

(8.45) 

for k = ±2, ±3, ... Equations (8.43-45) determine all coefficients occurring 
in the expansions (8.35) of the complex potentials qJ(z) and I/I(z). Thus, the boundary­
value problem formulated above is completely solved. Indeed, (8.26) and (8.30) 
give now the stress and the displacement components, the latter being determined, 
as was to be expected, to within an infinitesimal rigid displacement. 

It should be noticed that in obtaining the solution for an elastic cylinder of 
infinite length, it was tacitly assumed that the state of plane strain is maintained by 
the surface tractions 

(8.46) 

with Taa given by (8.6), acting on the bases Xa = +00, respectively Xa = -00, of 
the cylinder. In order to use this solution for an elastic cylinder whose length, although 
finite, is large with respect to the radius of its cross section and whose bases are free 
of surface tractions, some correcting terms, arising from the condition that the 
resultant force and couple acting on the bases be zero, must be introduced. This 
procedure will be detailed in the next subsection for the case of a screw dislocation. 
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When both surfaces p = To and p = R are free of traction, i.e. t~l) = t~2) = 0 
for all k, (8.43)3 and (8.44) yield 

iJlb 
a_I = b-l = --'---

4n(1 - v) 

iJlb 
al= ------~-------

2n(1 -- V)(R2 + T~) 
(8.47) 

and all other coefficients ak' bk v3;nish. It results then from (8.35), (8.26), and (8.30). 
by putting Uo = Vo = roo = 0, that 

a Z2 · 
cp(z) = a_llnz + _1_, 

2 
ljJ(z) = b_1 lnz _ b_3 , 

2Z2 

Jl = - v a_lnz -- - a_l - - a1zz- b-l nz + --, 2 U (3 4) ( 1 + alz2 ). - z - - - I - b_3 
2 ~ ~ 

Finally, by taking into account that 

we obtain from the above relations and (8.47) the displacement components 

_ b {ll+ 1 [1 + (3-4v)p2 R2r5] . 211} Ul - - - u - sm u , 
2n 4(1 - v) R2 + T~ p2(R2 + T~) 

. __ b __ {2(1 _ 2v)lnp + 2p2 + 
8n(1 - v) R2 + T5 

(8.48) 

[1 + (3 - 4v) p2 R2r~] 211} 
+ -=--R-2-+---"-r~-'-- - p2(R2 + r5) cos u , 
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and the physical components in cylindrical co-ordinates of the stress tensor 

Tpp= 
pb ( 1 p R2,~ 

_1_) sinO, 
2n(1 - v) p R2 +,~ R2 +,~ pS 

Too = 
pb (-;- 3p R2,~ 

_ 1_) sinO 
2n(I - v) R2 +,~ + R2 + ,~ s ' P (8.49) 

TpIJ = 
pb (1 p R2,~ 1) --+ + - cosO, 

2n(1 - v) p R2 + ,~ R2 +,~ pS 

Tn = v(Tpp + Too), Tpz = Tzp = O. 

It is generally admitted that the linear dimensions of the body containing the 
dislocations are much larger than the range of the elastic field produced by dislo­
catioRs; this assumption comes in our case to letting R -+ 00. Moreover, since the 
boundary conditions on the surface p = '0 of the dislocation core are unknown 
without a simultaneous atomic calculation, the terms of order O(p-S) in the stress 
components and of order O(p-2) in the displacement components, which arise 
from satisfying these boundary conditions, are frequently neglected as P, -+ 00. With 
these approximations, (8.48) and (8.49) yield the simplified relations 

UI = -- u + , b [ll sin 20 ] 
2n 4(1 - v) 

b 
U2 = ---- [2(1 - 2v) lnp + cos 20], 

8n(1 - v) 

1 pb sinO 
Tpp = Too = -- Tu = ---'--- ---

2v 21t(1 - v) p 

pb cos 0 
Tpo = - ---'------, 

21t(1 - v) p 

(8.50) 

(8.51) 

which are used, especially when looking for a rough evaluation of the effects 
produced by the elastic field of an edge dislocation. Equations (8.51) show that 
the stress field has a rather long range, for its components decrease merely as p-l 
as p - 00. This is one of the reasons why the theory of elasticity has been so 
successful in modelling crystal dislocations. 
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Substituting (8.51) into (6.8), we obtain the physical components of the strain 
tensor in cylindrical co-ordinates 

b(l - 2v) sinO 
Epp = E88 = --, 

41t(1 - v) P 

b cosO 
Ep8= ----- - --

41t(1 - v) p 

(8.52) 

Finally, from (8.51), (8.52), and (6.13)10 it follows that the strain energy density 
produced by the edge dislocation is 

(8.53) 

Consequently, the strain energy stored per unit length of the edge dislocation In an 
infinite elastic medium between the surfaces p = r" and p = R is 

W= dz pdp WdO= In--· ~ ~R ~n p.b2 R 

'. 41t(1 - v) ro 
(8.54) 

When the energy per unit dislocation length of the dislocation core, say WO' is also 
taken into account, the total energy per unit length of the edge dislocation is given by 

p.b2 R 
W t = --=----In - + Woo 

41t(1 - v) ro 
(8.55) 

In passing from (8.54) to (8.55) we have neglected the contribution of the tractions 
acting on the surface ~o to the elastic strain energy density W, since it decreases 
at least as p-2 when p -+ 00. 

It is apparent from (8.54) that the strain energy grows to infinity as R -+ 00; 

this shows once again how important is the strain energy to the total free energy of 
the dislocation. Although R takes a finite value for any crystal, the strain energy is 
relatively high. So, for metals, (8.54) yields values of about 5 to 10 eV for the strain 
energy wb per atomic plane crossing an edge dislocation. This result completely 
eliminates the possibility of thermal generation of dislocations; in other words, 
dislocations do not correspond to a state of thermodynamic equilibrium of the 
crystal [50]. 
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8.2. Screw dislocation in an elastic cylinder 

Let us consider now a screw dislocation whose line L is infinite and coincides with 
the axis of an isotropic elastic circular cylinder of radius R (Fig. 8.1). We make use 
of the same notation as for the edge dislocation, but we introduce from the very 
beginning the cylindrical co-ordinates p, 9, z defined by (8.2). Due to the symmetry 
of the problem, the strain and stress components must be independent of z and 9. 
and the displacement vector must be parallel to the dislocation line and independent 
of z, i.e. 

liz = lIz(p, e), lip = 1I8 = o. (8.56) 

On the same symmetry grounds, the tractions exerted by the dislocation core must 
reduce to a radial pressure that is independent of z. For the sake of simplicity we 
shall assume, however, that both cylindrical surfaces p = '0 and p = R are free of 
tractions 1, i.e. 

Tpp = Tp8 = Tp z = 0 for p ='0 and p = R. (8.57) 

I n contradistinction to the case of the edge dislocation, the displacement 
components up and U8 are now continuous across the cut e = n, -R ~ p ~ - '0. 
while Uz has a jump across this cut, given by 

(8.58) 

where b is the magnitude of the true Burgers vector. Clearly, this condition is satis­
fied if we take in (8.56) 

U = z 
be --, 
2n 

eE (-n, n]. (8.59) 

Introducing (8.59) into (1.75) and (1.76), and then the result obtained into 
(6.5), we deduce that the only non-zero components of the displacement gradient 
H, of the infinitesimal strain tensor E, and of the stress tensor Tare 

b 
H z8 = - - -, 

2np 

b 
E8z = Ez8 = - --, 

4np 

J1.b 
T 8z = T%8 = - -- . (8.60) 

2np 

By taking into consideration (1.77), it may be seen that the equilibrium equations 
(7.16) and the boundary conditions (8.57) are identically satisfied. Consequently, 
by virtue of Volterra's uniqueness theorem, we conclude that (8.59) and (8.60) give 
the desired solution of the boundary-value problem. 

By (6.13)1' the strain energy density produced by the screw dislocation is 

1 J1.b2 
W = 2' (E~z T8z + E%8 T z8) = (8.61) 

8n2p2 

1 The solution corresponding to a non-zero pressure acting from the dislocation core will 
be derived in Sect. 14.3 by superposing effects. 
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By substituting (8.61) into (8.54)1' we find that the strain energy stored per unit 
length of the screw dislocation in the elastic cylinder of radii ro and R is 

pb2 R 
w = ---In--, 

4n ro 
(8.62) 

while the total energy per unit length of the screw dislocation is w, = w + wO' where 
Wo denotes as above the contribution of the dislocation core. As 0 < v < 0.5, it 
is easily seen, by comparing (8.62) to (8.54)2' that the strain energy of a screw dis­
location is smaller than that of an edge dislocation. 

When the screw dislocation lies along the axis of an elastic cylinder of finite 
length I, the above solution should be corrected in order to assure that the bases 
of the cylinder are free of tractions. However, we shall content ourselves to require 
the vanishing of the resultant force and couple of the surface forces acting on the 
ends of the cylinder. According to Saint-Venant's principle 1, the solution obtained 
in this way will be correct at distances larger than about 2R from each basis, which 
is quite satisfactory when 1 ~ R. 

It is easily verified that the tractions corresponding to the shear stress (8.60)3 
on the bases of the cylinder, namely 

pb 
t = =F-- eo for 

2np 

I z=±-, 
2 

P E [ro' R], 

have a vanishing resultant force on each basis, but produce the torque 

~2:r ~R M z = dO to p2 dp = -
o '0 

pb(R2 - r~) 

2 
(8.63) 

on the upper basis, and -Mz on the lower basis of the cylinder. As long as the 
shear stresses acting on the ends of the dislocation core are not known, we can 
extend the distribution of shear stresses (8.60)3 up to the dislocation line, which 
comes to take ro = 0 in (8.63). Consequently, we shall superimpose on the elastic 
state (8.59), (8.60) obtained for the infinite cylinder the elastic state produced by the 
torques ±pb R2j2 acting on the bases z = ±lj2 of a cylinder of finite length I, 
namely 2 

bpz 
uo=--, 

nR2 
(8.64) 

1 Saint-Venant's principle asserts that a system of loads acting on the plane ends of a 
cylindrical body and having zero resultant force and couple at each end produces a stress field 
that is negligibly small away from the ends. For an analytic substantiation of this principle, 
see Toupin [356] or Gurtin [150], Sects. 54-56a. 

2 This elementary solution may be found in any standard book on linear elasticity (see, 
e.g. Timoshenko and Goodier [353], or Solomon [314], p. 239). 
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By superposing the elastic states (8.59), (8.60), and (8.64), we find that 

bpz - -, 
nR2 

bf) 
U = - - -, 

% 2n 

(8.65) 

Eo% = _ _ b_ (1 __ 2p2 ), 
4np R2 

T(lz = - ~ (1 _ 2p2 ). 
2np R2 

It is interesting to note that the correction (8.64) leads to a twist per unit length 
equal to b/nR2. This is the so-called Eshelby twist, which has been observed in thin, 
long whiskers containing a single screw dislocation (Hirth and Lothe [162], p. 61). 

Finally, we notice that the elastic states corresponding to edge and screw 
dislocations in an infinite isotropic elastic medium are "uncoupled", in the sense 
that the components of the fields u, E, and T which are non-zero for an edge dislo­
cation vanish for the screw dislocation and conversely. This remark allows to derive 
at once the elastic state produced by a mixed dislocation whose Burgers vector makes 
an angle /3 with the positive direction of the dislocation line, by simply replacing 
b with b sin /3 in the elastic state produced by an edge dislocation, with b cos fJ 
in that produced by a screw dislocation, and summing up the results thus obtained. 
In particular, we deduce from (8.54) and (8.62) that the strain energy stored per unit 
length of a mixed dislocation between the cylindrical surfaces p = r 0 and p = R 
in an infinite isotropic elastic medium is 

w = - - cos2/3 + ---- In-- · J1b2 ( sin2/3) R 
4n 1 - v ro 

(8.66) 

8.3. Influence of the boundaries on the 
isotropic elastic field of straight dislocations 

We have considered so far only dislocations lying in the axis of a circular elastic 
cylinder. Edge and screw dislocations whose lines are parallel to but do not coincide 
with the axis of an elastic cylinder have been studied by Dietze [88], who determined 
also the elastic field of straight dislocations parallel to the boundary of an elastic 
hali-space or to the faces of an infinite elastic plate (cf. Seeger [286], Sect. 66). 

A problem frequently encountered in various applications is the determination 
of the elastic state produced by a dislocation near a free boundary, a grain boundary. 
or a bimetallic interface. In order to fulfil the boundary conditions on such surfaces 
one has to supplement the solution corresponding to the infinite elastic medium 
by additional terms whose weight increases with decreasing the distance separating 
the dislocation from the boundary. The derivative of the dislocation strain energy 
with respect to the distance between the dislocation and the boundary, taken with 
opposite sign, is by definition the (attractive or repulsive) force exerted by the boun­
dary on the dislocation. 
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Head [154, 156} has shown that an edge dislocation situated near the interface 
between two semi-infinite media with different elastic properties will be attracted by 
the interface when it lies within the more rigid half-space. 

Special attention has been also given to the interaction between the surface 
coating of an elastic half-space and an edge (Conners [80), Weeks, Dundurs, and 
Stippes [375}) or screw dislocation (Head [ISS], Chou [71]), as well as to the inte­
raction between a straight dislocation and a partially bonded bimetallic interface 
(Tamate [328], Tamate and Kurihara [329]). The elastic field of an edge dislocation 
situated near or inside a circular inclusion has been obtained by Dundurs and Mura 
[98] and, respectively, by Dundurs and Sendecky [99]; Dundurs [412} has given a 
general review of this and related work, while List [446} succeeded to give a unified 
treatment of these problems by making use of complex-variable techniques. 

Finally, the stress field of an edge dislocation near an elliptical hole in an iso­
tropic medium has been investigated by Vitek [482], who has considered also the 
important limiting case when one axis of the ellipse is reduced to zero, leaving a 
dislocation in the neighbourhood of a crack [483]. This last problem has been also 
treated for a straight dislocation of mixed type by Hirth and Wagoner [428] and 
by Rice and Thompson [464). 

For a comprehensive and critical review of the solutions to boundary problems 
associated with the elastic field of dislocations, we refer to a recent article by Eshelby 
[416}. 

9. Dislocation loops in isotropic media 

9.1. Displacements and stresses produced by dislocation loops 
in an infinite isotropic elastic medium 

As shown in Sect. 7.3, a dislocation loop of line L and true Burgers vector b can be 
simulated in a linear elastic body by a Volterra dislocation in the following way. 
First eliminate the dislocation core by surrounding the dislocation line with a toroidal 
hole of boundary :Eo, and cut the body along a smooth and two-sided surface S 
bounded by L. Arbitrarily choose a positive sense on L and denote by n the unit 
normal to S that is right-handed with respect to this positive sense (Fig. 9.1). Translate 
the positive face S+ of the cut (into which points n) by a vector b relatively to the 
negative face S- . Finally, add or remove material, if necessary, and re-establish 
the continuity of the body by joining the faces of the cut. Denoting by u+(x), and 
respectively u-(x), the limiting values of the displacement vector field on S+ and 
S-, we have 

(9.1) 

Let us first suppose that the elastic continuum is infinite and let G be Green's 
tensor function of the elastic medium (cf. Sect. 6.5). Denote by u(x) the displacement 
field and by T(x) the stress field produced by the dislocation. By making use of the 
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reciprocal theorem (6.70) for the singular elastic state produced by the unit force 
ep acting at x and the elastic state generated by the dislocation, we obtain 

[ _ (Tn).u{P) ds - ( (Tn).u(P) ds = ( _ (T{p)n).u- ds-
~s )s+ )s 

In deriving this relation we have neglected the tractions acting on I:o from the dis­
location core and we have also taken into account that the outward unit normal to 
the boundary of the elastic medium is -n on S+ and n on S-. Since u(p) is conti­
nuous across S, the left-hand side of the last relation vanishes and we find, by virtue 
of (9.1), 

Up (x) = ( b· [T{p)(x' - x) n(x')] ds'. 
)5+ 

Finally, by putting nix') ds = dsj and taking into consideration that 

we may rewrite (9.2) as 

(9.2) 

(9.3) 

The formula (9.3) has been obtained by Volterra [373] in the isotropic case and by 
Burgers [54] in the anisotropic case. 

When the elastic medium occupies a finite region "f" and we are interested 
to determine the elastic state produced by a dislocation, we must add to the displa­
cement field (9.3) a regular elastic displacement field corresponding to the tractions 

A 

- Tn applied on--.!.he boundary of the body. In case Green's tensor function G(x; X') 

for the region "f" is known, the normalized displacement field produced by the 
dislocation may be directly derived, according to Sect. 6.5, by the formula 

(9.4) 

Resuming now the case of the infinite medium, we notice that, if we choose 
A 

another surface S passing through L (Fig. 9.1) and repeat the operations already 
used for generating the dislocation loop, then, denoting the corresponding elastic 
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displacement components by u p(x) and making use of (1.53), it results from (9.3) 
that 

Fig. ~.1. Two different cuts, S 
and S, used to generate the same 

dislocation loop L. 

where V is the region between Sand S. Hence, by (6.34), 

" {-b u(x) - u(x) = 0 
if . XE V 

if x¢ V. 
(9.5) 

This result may be easily understood on taking into account that the jump condition 
(9.1) is satisfied on both Sand S. Moreover, as noted by Leibfried [213], the displace­
ment fields u(x) and u(x) differ by a rigid translation that vanishes outside V. 
Consequently, the strains and stresses corresponding to these fields and extended 

" by continuity to Sand S coincide in the whole space. 
From the reasoning above it follows that the strains and stresses produced 

by a dislocation are independent of the choice of the cut, being fully determined 
by the line L and the Burgers vector b. We shall give this statement a more mathe­
matical form by expressing the dislocation strains and stresses as line integrals taken 
along L. To this end, we first derive the gradient of the displacement field (9.3), 
which has the components 

9-120 

Hplx) = - ( bicijUGkp,lr (x - x') cis;. 
)s+ 

(9.6) 
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In order to transform the surface integral in the right-hand side of (9.6) into a line 
integral, we note that, in view of (6.39), we may write 

for any x ¢ S. On the other hand, by applying Stokes' formula to the Cartesian 
components of an arbitrary vector or tensor field A(x), we obtain 

~ E A ds = -f A dx nql •••• q I ••• n' 
s+ L 

(9.8) 

where the integration sense on L is chosen clockwise when looking down along D. 

MUltiplying both sides of this equation by Enrj, summing with respect to n, and 
considering (1.1 1), it follows that 

( (A .... r dsj - A .... j dsr) = 1 Enjr A ... dxn• 
)s+ jL 

(9.9) 

Next, by making use of this integral identity, and taking into account that G .r(x - x') = 
= -G,r'(x-x'), we infer from (9.7) that 

(9.10) 

This formula has been derived for the general anisotropic case by Mura [253] in 1963. 
Finally, remembering that the infinitesimal strain tensor E is the symmetric 

part of the displacement gradient H, we deduce from (9.10) and (7.17) the stresses 
produced by the dislocation loop: 

(9.11) 

The remaining part of this subsection will be devoted to the isotropic case. 

9.2. Burgers' formula 

For isotropic media we see from (6.58) that 

Gkp(X - x') = 1 [2 (I - v) ~kP R.mm - R.kpJ, 
167r:J.l (1 - v) 

(9.12) 
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where R = IIx - x' II. Next, by (5.26) and (6.9), we obtain after some calculation 

(9.13) 

Substituting this result into (9.3) and rearranging terms yields 

- 1 (bi R,pmm dsj - bi R,pmj ds~). 
8n(l - v) )s+ 

(9.14) 

Next, by transforming the last two integrals in the right-hand side with the aid of 
(9.9), we find that 

up(x) = - _1_ ( bp R,mmj dsj __ 1_ i E ijp bjR,mm dx~ -
8n )s+ 8n j L 

----iLE;mj bj R,mp dx~. 
8n(1 - v) j 

Finally, by taking into account that 

X· 
R· = - ', 2 

R =-, ,mm R " R 

~ R d ' 2 ~ Xi dsj 2'" ,mmi sJ = - --- = - ~~, 
s+ s+ R3 

(9.15) 

(9.16) 

where Xi = Xi - x;, and a denotes the solid angle under which S+ is seen from 
the point with position vector x, we deduce from the last relation that 
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This formula, which may be rewritten in direct notation as 

u(x) = bQ_ + -1-f bx dx' + 1 grad (fL (b X !).dX' ), (9.18) 
41t 41t L R 81t(1 - v) 

has been obtained by Burgers [54] in 1939. 
Since the magnitude of the solid angle under which is seen the surface S+ 

depends only on the boundary L of the surface, it results from (9.18) that the dis­
placement field u(x) is completely determined by the dislocation line L and the Bur­
gers vector b. Moreover, since the integrals in (9.18) are single-valued functions of x, 
and the solid angle varies by -41t when the point x encircles the dislocation line 
in the positive sense of C (Fig. 9.1), it follows that the displacement field (9.18) 
satisfies indeed the required jump condition (9.1). 

9.3. The formula of Peach and Koehler 

To obtain the displacement gradient and the stresses produced by a dislocation 
loop in an isotropic medium, we first replace (9.13) into (9.10) and obtain after 
rearranging terms 

Hp,(x) = :1t fL E njr [(b p R.j - bjR,p),mm + bi~jp R,mmi + 

On the other hand, by virtue of (l.ll), we have 

and an analogous calculation gives 
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By taking into account these transformations, the expression of the displacement 
gradient becomes 

Hp.(x) = 8~ fL bs[(ErstOnp - Enst opr + EnprOst) R,mmt + 

(9.19) 

Substituting now (9.19) into (7.15), we obtain the components of the infinitesimal 
strain tensor 

Epr(x) = 81rr fL bs [(+ErstOnp + ~ Eps,Onr - EnsrOpr) R,mmt + 

+ 1 Enst R,tPr ]dX;, 
1-v 

where from, by contraction, we derive the dilatation 

Finally, by introducing the last two relations into (6.5) and considering (6.9), 
we find the stresses generated by the dislocation loop 

+ 1 ~ V Ens, (R"pr - 0pr R,mm,) dX~] • (9.20) 

Formula (9.20) has been derived by Peach and Koehler [265] in 1950, by 
differentiating Burgers' formula (see also de Wit [385]), in a somewhat more explicit 
form than that given above and which could be found by substituting (9.15) into 
(9.20). 

9.4. Planar dislocatioD loops 

Most of the results available in the literature on curved dislocations concern planar 
dislocation loops. If D denotes the unit normal to the loop plane, then the dislocation 
loop is said to be a glide loop or a prismatic loop, according as the Burgers vector 
b is parallel or perpendicular to n. Irregular-shaped glide loops are frequently 
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generated during plastic deformation, by gradual expansion of small loops origi­
nated, e.g. by a Frank-Read mechanism. Loops of prismatic type may be formed 
by precipitation of vacancies or interstitial atoms which arise as a result of quenching 
or irradiation. 

The elastic field of a circular glide dislocation loop has been calculated by 
Keller and quoted by Kroner [190], and that of a circular prismatic loop has been 
deduced by Kroupa [200]. Their results have been re-analyzed by Marcinkowski 
and Sree Harsha [232], who corrected some errors in [190] and undertook a detailed 
numerical analysis of the variation of the stress field around a circular dislocation 
glide loop. The stress field of a planar elliptical dislocation loop of arbitrary Burgers 
vector has been recently determined by Mastrojannis, Mura, and Keer [451], who 
published the explicit expressions of the in-plane values of the dislocation 
stress field. 

A very efficient method for determining the elastic field of planar dislocation 
loops is to first calculate the solution corresponding to an infinitesimal rectangular 
dislocation loop and then to integrate the result obtained over the surface bounded 
by the loop. This method has been largely used by Kroupa [200-202] (see also 
Hirth and Lothe [162], p. 128). The elastic field of an infinitesimal dislocation loop 
is also of intrinsic interest, for it provides a good approximation to the long-range 
elastic field of a finite dislocation loop of arbitrary shape at sufficiently large distances 
from the loop. 

There exists an extensive literature concerning the dislocation loops lying 
in an isotropic elastic half-space. Thus, Steketee [318] has expressed in an integral 
form the displacements produced by a dislocation loop in an isotropic elastic half­
space, and Basteckit [21] has determined the stresses generated by a circular dislo­
cation prismatic loop lying in a plane parallel to the boundary of the half-space. 
The case of an infinitesimal dislocation loop of arbitrary orientation in an elastic 
half-space has been independently treated by Tikhonov [352] and by Bacon and 
Groves [12]. Their results have been extended by Vagera [363] to dislocation loops 
situated near the boundary between two different elastic half-spaces, a configura­
tion used, e.g. for modelling the interaction between a dislocation and a grain 
boundary. 

10. Straight dislocations in anisotropic media 

As already mentioned, even in polycrystalline materials, the elastic field of dislo­
cations plays a significant role mostly within the grains, which are single crystals 
and frequently highly anisotropic. This explains the continuously increased interest 
in anisotropic elastic solutions to dislocation problems, which has led in the last 
ten years to substantial analytic and numerical results. It should be noted that aniso­
tropic elasticity does not provide only quantitative corrections to the isotropic 
solutions, but may also change qualitatively the predictions based on isotropic 
theory. 

Two-dimensional solutions concerning infinite straight dislocations in aniso­
tropic media have been obtained as early as 1953 by Eshelby, Read, and Shockley 
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[109J, and by Seeger and SchOck (285J, their ideas being subsequently developed by 
Stroh [323J. It is striking that all these researches completely ignored the essential 
developments of the theory of anisotropic elasticity brought about by Lekhnitsky 
[210, 211] and later by Green [144, 145J; the ways opened by the results of the last 
authors for the elastic simulation of crystal defects are still insufficiently exploited. 

10.1. Generalized plane strain 
of an anisotropic elastic body 

Consider an anisotropic elastic body f1I referred [to a rectanguiar Cartesian 
system of co-ordinates Xk and assume that the displacement vector does not depend 
on one of the co-ordinates, say Xa. Thus 

(10.1) 

The elastic state corresponding to this displacement field is called after Lekhnitski 
[210J a state of generalized plane strain 1. 

Assuming that f1I is free of body forces and taking into account that (10.1) 
implies the stress components being also independent of Xa, we infer that the equi­
librium equations (7.16) take the reduced form 

Tkl •1 + Tk2•2 = 0, k = 1,2,3. (10.2) 

Substituting (10.1) into (7.15)2 and using the notation (4.59)a, it follows that 

E1 = U1.l> E2 = U2.2, Ea = 0, E4 = Ua•2'} 

E5 = Ua.l> E6 = U1.2 + U2.1· 

Next, putting Ea = 0 in the third equation (4.63)2' we have 

Ta = - ~ (S3M/Saa) TM 
M*3 

and, introducing this result into the other five equations (4.63)2' we find that 

where 

(10.3) 

(10.4) 

(10.5) 

Inspection of (4.63), (10.5), and (10.6) reveals that SK3 = S3M = 0 and that the 
5 x 5 matrix SKM' K, M = 1,2,4,5,6 is reciprocal to the matrix obtained by omitting 
the third row and the third column of the matrix CKM' 

1 Throughout this section small Latin and Greek indices range over the values 1, 2, 3, and 
capital Latin indices over the values 1,2, ... ,6. The summation convention over a twice repeated 
smallorcapital Latin index will be always implied, whereas eventual summation over Greek indices 
will be explicitly indicated. 
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As shown by Lekhnitsky [210}, any solution of equations (10.2-4) can be 
represented in terms of three complex potentials as l 

3 

UI = 2 Re ~ AII1.!«(zl1.) - £oX X2 + U~, 
11.=1 

3 

U2 = 2 Re ~ A211.!I1.(zl1.) + £OXXI + ug, 
«=1 

3 

Us = 2 Re ~ As« fizl1.) + ug, 
«=1 

3 3 

Tn = - 2Re ~ PI1.LkI1.!:(ZI1.), Tk2 = 2Re ~ Lkl1. r:(zl1.), k = 1,2,3, 
,,=1 ,,=1 

(10.6) 

(10.7) 

where u~, u~, ug, and £03 are arbitrary real constants, and !..{ZI1.) denotes, for each 
ex = 1, 2, 3, an analytic function of the complex variable 

ZI1. = Xl + p"X2, Impl1. > O. 

The quantities Ak«, Lk«' and P« depend only on the elastic constants and on the 
orientation of the Xk-axes. They may be calculated by using the following steps: 

(i) Find the reduced elastic compliances SKM' by using (10.5), where SKM 

are the elastic compliances with respect to the Xk-axes. 
(ii) Determine the polynomials 

lz{p) = SSSp2 - 2S4S p + S44' } 

IIp) = SlSP3 - (S14 + S56)p2 + (S25 + S46)P - S24, 

lip) = Sup4 - 2S16P3 + (2S12 + S66)p2 - S26P + S22' 

(iii) Solve the sextic equation 

l(p) = 12(P) l,(p) - 1~(P) = 0, 

and label the roots with positive imaginary parts, PI> P2, Pa, such that 2 

MPI) ::j:. 0, 12(P2)::j:. 0, 1,(Pa)::j:. O. 

(10.8) 

(10.9) 

(10.10) 

1 For a detailed discussion of the completeness of this representation and of its connection 
with previous work on dislocation theory see Teodosiu and Nicolae [339]. More general results 
concerning the completeness of the solutions of systems of differential equations have been given 
by Lopatinsky [218]. 

2 As shown by Lekhnitsky [210], if the strain energy function is positive definite, equation 
(10.9) admits three pairs of complex conjugate roots. We assume throughout that the roots with 
positive imaginary parts, Plo P2, Pa, are simple. Multiple roots seem to have little physical sig­
nificance, except the isotropic case (PI = P2 = Pa = i), which is best treated separately. Moreover, 
it can be proved (Teodosiu and Nicolae [339]) that conditions (10.10) can always be fulfilled when 
Plo Pz, and Pa are simple. 
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where 

(iv) Form the matrix 

[Lb] = I [

-P
l

l -P2 

-AI -A2 

A2 = _ 1a(P2) , 
12(P2) 

(v) Calculate the coefficients Aka< by the formulae 

Alae = SuP; - S16Pa. + S12 + Aa.(SISPa. - S14), I 
A2a. : {SI2P: - S26Pa. + S22 + AiS2SPa. - S24)}/Pa., 

A3a. - {SuP .. - S46Pa. + S24 + AiS4SPa. - S44)}/Pa. 

for oc = 1,2 and 

A13 = A3(SUP~ - S16P3 + S12) + S1SP3 - S14, I 
A23 = {A3(SI2P~ - S26P3 + S22) + S2SP3 - S24} /P3' 

A33 = {Aa(SI4P~ - S46P3 + S24) + S4SP3 - S44}/P3' 
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(10.11) 

(10.12) 

(10.13) 

(10.14) 

As shown by Stroh [323], the coefficients Aka. and Lka. satisfy the orthogonality 
conditions 1 

Aka.LkP + AkPLka< = 0 

Aka.LkP + AkpLka. = 0 

for any Ct, p = 1,2,3, Ct oF P,} 
for any Ct, p = 1,2,3. 

(10.15) 

Equations (10.6) and (10.7), with Lka. given by (10.11) and Ab given by (10.13) 
and (10.14), express Lekhnitsky's representation of the generalized plane strain in 
terms of the complex potentialsjiza), oc = 1,2,3. Unlike the representation obtained 
by Eshelby, Read, and Shockley [109], this representation does not depend on the 
solution of algebraic systems and, in this respect, is as explicit as that given by Willis 
[383] (see Sect. 11.2). Moreover, it has the advantage over Willis' representation of 
not making use of Green's functions for infinite media, being thus applicable for 
solving boundary-value problems for finite anisotropic bodies as well. Finally, in 
comparison with Str oh's solutions, Lekhnitsky's representation has the advantage 
of being valid for the genera I anisotropic case. 

1 An elegant proof of these relations, based on Betti's reciprocal theorem, has been given 
by Malen and Lothe [225]. 
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Finally, we notice that the equilibrium equations (10.2) of the generalized 
plane strain are identically satisfied [I09J if we set 

Tkl = -tPk,2' Tk2 = tPk,!> k = 1,2,3, (10.16) 

where tPI> tP2, tPa are stress functions of class C2. The functions tPi and tP2 may be 
expressed in terms of Airy's stress function F as 

(10.17) 

and must satisfy the consistency condition tP1,2 + tP2,I = o. 
It may be shown [323, 339J that the stress functions can be represented in terms 

of the complex potentials fr.(ZI%) in the form 

3 

tPk = 2 Re ~ Lka[l%(zl%)' k = 1,2,3. (10.1S) 
a=1 

Clearly, by introducing (10.1S) into (10.16), we recover the expression (10.7) of the 
stress components. Equations (10.6) and (lO.IS) give an equivalent complete repre­
sentation of the generalized plane strain. 

10.2. Straight dislocation in an infinite anisotropic elastic medium 

There exists an extensive literature concerning the anisotropic elastic field of straight 
dislocations for various crystals and dislocation orientations. For a detailed dis­
cussion of the cases when the elastic solution, including the roots of equation (10.4), 
may be analytically obtained, we refer to the articles of Eshelby, Read, and Shockley 
[109], Seeger and Schock [2S5], Head [I5S], Duncan and Kuhlmann-Wilsdorf [97], 
Chou and Michell [74], as well as to the books by Hirth and Lothe [162], Sect. 13, 
and Steeds [317], Sect. 3. 

In what follows, we shall expound the solution obtained by Teodosiu, Nicolae, 
and Paven [342] for an arbitrarily oriented straight dislocation lying in an infinite 
anisotropic medium, under consideration of the core boundary conditions. Since 
this solution makes use of Lekhnitsky's representation, no restrictions have to be 
imposed either on the anisotropy of the material, or on the dislocation character. 
Moreover, the solution is found when either tractions or displacements are prescribed 
on the core boundary. At the end of subsection 10.4 we shall give the numerical 
values of the parameters Aktl , Lk!%'pa. entering Lekhnitsky's representation, for some 
typical crystals belonging to cubic and hexagonal systems, and for almost all dislo­
cation orientations that are energetically possible in these crystals. 

Consider a straight dislocation lying in an infinite anisotropic elastic medium, 
and take the positive direction of the dislocation line as xa-axis of a rectangular 
Cartesian system of co-ordinates. We apply the linear theory of elasticity outside 
a circular cylindrical surface of radius '0 and axis X3' say I o' considered as boundary 
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of the dislocation core. Let us denote by ro the intersection line of 1:0 with the 
xlx2-plane, and by A the region outside ro within this plane (Fig. 10.1). 

The elastic medium outside 1:0 is obviously sUbjected to a state of generalized 
plane strain. Consequently, as shown in the previous subsection, the displacement 
and stress components may be represented by (10.6) and (10.7), respectively, in 

Fig. 10.1. Cut along the half-plane 
X2=0, Xl';; -ro, used to define a single­
valued displacement field around a straight 
dislocation lying along the xa-axis in an 

infinite elastic medium. 

terms of three complex potentials liz,,), t:I. = 1, 2, 3, which are analytic functions of 
their arguments. As already mentioned, the parameters Ab , Lb , and p" occurring 
in this representation depend only on the elastic constants and on the orientation 
of the xcaxes. 

In the case of a single dislocation the displacement vector can be considered 
as a single-valued function with a prescribed jump on an arbitrary cut connecting 
ro with infinity, or as a continuous but multiple-valued function in A, with a pre­
scribed cyclic constant around the dislocation line. In the following we adopt the 
first approach; more precisely, we assume that the displacement vector is single­
valued and of class C3 in the region obtained from A by removing its points belong­
ing to the negative xcaxis (Fig. 10.1), and that it is discontinuous across the cut 
X2 = 0, Xl ~ - r 0' its jump across the cut being given by 

(10.19) 

where b is the true Burgers vector of the dislocation. 
We shall consider two types of boundary-value problems 1. In the first case, 

we assume that the tractions acting on 1:0 from the dislocation core are prescribed 
and that they can be approximated by some smooth functions, say t:«(}), where 
() E ( -n, n] is the polar angle in the xlx2-plane, measured clockwise when looking 

I The physical significance of these boundary-value problems becomes clear when using 
semidiscrete methods to study the dislocation core (see Sect. 16). If the displacements of the atoms 
inside 2'0 are known from an atomistic calculation, then the corresponding "strains", "stresses", 
and "tractions" may be calculated by using an interpolation technique and the stress-strain rela­
tions of linear elasticity. Alternatively, if we use the non-linear theory of elasticity outside 2'0, and 
find the solution by solving a series of linear problems, then the displacements at 2'0 or the trac­
tions acting on 2'0 are known at each step from the previous step of approximation. 
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down the xa-axis. The stress tensor must then satisfy the boundary conditions 

(10.20) 

where n is the inward unit normal to roo Moreover, since the dislocation core is in 
equilibrium and is free of body forces, the resultant force of the tractions acting on 
1:0 must vanish, i.e. 

k = 1,2,3. (10.21) 

We also require, on physical grounds, that the stress and the elastic rotations 
vanish at infinity. By (7.17), (2.36), and (2.37), this implies that 

where p = V xi + x~. 

lim uk,m = 0, 
p .... O 

k, m = 1,2,3, (10.22) 

From Bezier's uniqueness theorem given in Sect. 6.2, it follows that the boun­
dary conditions (10.20) and (10.22), together with the jump condition (10.19). 
uniquely determine the elastic solution to within an infinitesimal rigid translation 1. 

Let us transform now the boundary conditions by using the complex repre­
sentation of the solution given at the beginning of this section. From Fig. 10.1 it is 
apparent that on ro 

Xl = ro cos (), X2 = ro sin(), 

1 dX2 
III = - cos() = - - - - , 

ro d() 

Z~ = ro(cos() + P~ sin (), I 
. 1 dXI 

172 = - sm () = ---- . 
ro d() 

On the other hand, since Za. = Xl + Pa.X2, it follows that 

--!- fa.(za.) = pa.f~(za.), 
uX2 

and hence, by (10.7) and (10.23), we deduce that 

(10.23) 

1 In fact, Bezier's theorem concerns the case when bk = 0 in (10.19), but its extension to 
the case bk oF 0 under the conditions of regularity imposed on the solution is straightforward. 
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Consequently, the boundary conditions (10.20) become 

Considering (10.7), we see that conditions (10.22) may be fulfilled by setting 
<.0& = 0 and requiring that 

lim If:(z,,)1 = 0, a. = 1,2,3. (10.25) 
p-+co 

Moreover, (10.7) assume in this case the simplified form 

3 

Uk = 2 Re ~ Abfiz,,) + uZ, k = 1,2,3. (10.26) 
a=! 

Denote by A" and J" the regions corresponding to A and J = A U ro' res­
pectively, in the z,,-plane by the transformation z" = Xl + P"X2' for each a. = 1,2,3. 
The traction boundary-value problem can now be formulated in the following form: 
Find three functions fI(ZI), f2(Z2), f3(Z3) that are analytic in AI' A2, A3, and continuous 
in J I , J 2, J 3 , respectively, and that satisfy the boundary conditions (10.21), (10.24), 
(10.25), and the jump conditions (10.1'9). 

Alternatively, when the displacements, rather than the tractions are prescribed 
on ro, and when they can be approximated by some smooth functions, say ut(£}), 
the boundary conditions (10.20) have to be replaced by 

Uk = ut(£}) on ro, k = 1,2,3. ( 10.27) 

Accordingly, when using the complex representation (10.26) of the displacement 
field, this displacement boundary-value problem can be formulated as follows: Find 
three functions h(ZI), f2(z2), f3(z3) that are analytic in AI' A2, A3, and continuous in 
.11> J 2, J 3, respectively, and that satisfy the boundary conditions (10.21), (10.25), 
(10.27), and the jump conditions (10.19). 

The main difficulty raised by the solving of the boundary-value problems for­
mulated above is that the images of ro in the z,,-planes are no longer circles. To 
avoid this complication, we introduce after Lekhnitsky [211] new complex variables 
{,,' a. = 1,2,3, defined by 

z = (l - 1'P' ) ~ + (1 + ip) r~ . 
" " 2 " 2'" 

(10.28) 

Remembering that Imp" > 0, a. = 1,2,3, it may be shown that the singula­
rities of the transformation (10.28), i.e. the points where z~(',,) vanishes, lie inside 
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the circle ro and that the reciprocal transformation is 

c'" = z", . [1 + VI _ rW;- p;) ], 
1 - lP", z" 

(10.29) 

where the determination with positive real part of the square root in the right-hand 
side should be chosen. The transformations (10.28) and (10.29) establish, for each 
(X = 1, 2, 3, a one-to-one correspondence between the points situated on or outside 
the circle ro and their images in the C",-plane. A direct calculation shows that 

IC",I - 00 as p - 00 (10.30) 

and that 

(10.31) 

with OE (-n, n], which also implies that the circle ro is invariant to the transfor­
mation (10.28). 

Let us put now 

(10.32) 

By virtue of (10.30) and (10.31), the traction boundary-value problem becomes: 
Find three functions cp",(C..), (X = 1,2,3, that are analytic in the regions I C",I > ro 
and continuous for IC ",I ;;;. ro, (X = 1,2,3, respectively, and that satisfy the boundary 
conditions 

2 3 d ( '8) *) -Re tLkOl-cp",rOe' =t,,(O, 
ro .. =1 dO 

k = 1,2; 3, (10.33) 

lim Icp~('",)1 = 0, (X = 1,2,3, 
1''''1 .... 00 

(10.34) 

the condition (10.21), as well as the jump condition (10.19). Indeed, (10.34) follows 
from (10.30) and (10.25), by taking into account that 

and hence Icp~(C",)1 - 0 as p - 00 and If~(z",)1 - O. For further use, we note that, 
by (10.29), the last relation can be rewritten as 

J.'() '(C) C", 1 
"z'" = CP .. '" -;:- VI - r~(1 + p;)jz; 

(10.35) 

where C" should be considered as a function of z'" on the right-hand side. 
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Since q>~(',,) is analytic and single-valued for '("I > '0' it can be developed in 
a Laurent series in this region. Moreover, in view of (10.34), this series may contain 
only negative powers of (". Hence 

oc = 1,2,3, (10.36) 

where D" and b"m are arbitrary complex constants. Integrating term by term this 
series and neglecting additive constants, which can be included in u2, we obtain 

(10.37) 

where 

a = - b",m+l 1 2 3 I 2 "m , OC = , ,; m = , , . .. 
m 

It can be shown that, by cutting the xlx2-plane along the ray X2=0,XI ~ -'0' both 
logarithmic terms in (10.37) become single-valued functions and may be calculated 
by using the same formulae (8.36), (8.37) as for In z. Indeed, on the cut 1m Z" = 0, 
Re z" ~ 0, which is used to define a single-valued branch ofln z,,' we have, by (10.23)3' 
sin () = 0, cos () ~ 0, and hence this cut coincides with the negative xl-axis, like in 
the case ofIn z. Moreover, it can be shown by a direct calculation that the expression 
inside the braces in (10.37) assumes the value i() on roo In particular, it results that 

. D,,(} 00 • 
£fI (, e'lI) - - - + ~ a ,-m e-,mll 
,/,,, 0 - 2 LJ "m 0 • 

n m=l 
(10.38) 

It is worth noting that writing simply In(',,/'o) instead of the expression within the 
braces in (10.37), would have required the introduction of several cuts in the X 1X2-

plane, corresponding to the cuts 1m (" = 0, Re C" ~ ° used for calculating In ,,,, 
as well as of different additive constants in (10.37), in order to assure the continuity 
of uixl> X2) across these cuts 1. 

Consider now the boundary conditions (10.33) and assume that the functions 
tt«(}), k=l, 2, 3, defined in the interval (-n, n] and periodically continued on the 
whole real axis, can be developed in Fourier series. Then, taking also into account 
(10.21), we can write 

00 

tt«(}) = 2 Re t hm elm", k = 1, 2,3, (10.39) 
m=l 

1 See, e.g. Granzer [142], where such a procedure has been used in a similar case. 



144 II. Linear elastic field of single dislocations 

where 

k = 1, 2, 3; m = 1, 2, ... (10.40) 

Substituting (10.38) and (10.39) into (10.33), we obtain 

k = 1,2,3. 

Equating now coefficients of like powers of ei8 yields 

3 

2 Re t LkaDa = 0, k = 1,2,3, (10.41) 
ct=1 

_ i L-1.r m+l 
aam - - Ilk J km r 0 , ex = 1, 2, 3; m = 1,2, . .. , (10.42) 

m 

where [L;i/] denotes the reciprocal matrix 1 of [Lka]. 

Finally, as 

3 

Uk = 2 Re t Akrl.({Ja(CrI.) + uZ, (10.43) 
11=1 

the jump conditions (10.19) give, considering (10.38), 

3 

2 Re t Akrl.Da = - bk, k = 1,2,3. (10.44) 
1%=1 

As shown by Stroh [324], the three complex constants Da can be determined 
by solving the system of six real linear algebraic equations (10.41) and (10.44), with 
the aid of the orthogonality relations (10.15). Indeed, mUltiplying (10.41) by AkP' 
(10.44) by LkP' summing up for k = 1,2,3, and adding the two relations obtained, 
it results, in view of (10.15), that 2 

ex = 1,2,3. (10.45) 

1 As shown by Stroh [323], if the roots PI' P2' P3 are simple, the matrices Lkrl. and Ah are 
non-singular. 

S We recall that summation is to be performed in (10.45) only over repeated Latin indices. 
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By (10.42) and (10.45), the expressions (10.37) of the complex potentials epiCIl) 

are fully determined. They can be written in a still more explicit form by considering 
(10.40) and calculating the matrix [L;,n Namely, it results from (10.11) that 

[

)'2..1.3 - 1 ..1.2A.3Pa - P2 

[L;il] = ~ 1 - ..1.2A.a PI - ..1.l..1.aPa 

..1.1 - .A.2 ..1.1P2 - .A.2Pl 

where 

Introducing now (10.42) into (10.37), we find 

..1.lPa-P2) 1 
..1.a(Pl - Pa) , 

P2 -PI 

. ~ 1 L 1 r (ro)m +"0 .l.J - ;i Jkm - • 
m=I m CIl 

(10.46) 

Substituting this result into (10.43) directly yields the displacement field. 
The constants u~ can be determined by prescribing the displacement vector of an 
arbitrary material point of the elastic medium. Finally, the stress components are 
given by (10.7), where the functions f~(zll)' as determined by (10.35) and (10.37), 
must be replaced by 

r'(z~) = 1 { Da.. _ iro ~ L::klfj-km (~)m}. (10.47) 
J a ~ VI 2(1 2)/ 2 .l.J ~ y 

Z.. - Yo + P .. z.. 2m m=l "a. 

We pass now to the solution of the displacement boundary-value problem. 
Since conditions (10.21), (10.25), and (10.19) are common to both boundary-value 
problems, the functions epiC«) must have the same form (10.37) with Da. determined 
by (10.45). 

Consider now condition (10.27). Since the atomic calculation of the dislocation 
core is done using a jump condition similar to (10.19), we obviously have 

Let us put 

10-120 

ut(11:) - ut( -11:) = -bk , k = 1,2,3. 

ut(O) = - bkO + uiO), 
211: 

(10.48) 

(10.49) 
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with uk(n) = uk(-n). Assuming that uilJ), as defined by (10.49) for lJE (-n, n) 
and periodically continued on the whole real axis, can be developed in a Fourier 
series, we obtain 

(10.50) 

where 

dkm = _1_ en uilJ) e-irn8 dO, k = 1,2,3; m=O, 1,2, ... 
2n )-n 

Introducing now (10.42) and (10.50) into (10.27), and taking into account (10.38) 
and (10.44), it follows that 

30000 

uZ + 2 Re t Ako<"E aam rom e-im8 = dkO + 2 Re"E dkm eim8, k = 1,2,3. 
a=1 m=1 m=1 

Next, equating like powers of ei8 gives 

k = 1,2,3, (10.51) 

3 _ 

rom t Akaa"m = d km, k = 1,2,3; m = 1,2, ' " (10.52) 
11-1 

and, by solving (10.52) with respect to aa.m' we obtain 

a"m=rg'A;{dkm' 01:= 1,2,3; m= 1,2, ... , (10.53) 

where [A;kl] denotes the reciprocal matrix of the (non-singular) matrix [AkJ. Finally, 
substituting (10.53) into (10.37), we deduce the expressions of the complex potentials 
<piC,,), 01: = 1,2,3: 

(C) = D" {In 5:... + In 1 + VI - rW + p;)/z; } + 
<P«" 2ni ro 1 - ip" 

(10.54) 

where D" are given by (10.45). The displacement and stress components are again 
explicitly given by (10.43) and (10.7), by using (10.51), (10.35), and (10.54). 
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10.3. Neglecting the core boundary conditions 

The solutions obtained in the previous subsection become considerably simpler 
when terms arising from satisfying the boundary conditions on Lo are neglected. 
Indeed, both traction and displacement boundary-value problems amount in this 
case to the fulfilment of the same conditions (10.21), (10.25), and (10.19). It then 
results 

fr.(z~) = ~ In z~, IX = 1,2,3, 
2ni 

(10.55) 

and we deduce from (10.6) and (10.7): 

1 3 
Uk = -1m ~ AhD~lnz~ + u~, 

n ~=l 

(10.56) 

(10.57) 

where D~ are given by (10.45). It is easily seen that the stress and strain components 
decrease as p-l when p _ 00, like in the isotropic case. 

We will determine now the strain energy stored per unit dislocation length 
in an infinite elastic medium between the surfaces p = r 0 and p = R. Since a calcu­
lation similar with that performed in Sect. 8.1 would be rather tedious in the aniso­
tropic case, we prefer to use a somewhat different reasoning on the lines of Stroh 
[323]. First, by applying the theorem of work and energy to an elastic cylinder of 
unit length and bounded by the cylindrical surfaces p = ro, p = R, and the plane 
cut X2 = 0, -R ~ Xl ~ -ro, we deduce that 

where C is the union C = ro u r U AB U A'B', r is the circle of radius Rand 
centred at the origin in the xlx2-plane, and n is the outward unit normal to C in 
this plane (Fig. 10.2). 

Since n equals - e2 on AB and e2 on A' B', the last relation yields 
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wherefrom, by (10.1), it follows that 

(10.58) 

Fig. 10.2. On the calculation of the strain 
energy stored per unit dislocation length. 

Next, taking into consideration (10.56) and (10.57), we see that on ro, hence for 
ZIZ = ro (cosO + PIZ sinO), we have u" = Ck Inro + gk(O), n = el cos 0 + e2 sinO, 
tIc = h,,(O)/ro• where c" are some constants, and g,,(O) and hie) do not depend on roo 
Consequently, considering also (10.21), 

A similar calculation for the integral along r, taking into account that n = 
- elcos e - e2 sine on r, leads to an opposite value, and hence the sum of the first 
two integrals in (10.58) vanishes. Next, by substituting (10.57)2 into (10.58) gives 

w = ~ 1m ( i Lka.Da. ) (- '0 dXI = - ~ 1m (i; Lka.DIZ) In ~ . 
2n a=1 )-R Xl 2n a=1 ro 

3 

On the other hand, (10.41) implies that the number ~ Lka.DIZ is pure imaginary and 
,,_1 

hence, in view of (10.45), the last relation may be rewritten as 

Kb2 R 
w = --In-, 

4n ro 
(10.59) 

where 

(10.60) 
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The expression (10.59) of w has been first derived by Foreman (120), who also 
calculated the values of w for various dislocation orientations in crystals with cubic 
and hexagonal symmetry. Clearly, the constant K, which is also called the energy 
factor, depends not only on the elastic constants and of the dislocation orientation, 
but also on the magnitude and on the direction of the Burgers vector. By comparing 
(10.59) with (8.62) and (8.54), we conclude that in the isotropic case the energy factor 
takes the value Jl for a screw dislocation and /1/(1- v) for an edge dislocation. 

We close this discussion by specializing the above results to the case where 
the dislocation line is a two-jold symmetry axis or, equivalently for elasticity, when 
it is perpendicular to a reflection plane 1. Then, by (5.11), we have 

(10.61) 

and the reciprocal [SKM] of the matrix [CKM], K, M = 1,2,4,5,6, has the elements 

Sn = (C22C66 - c~6)/d, 

S16 = (C12C26 - CI6C22)/d, 

S26 = (CnC26 - C12CI6)/d, 

with the notation 

S12 = (C16C26 - C12C66)/d, 

S22 = (CnC66 - ci6)/d, 

S66 = (CnC22 - Ci2)/d, (10.62) 

If we require that the strain energy function W be positive definite, the quantities 
d and d', which are actually principal minors of the matrix [CKM], must be strictly 
positive. 

From (10.8)2 it follows now that laCp) vanishes identically, and hence (10.9) 
may be decomposed into the quartic equation 

(1O.63) 

whose roots with positive imaginary parts will be denoted by PI and P2' and the 
quadratic equation 

(1O.64) 

1 This case has been first considered by Seeger and Schock [285 J. A complete discussion of 
the symmetry cases when analytic results are available or merely possible may be found in the 
book by Steeds [317J and in the review article by Steeds and Willis [477J. 
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which gives 

(10.65) 

Next, (10.12) yields 

and hence (10.11) becomes 

o 1 o . 

-·1 

(10.66) 

o 

On the other hand, from (10.13) and (10.14) it follows that 

(10.68) 

It may be easily seen now that, in the case considered, the elastic state pro­
duced by the dislocation consists of a pure screw and a pure edge part, like in the 
isotropic case. Indeed, let us consider first an edge dislocation with components of 
the Burgers vector 

hI = h, h2 = h3 = O. (10.69) 

From (10.45) and (10.66-68) we obtain 

D3 = 0, (10.70) 

whereas (10.56) and (10.57) yield 

U3 = 0, TI3 = T23 = 0, (10.71) 

(10.72) 

(10.73) 
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where ~ denotes summation with respect to (X over the integers 1 and 2. Next, .. 
by (4.63)1' (10.3), and (10.71)1' we have 

(10.74) 

wherefrom, by virtue of (10.72), it follows that 

Finally, from (10.60) and (10.66), we deduce that the energy factor of the edge dis­
location is 

(10.76) 

We shall resume the case of the edge dislocation in Sect. 14.2, when consider­
ing the solution obtained in a different way by Teodosiu and Nicolae [338]. For a 
more explicit form of the above relations, which is valid, however, only when 
C16 = C26 = 0, see Hirth and Lothe [162], pp. 422-425. 

Let us consider now a screw dislocation with the components of the 
Burgers vector 

From (10.45) and (10.66-68) we obtain in this case 

Da = - _b_= ibVd', 
2Aaa 

and from (10.56), (10.57), and (10.74), we deduce that 

Ua = - ~ arg (Xl + PaX2) + U~, 
1t 

(10.77) 

(10.78) 

(10.79) 

(10.80) 
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Finally, by making use of (10.60) and (10.66), we infer that the energy factor of 
the screw dislocation is 

K=Vd'. (10.81) 

From the considerations above it is easily seen that the pure edge and the 
pure screw dislocations have complementary non-zero displacement and stress 
components. Hence the elastic state produced by a mixed straight dislocation can 
be derived by simply adding the elastic states corresponding to its edge and screw 
components. 

10.4. Numerical results 

As shown by (10.56); (10.57), and (10.60), the quantities Prz' Akrz' and L krz, k, a= 1,2,3, 
completely characterize the principal singularity of the elastic field of a straight dislocation in a 
medium with general anisotropy. For this reason, a special program has been elaborated by Teo­
dosiu, Nicolae, and Paven [340, 342], for calculating these quantities. The program was applied 
to 60 different crystals 1 belonging to the cubic and hexagonal systems, and to almost all cases 
of straight dislocations occurring in these crystals 2, by using the experimental values given in 
Table 5.3 of the adiabatic second-order elastic constants at room temperature with respect to the 
standard crystallographic axes x~, x~, xg shown tn Fig. 10.3 a and 10.6 a (cf. also Mantea et al. 
[230)). 

Tables 10.1 and 10.2 concern the dislocations considered for various crystal lattices. The 
orientations of the axes Xl, X z, X3 that were used to describe the elastic field of the dislocation, chosen 
in each case with the xa-axis along the dislocation line, have been labeled from 1 to 6, the direc­
tions of the Xk-axes being indicated in Table 10.1. The direction of the dislocation line, the glide 
plane, and the Burgers vector are shown in Table 10.2 and are illustrated in Figs. 10.3 -10.6. 

Table 10.1 

Crystallographic orientations ofthe co-ordi­
nate axes used to describe the elastic field 

of straight dislocations 

Directions of the co-ordinate 

Orientation axes 

label 

I I Xl Xz X3 

1 [110] [110] [001 ] 
2 [101] [010] [101] 
3 [110] [111 ] [112] 
4 [121] [101 ] [111 ] 
5 [2110] [0001 ] [0110] 
6 [1010] [0001] [1210] 

1 Namely Ag, AI, Au, Cu, Ni, Pb, Th, Cr, IX-Fe, K, Li, Mo, Na, Nb, Ta, V, W, 
CuZn, AgBr, AgCl, the 16 alkali halides, CaO, MgO, SrO, C, Si, Ge, Be, Cd, Co, Er, Mg. 
Tl, Y, Zr, AgzAl, BeO, CdS, CdSe, and a-ZnS. 

2 For hexagonal crystals, however, only the basal glide has been considered. 
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Crystal 
system 

Cubic 

Hexa­
gonal 

Table 10.2. 

Dislocations considered in numerical calculations 

Crystal 
lattice 

f.c.c. 

b.c.c. 

rock 
salt 

2 

3 

2 

3 

4 

2 

4 

diamond 2 

5 
h.c.p. 

6 

Glide 
system 

(110){111} 

(112){111} 

(110){1l2} 

(110){1l0} 

(112){110} 

(111){llO} 
(111){112} 

(100){110} 

(110){110} 

(111){110} 

(110){l1l} 

DisI. 
line 

[101] 

[112] 

[101] 

[101] 

Glide 
plane 

(111) 

(11 i) 

(1ii) 

(1oi) 

Burgers 
vector 

+ [101] 

1 -
2' [101] 

1 -
2" [110] 

1 -
-2 [110] 

+ [011] 

1 --
-2 [111] 

+ [111] 

(110) + [iTl] 

Dislocation 
type 

screw 

sessile edge 

60° mixed 

edge 

30° mixed 

edge 

35°16' mixed 

edge [112] 

[111] (110) 
(211) + [111] screw 

------�~~--I--~~~I 

1~[~OO_I~]_I __ (~1~10~) __ I __ ~[~ll~0~] __ I_e_dg~e ______ _ 

[101] (101)[101] screw 

[111] (011) [101] 35°16' mixed 

[101] 
screw 

1 
2' [101] 

1 -
2' [110] 60° mixed 

1 --

(0001) 
3[2110] edge 

1 -
(OilO)(OOO1) [OlIO] 

3 [1210] 30° mixed 

(1210)(0001) [1210] (0001) 
1 -

3 [1210] screw 

To illustrate the numerical results obtained we give here only the values of the quantities 
p«, Ak«, and Lh, calculated for dislocations in four typical crystals Cu, a-Fe, NaCI, and Zn, ha­
ving an f.c.c., b.c.c., rock-salt, and h.c.p. lattice, respectively. Crystals belonging to the diamond 
structure do not exhibit qualitative differences as concerns the values of p«, Ak", and L"" (cf. also 
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Table lO.2). Only non-zero coefficients Ak" and Lkac are listed. Moreover since always 

these values are not mentioned. The quantities Pac and Lk" are non-dimensional, whereas Akac are ex­
pressed in units of (Mbar)-l = lO-um2/N. 

(b) 

Fig. 10.3. Dislocations in an f.c . .;. crystal. (a) The screw, the sessile edge, and 
the 600 mixed dislocations (orientation 2 of the x~-axes). The standard crystal-

lographic axes of the cubic lattice are denoted by xt xg, and xg. (b) The edge 
and the 300 mixed dislocations (orientation 3 of the xk-axes). 

lliO} 

(b) 

(c) 

Fig. 10.4. Dislocations in a b.c.c. crystal. (a) The [1101 edge and the 35°16' mixed 
dislocation (orientation 2 of the xk-axes). (b) The [112] edge dislocation (orien­
tation 3 of the xk-axes). (c) The screw dislocation (orientation 4 of the xk-axes). 
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110"1") 

b=[101] 

x2[l10] 

b.[110] 

(0) Ib) 

b=[101) 

Ie) 

Fig. 10.5. Dislocations in a rock-salt crystal. (a) The edge dislocation 
(orientation 1 of the Xk-axes). (b) The screw dislocation (orientation 2 
of the xk-axes). (c) The 35°16' mixed dislocation (orientation 4 of the 

x2!OOOl] 

Ib) 

x,,-axes). 

x· J 

10) 

x· I 

xJ!1210) b=j!1210] 

Ie) 

Fig. 10.6. Basal glide dislocations in an h.c.p. crystal. (a) Standard 
crystallographic axes, ~, ~, xg, and crystallographic vectors, a1> a2, 

a3• c, of the h.c.p. lattice. (b) The edge and the 30° mixed dislocations 
(orientation 5 of the x,,-axes). (c) The screw dislocation (orientation 

6 of the Xk-axes). 

155 
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Cu (f.c.c. lattice) 

Orientation 2: Pl,2 = =F0.7056 + 0.8058 i,ps = 0.5528 i, 
All =.4;'2 = -0.6614 - 0.8611 i, An = -A22 = -0.2273 - 1.1406 i, Aaa = 2.3929i. 

Orientation 3: PI = 0.3906 i, P2,3 = ±0.5845 + 1.4813 i, 
Au = -0.2359, Al2 = -1.6130 + 0.8382 i, Au = 1.0265 + 1.3844 i, 
A2l = -1.3017 i, A22 = 0.0552 - 0.6557 i, A2s = -0.2253 + 0.5818 i, 
ASI = 0.7085 i, AS2 = 1.1312 - 1.7939 i, Ass = 0.2190 + 1.9987 i, 
L13 = - 1.1134 + 1.0197 i, L2s = - 0.8523 - 0.4154 i, Lal= -0.1707, Ls2 =0.9481+0.4621 i. 

a-Fe (h.c.c. lattice) 

Orientation 2: PM = =F0.6247 + 0.8658 i, Ps = 0.6399 i, 
All = A12 = -0.4288 - 0.4912 i, A2l = -.:422 = -0.1574 - 0.6781 i, Aaa = 1.3402 i. 

Orientation 3: PI = 0.4670 i, P2.S = ± 0.4361 + 1.4099 i, 
Au = -0.1590, A12 = -0.9473 + 0.3885 i, Au = 0.6487 + 0.8335 i, 
A2l = -0.7591 i, A22 = 0.0452 - 0.3915 i, A23 = -0.1603 + 0.3736 i, 
A3l = 0.3765 i, AS2 = 0.6510 - 0.9509 i, Aaa = 0.0952 + 1.1850 i, 
L13 = -1.1133 + 1.0384 i, L2s = -0.8951 - 0.5127 i, L3l = -0.1759, La2 = 0.8411 + 0.4818 i. 

Orientation 4: P1.2= =F0.3839 + 0.6398 i, Ps = 1.9092 i, 
Au = A12 = -0.2852 - 0.3172 i, A2l = -~2 = -0.0935 - 0.6706 i, 
AIS = -1.6054 i, A23 = 0.4348, A3l = A-;2 = -0.2204 - 0.7287 i, Aaa = 1.5824 i, 
LIS = 2.2972, La3 = 1.2032 i. L31 = -La2 = 0.4605 - 0.1393 i. 

NaCi (rock-salt lattice) 

Orientation 1: Pl,2 = ±0.4606 + 0.8876 i, Ps = i, 

An = -.4;'2 = -2.7412 + 2.2565 i, An = -~2 = 0.7401 - 3.4725 i, Aaa = 7.8247 i. 

Orientation 2: PI = 0.6279 i, P2 = 1.5020 i, P3 = 1.1947 i, 
An = -1.6162, A12 = -6.2085, A2l = -3.8983 i, A22 = -2.4274 i, Ass = 6.5497 i. 

Orientation 4: Pl,2 = =F0.2426 + 0.8130 i, P3 = 1.4023 i, 
An = A~2 = -2.5044 - 1.2567 i, A2l = -A-;2 = -0.4140 - 3.7922 i, 
AIS = 8.7490 i, Aza = -4.3871, ASI = AS2 = 1.1424 + 2.7747 i, Aaa = 6.2046 i, 
L13 = -2.2078, Lza = -1.5744 i, L31 = - £S2 = -0.4472 + 0.1841 i. 

Zn (h.c.p. latticeP 

Orientations 5 and 6: Pl,2 = ±0.6714 + 1.0747 i, Pa = 1.2809 i, 
Au = -~2 = -1.2890 + 1.2085 i, A2l = -.4;2 = 0.4334 - 2.1967 i, Aaa = 2.0127 i. 

1 There is no difference, as regards the elastic constants, between the orientations 5 and 6 
of the xk-axes. Indeed, they differ only by a rotation around c, which does not change the second­
order elastic constants of hexagonal crystals, for they have transverse is{ltropy (cf. Sect. 5). 
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10.5. Green's functions for the elastic state 
of generalized plane strain 
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There exists a closed connection between straight dislocations and line forces 1. Indeed, let us resume 
the case of the straight dislocation considered in Sect. 10.3, but assuming that the tractions acting 
per unit length of the cylindrical surface p = To have a non-vanishing resultant force P, which is 
independent of xa. 

Requiring again that the stresses and the elastic rotation be continuous across the negative 
Xl-axis and vanish at infinity, we can still write the elastic state in the general form 

3 

Uk = 2 Re t Akrzfl1.(zl1.) '+ uZ, k = 1,2,3, (10.82) 
",=1 

3 3 

Ttl = -2 Re ~ pI1.Lkaf:(za), Tk2 = 2 Re ~ Lkat:(za), (10.83) 
.. =1 a=1 

a = 1,2,3, (10.84) 

where zl1.=xl + P(f.X2' whereas Da, gam are undetermined complex constants. Next, imposing the 
condition 

'0 \" tk*«() dO = Pk , 
.,-n 

and taking into account (10.24), we find that now (10.41) must be replaced by 

3 

2 Re t Lk(f.D(f.=Pk, 
a=1 

while the jump conditions (10.44) 

3 

2 Re ~ AkaPa = - bk, 
.. =1 

k = 1,2, 3, 

k = 1,2,3, 

(10.85) 

(10.86) 

provide three more real algebraic equations for determining the three complex constants Da. The 
system (10.85), (10.86) can be solved as before, by using the orthogonality relations (10.15), to give 

a = 1,2,3, (10.87) 

where the summation over repeated Latin indices is implied, as usual. This result shows that 
the logarithmic terms of the complex potentials fiza) are completely determined by the Burgers 

1 This connection was first noticed by Stroh [324] and further developed in a six-dimensi­
onal form by Malen and Lothe [225], and Malen [226]. 
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vector b and the resultant force P of the tractions acting on kO' whereas the coefficients g "m occur­
ring in (10.84) depend on the detailed distribution of the tractions on kO' as shown in Sect. 10.3. 
Clearly, equations (10.87) establish an algebraic equivalence between a straight dislocation and a 
line force. 

Let us consider now the problem of defining the Green's tensor function of the generalized 
plane strain. We have seen in Sect. 6.4 that the three-dimensional Green's tensor function G(x) 
can be interpreted in terms of the displacement fields produced by concentrated forces in an infinite 
elastic medium. Namely, a unit concentrated force P = es' acting at the origin and directed 
along the xs-axis, produces the displacement field u<:)(x) = Gks(X) in the infinite elastic medium. 

Similarly, by putting bk = 0 and Pk = ~ks in (10.87) we obtain the particular value D~) of D" cor­
responding to the case where the tractions acting on kO have the resultant force P = es, namely 

a = 1, 2,3. (10.88) 

However, this particularization does not determine uniquely the displacement field (10.82) since 
the coefficients g"m are still arbitrary. Consequently, by analogy with the three-dimensional case. 
the Green's tensor function Gks(Xl> x 2) of the generalized plane strain is defined by taking u~ = 0 
in (10.82) and retaining only the principal singularity of the solution, i.e. the leading logarithmic 
term of the expression (10.84) of fiz,,), with D" replaced by (10.88). Thus 

3 AdS) 1 3 
Gks(l;) == u(kS)(1;) = Re ~ ~ In z" = - 1m ~ Ak D(S) In z", 

LJ 1U 'It LJ "" ,,=1 ,,=1 
(10.89) 

where 

(10.90) 

and the corresponding stresses result from (10.83) as 

3 L d S ) 
T(s)(';) = __ 1_ 1m ~ Pa. ka. " , 

k1 'It LJ Z 
«=1 a. 

1 3 L d S ) 

T(S)(I;) = - 1m ~ ~. 
k2 'It LJ -«=1 .cz: 

(10.91) 

From the reasoning above it is apparent that Green's tensor function G(I;) has been sele­
cted by imposing a certain singularity of the elastic state for p ~ 0, where 

(10.92) 

In fact, the neglected terms correspond to self-equilibrated traction distributions on kO' or to elastic 
states that possess self-equilibrated singularities, such as force multipoles, at the origin. This leads 
us to the following equivalent definition of G(I;). 

We call fundamental singular solution or Green's tellsor function of the generalized plane strain, 
the second-order tensor field G(I;) with the following properties : 

(i) For any point of the xl x2-plane with position vector I; ~ 0 and for each s = 1,2,3, 
the displacement field U<~)(I;) =Gk.(I;) defines a (regular) elastic state of generalized plane strain, 
corresponding to zero body forces. In particular, by (10.2), 

T(S) + T(s) = 0 
kl,l k2,2 ' k = 1,2,3, (10.93) 

where 

T~~(I;) = Cka.ml Gms,l (I;) + cka.m2 G ms,2 (1;), k = 1,2,3; a = 1,2, (10.94) 
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are stress components corresponding to the displacement field u~)(I;). 

(ii) G(I;) flnp = 0(1) and T(s)(I;) = O(p-l) as p -+ 0 and also as p -+ 00. 

(iii) For all 11 > 0 and s = I, 2, 3, 

or, in component form, 

f T(s) n dl = es, 

r" 

f (Tkf) n1 + Tg) n2) dl = 6ks , 

r" 

s = 1,2,3, 

k,s = 1,2,3, 
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(10.95) 

where r ll is the circle with radius 11 centred at the origin in the x1x2-plane, and n ="le1 + "2 e:/; 

is the inward unit normal to r". 
It is easily seen that the singular elastic state (10.89), (10.91) satisfies (i)-(iii). Conversely, 

it may be shown that these properties uniquely determine the singular elastic state. Indeed, (i) 
implies that each f~(za) is analytic and single-valued outside any circle r" centred at the origin, and 
hence can be developed in a Laurent series. Consequently, integrating with respect to Za, for each 
a = 1,2,3, we may write 

Next, (ii) eliminates all positive and negative powers of Za from this expression. Finally, (iii) and 
the condition that the displacement be single-valued, determine the coefficient Da of the re­
maining logarithmic term in the form (10.88), thus leading to the expression (10.89) of G(I;). 

To derive the differential equation satisfied by G(I;) in the sense of the theory of distributions 
we use a reasoning similar to that employed in Sect. 6.4. For conciseness, we assume in the remain­
ing part of this subsection that Greek subscripts take only the values 1 and 2, and extend the 
summation convention to repeated Greek subscripts. Let ",(1;) denote an arbitrary function of class 
Coo and of compact support on the x1x2-plane. According to the definition of the derivatives of a 
distribution, we have 

(10.96) 

Denote by Lip the exterior domain bounded by the circle rp of radius p and the centre at the 
origin in the X 1x2-plane. Integrating by parts twice. taking into account that 'P vanishes together 
with all its derivatives for sufficiently large values of p, and considering that, by virtue of (10.93) 
and (10.94), 

CkampGms,ap(l;) = 0 

we successively obtain 

for any I; =F 0 and any k = 1,2,3, 
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Next, making use of the mean theorem of the integral calculus and considering (ii) and (iii), we 
find that 

and hence 

Combining this result with (10.96), we deduce that the regular functionals associated to CkrtmfJG ms."fJ(~) 
on the regions .1p tend to - bjpb(!;) as p ~ O. Therefore, tbe components of tbe distribution asso­
ciated to G(l;) satisfy tbe equations 

k, s = 1,2, 3. (10.97) 

Assume now that the elastic medium is subjected to the action of a body force f(l;), which 
is independent of X3 and of class CIon the X 1x2-plane, and which satisfies the condition 1 

f(~) In p = O(p2) as p ~ 00 (10.98) 

Making use of the properties of the convolution and taking into account (10.97), we may write 

where the derivatives are taken with respect to x" and xfJ . We conclude that 

m = 1,2,3, (10.99) 

is a particular solution of the equilibrium equations of the generalized plane strain 

k = 1,2,3. 

Finally, by taking into account the way in which the distribution G(~) has been generated, 
as well as the continuity of the convolution, (10.99) may be rewritten as 

(10.100) 

1 This condition is satisfied a fortiori if f(l;) = 0 (p3) as p -+ 00. 
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where E denotes the xl x2-plane, the convergence of the improper integral in the right-hand side 
being granted by the conditions (ii) and (10.98). 

Using a procedure similar to that presented in Sect. 6.3 for the three-dimensional case, it 
is also possible to extend the concept of Green's tensor function to the generalized plane strain of 
cylindrical bodies with free boundaries at finite distance. Such Green's functions have been con­
structed by Sinclair and Hirth [472] for an anisotropic infinite elastic body containing a planar 
crack, and then subsequently used to study the interaction between the crack and some rod shaped 
inclusions or coherent precipitates patallel to the crack front. 

10.6. Somigliana dislocation 
in an anisotropic elastic medium 

In this subsection we treat, following [478], a Somigliana dislocation that produces a state of 
generalized plane strain in an infinite anisotropic elastic medium with an infinite circular cylindrical 
hole of radius Yo. The results obtained will be applied to the simulation of crystal dislocations by 
non-linear elasticity (see Sect. 14). 

Fig. 10.7. Cut along the half-plane 
X2 = 0, Xl';; -Yo, used to gene­
rate a Somigliana dislocation in 
an infinite elastic medium with a 

circular cylindrical hole. 
Xl 

Let us take the axis of the hole as xa-axis of a Cartesian system of co-ordinates and the half­
plane X 2 = 0, Xl .;; -Yo as cut S for producing the Somigliana dislocation (Fig. 10.7). Having in 
mind further applications, we first consider a more general case where not only the displacement 
vector u is allowed to be discontinuous across the cut S, but also the tractions applied on the faces 
of the cut are not equilibrated, being statically equivalent to a distribution of surface forces on S. 
Specifically, we assume that (7.19) and (7.20) are replaced by the condition!. 

for Xl E (-00, -Yo], where g and h are analytic vector-valued functions, such that g = 0(1) and 
h = 0(x12) as IXII -+ 00. These conditions assure that the jump of the displacement vector across 
the cut and the resultant force of the tractions acting on the cut faces per unit length of the xa-axis 
are both bounded. Developing the functions g(XI) and h(xl) in power series for Xl E (-00, -YoJ, 

11-120 
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we have 

(10.101) 

(10.102) 

for k = 1, 2, 3, where gkm and hkm are known real constants. 
We look for the solution of the field equations of the generalized plane strain satisfying the 

boundary condition (10.22) at infinity, and either of the boundary conditions (10.20), (10.27) on 
ro. We begin by rewriting (10.102) in terms of the stress functions I/>k introduced at the end of 
Sect. 10.1. Let r be a smooth closed curve in the Xlx2-plane and encircling ro anticlockwise (Fig. 
10.7). Then, by virtue of (10.16), we have 

(10.103) 

where n is the inward unit normal to r, and I is the curvilinear abscissa on r. Integrating this 
relation once around r yields 

f /k dl = I/>k(Xb 0+) - I/>k(Xb 0-), (10.104) 

where Xl is the abscissa of the intersection point of r with the negative Xl-axis. . 
Next, the equilibrium condition of a cylinder of unit length whose generators are paralIel to 

the xa-axis, and whose projection on the x1x2-plane is the region bounded by ro, r, and the cut, 
gives 

(10.105) 

where 

(10.106) 

is the resultant force of the tractions acting on the elastic medium per unit length of the cylindrical 
surface p = roo 

By substituting (10.104) and (10.102) into (10.105) and performing the integration with res­
pect to Xb we find 

with the notation 

( - I)m+lhk.m+l 

mr::, 

hk•m+1 t' q = --- Jor m ~ 1. 
km m 

(10.107) 

(10.108) 
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The solution may be found by superposing two elastic states: 

(10.109) 

(10.110) 

such that Uk and;Pk satisfy the jump conditions (10.101), (10.107) on the cut and the boundary con­

dition (10.22) at infinity, whereas Uk and 4>k are continuous across the cut, vanish at infinity, and 
satisfy the boundary condition on ro corrected by the contribution of Uk and ;Pk' 

In view of the results in Sect. 10.1, we take 

3 

Uk(Xl> X2) = 2 Re ~ Akafiza), 
,,=1 

(10.111) 
3 

4)k(Xl> X~ = 2 Re t Lkafiza)' 
,,=1 

k = 1,2, 3, where 

IX = 1,2,3, (10.112) 

and bam are some undetermined complex constants. Introducing (10.111) into (10.101) and (10.107), 
and equating like powers of Xl' we find that, for each m = 0, 1,2, ... , the three complex constants 
bam, a = 1,2,3, must satisfy the system of six real algebraic equations 

3 

2 Re t Akabam = gk ... , 
,,=1 

3 

2 Re ~ Lkabam = qkm' 
.. =1 

k = 1,2,3, 

(10.113) 

k = 1,2,3 . 

Multiplying (10.113)1 by Ak/J> (10.113)2 by LkP, summing up for k= 1,2,3, adding the two rela­
tions thus obtained, and taking into account the orthogonality relations (10.15), we find 1 

(10.114) 

for IX = 1,2,3; m = 0, 1,2, ••• , the summation being performed over k, s = 1,2,3. 

1 Clearly, the case of a straight dislocation of BUrgers vector bk combined with a line force 
Pk> both of which lying along the xa-axis, may be refound, under neglection of the boundary condi­
tions on ro, by putting gko = -bko gkm = 0 for m ;;. 1; hkm=~O for m ;;. 2; qko = Pk, qkm= 0 for 
m;;. 1. Then, it results from (10.114) that bam .= 0 for m = 1,2, ..• , and bao = Da, where Da is 
given by (10.87). 
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We pass now to the boundary condition on roo Since ~k and :J,k must be continuous across 
the cut and vanish at infinity, we take 

k = 1,2,3, where 

3 

~k(Xl' X2) = 2 Re I; Ahlp,.('.), 
a=1 

A 3 

<Pk(X1, X2) = 2 Re I; L k" 11',,(',,), 
11=1 

,,, = ~- [1 + VI -
l-Ip" 

r~(I + p~) ], 

z2 

" 
and o"m are some undetermined complex constants. 

(10.115) 

(10.116) 

(10.117) 

Let us consider first the traction boundary condition (10.20) on roo Denoting by \*(0) the 
traction corresponding to the displacement field Ii on r o, and repeating the reasoning that has led 
to (10.24), we find 

_ 2 3 d 
tk*(O) = - Re I; Lkrz --I,,(ro cos 0 + Perro sin 0), 

ro ,,=1 dO 
k = 1,2,3, (10.118) 

where liz,,), a: = 1,2, 3, are given by (10.112). Next, from (10.20) it follows that the modified 
boundary condition on ro may be written as 

A A A 

Tk1nl + Tk2 n2 = It (0) on r o, k = 1,2,3, (10.119) 

where 

(10.120) 

Since the form of this condition is the same as that considered in Sect. 10.2, we may derive at once 
the expression of the unknown coefficients O"m by using (10.42). It then results that 

a = 1,2,3; m = 1,2, ... , (10.121) 

where l 

1 ~n; A Ikm = -- Ik*(O) e-imO dO, k = 1,2,3; m = 1,2, ••• 
2n -n; 

(10.122) 

(" A 
1 By (10.120), we have )-n; It (O)dO = 0, and hence the Fourier coefficient Iko is zero. 
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are the Fourier coefficients of i:«(). Thus, the solution of the problem formulated at the begin­
ning of this subsection is completely determined by (10.109-112), (10.114-117), and (10.121). 
The constants uf, corresponding to a rigid translation of the elastic medium, may be further deter-
mined by imposing the value of the displacement field at an arbitrary point of the medium. 

Next, we consider the displacement boundary condition (10.27) on roo Denoting by 

u:«() == ih(ro cos 0, '0 sin 0) (10.123) 

the value of Uk(Xl> x2) on ro, we find that ~k(X1' x2) must satisfy the modified boundary condition 

k = 1,2,3, (10.124) 

where 

(10.125) 

Since the form of (10.124) coincides with (10.27), and that of the representation (10.115)1, (10.116 
with (10.43), (10.37), except that now D(% = 0, we may directly infer the values of the unknown para­
meters uf and aam by using (10.51) and (10.53). We thus obtain 

k = 1, 2,3, (10.126) 

1X=1,2,3; m= 1,2, ... , (10.127) 

where 

k=1,2,3; m=0,1,2, ... (10.128) 

are the Fourier coefficients of ~:(O). The solution of the problem is again completely determined 
by (10.109-112), (10.114--117), but with uf and aam given by (10.126) and (10.127), respectively. 

It is easily proved that the solutions of both boundary-value problems considered above are 
unique. Indeed, the displacement vector and the stress functions corresponding to the difference 
of any two solutions, must be continuous across the cut. Then, by Bezier's theorem (::'ect. 6.2), 
the solution is unique when the displacements are given on ro, and is uniquely determined to within 
an infinitesimal translation, when the tractions are prescribed on roo 

Finally, if we are interested only in the solution corresponding to the Somigliana dislocation, 
we must simply put hkm=O for any k = 1,2,3; m = 2, 3, ... Then, from (10.108) it follows that 

qkm = 0 for m ~ 1, (10.129) 

and (10.114) gives 

(10.130) 
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10.7. Influence of the boundaries on the anisotropic 
elastic field of straight dislocations 

By using Lekhnitsky's representation (10.6), (10.7), it should be possible to deter­
mine the stress field of a straight dislocation whose line coincides with the axis of 
an anisotropic circular elastic cylinder. However, there is only one solution of 
this type available so far, due to Eshelby [112], which concerns the screw disloca­
tion lying in the axis of a circular cylinder of finite length, for a particular case of 
material symmetry. The solving of the problem for general anisotropy and mixed 
dislocations would require the solution of an infinite set of linear algebraic equa­
tion s, having as unknowns the coefficients of the Laurent expansions of the functions 
f,.(zJ, rJ. = 1, 2, 3, and expressing the boundary conditions on the core surface 
and the outer surface of the cylinder. 

The elastic field of a straight dislocation lying in an infinite plate has been 
determined in the particular case where the dislocation line is parallel to the faces 
of the plate and to a two-fold axis of material symmetry. Thus, Spence [316] 
and Chou [70] have determined the elastic field of a screw and edge dislocation, 
respectively, for the case where the normal to the plate faces is also a two-fold axis 
of material symmetry, while Siems, Delavignette, and Amelincks [296] have consi­
dered an edge dislocation near the basal plane of a hexagonal crystal. Finally, Lothe 
[220] has derived an elegant formula giving the force exerted by the free boundary 
of an infinite elastic half-space on a dislocation of arbitrary inclination with respect 
to the boundary. 

A problem of particular interest is the interaction of dislocations with phase 
and grain boundaries. This situation is generally modelled by a dislocation lying 
near the plane interface between two different anisotropic elastic half-spaces. The 
solution is given by either using Stroh's formalism or Fourier-transform techniques 
(Pastur, Fel'dman, A. M. Kosevich [264], Gemperlova and Saxl [131], Gemperlova 
[132], Tucker and Crocker [359], Tucker [360]), but the results are rather cumber­
some and expressed in a form which is rather inconvenient for numerical applica­
tions. More explicit solutions have been obtained by Chou [408] and Pande and 
Chou [457] for the case where the adjacent grains possess rhombic symmetry with 
respect to the plane of the interface. Kurihara [205] has used complex-variable 
techniques to determine the elastic field of an edge dislocation in an anisotropic 
half-space coated by a thin layer of anisotropic material. Numerical calculations 
done for an edge dislocation whose glide plane is perpendicular to the interface 
have shown that the dislocation may have a stable equilibrium position near the 
interface for certain combinations of elastic constants. 

Interfacial dislocations in anisotropic two-phase media have been given a 
special attention owing to their role in the mechanical behaviour of polycrystalline 
and composite materials. Chou and Pande [409] have calculated the elastic field 
of interfacial screw dislocations again for the case where both half-spaces possess 
rhombic symmetry with respect to the plane of the interface, while Chou, Pande, 
and Yang [410] have solved the same problem for edge dislocations. 

A review of the problems involving interfacial dislocations for general aniso­
tropy has been made by Nakahara and Willis [453], who corrected a previous 
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approach by Brrekhus and Lothe [38], and gave a general formulation by 
using Lekhnitsky's representation of the elastic field for both anisotropic half-spaces, 
as follows I.Let us consider two anisotropic half-spaces welded along the interface 
X2 = 0, and assume that an infinite straight dislocation of Burgers vector b lies 
along the xa-axis at the interface. The quantities pertaining to the half-spaces x 2 > 0 
and X2 < 0 will be denoted by the superscripts (I) and (2), respectively. Ignoring 
the core boundary conditions, the elastic field is given (cf. Sect. 10.3) by 

1 3 
u(S)(x x) = - 1m ~ A(S) D(S) In z(S) + u9(s) 

k l' 2 kJ k«« « k' 
1t 01=1 

(10.131) 
1 3 L(S)D(S) 

T(S)( ) - I ~ kcz" 2k Xl> X2 - - m,l.J - (s) , 

1t «=1 z" 

1 3 
4i!~)(x X2) = -1m ~ Lk(S)D(Slln z(S) z(S) = X + p($)x 

.. l' ,l.J «« «'« I «2' 
1t .. =1 

where s takes the values 1 and 2. We choose as before as cut the negative xl-axis to 
define single-valued functions Inz~S) and a single-valued displacement field. Then the 
physical requirements to be fulfilled are : the continuity of the displacement vector 
across the positive xl-axis, 

(10.132) 

the prescribed jump of the displacement vector across the negative xl-axis, 

(10.133) 

the continuity of the stress components T 2k across the boundary 

(10.134) 

and finally the condition of zero resultant force of the tractions acting on any cy­
lindrical surface r, surrounding the dislocation line, which leads, in view of (10.104), 
to 

(10.135) 

1 Cf. also Barnett and Lothe [398], Dupeux and Bonnet [413]. 
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Next, introducing (10.131) into (10.132-35) gives a set of twelve real equa­
tions to determine the six complex unknowns D~1}, D~2), IX = 1,2,3: 

3 

1m ~ (A~~D~l) - Ak2~D~2» = 0, 
«=1 

3 
Re ~ (A(1)D(l) + A(2)D(2» = -b 

kI kIO« kIO« k' 
«=1 

(10.136) 
3 

1m ~ (L(1)D(l) - L(2)D(2» = 0 
~ k«« h« , 

«=1 

3 
Re ~ (L(l)D(l) + L(2)D(2» = 0 LJ k«cz k«« , 

«=1 

where k = 1, 2, 3, as well as the supplementary restrictions u~(l) = U~(2), k = 1, 2, 3, 
i.e. the equality of the rigid translations adopted for the two half-spaces. As shown 
by Dupeux and Bonnet [413), equations (10.136)4 imply also the vanishing of the 
resultant couple of the tractions acting on E, just as for an "infinite straight disloca­
tion in a homogeneous medium. The energy factor K of the dislocation can be 
calculated by (10.60), whereLk<z andAkIZ may be replaced by the values corresponding 
to either of the half-spaces. 

There exists so far no explicit solution of system (10.136) similar to that obtain­
ed by Stroh for the homogeneous medium. Nevertheless, Dupeux and Bonnet 
[413) elaborated a computer program for building up this system from geometrical 
and physical data, to solve it, and to calculate the energy factor of the dislocation. 

11. Dislocation loops in anisotropic media 

11.1. The method of Lothe, Brown, Indenbom, and Orlov 

We have seen in Sect. 9.1 that a dislocation loop of line L and true Burgers vector 
b produces the displacement field 

(11.1) 
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whose gradient may be expressed by one of the equivalent formulae 

(11.2) 

where S is a smooth and two-sided surface bounded by L, n is the unit normal to 
S in the sense given by the right-hand rule with respect to the positive sense chosen 
on L, and S+ denotes the face of S into which points n. Furthermore, the stress 
field of the dislocation loop is given by 

(11.3) 

Equations (11.1-3) are valid for general anisotropy, but the integrals involved 
cannot be calculated analytically except for infinite straight dislocations. However, 
starting from results obtained by Lothe [219] on dislocation bends in anisotropic 
media, Brown [43] succeeded to show how the in-plane stress field of a planar dislo­
cation loop could be determined directly from the stress field of a straight dislocation 
and the derivatives of this field with respect to variables describing the direction 
of the straight dislocation. In view of the importance of this result we reproduce 
below Brown's proof, by slightly modifying his argumen t. 

Theorem. Let L be a planar, piecewise smooth dislocation loop lying in an infinite 
anisotropic elastic medium, M a current point on L, and P an arbitrary point situated 
in the plane of the loop, P ¢: L. Arbitrarily choose a positive sense on L and denote 
by oc and e the angles measured in the same sense from a fixed reference direction 

~ 
in the plane of the loop to the tangent at M to L and to the vector MP, respectively. 
Then the stress field of the dislocation loop at P is given by 

T(P) = - -- G(e) + sm(e - oc)dl, 1 f 1 [ d2G(e)] . 
2 L R2 d(J2 

(11.4) 

~ 
where R = liMP II, and G(e) is the stress field of an infinite, straight dislocation line 

~ 
Lo with the same Burgers vector as L and directed parallel to MP, evaluated a 

~ 
unit distance away from Lo in the direction n X MP, where n is the unit normal to 
the plane in the sense given by the right-hand rule around L. 

Proof. Let us choose a Cartesian frame OXIX ZX3 with the x3-axis directed 
along n and the xl-axis along the fixed reference direction (Fig. 11.1a). Denote 
by (Xl' X2, 0) and (x{, x~, 0) the co-ordinates of P and M, respectively. It then follows 
from (11.2)1 and (11.3) that the stress components of the dislocation loop at Pare 
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given by 

(0) (b) 

Fig. 11.1. On Brown's theorem. (a) Dislocation loop lying in the x1x2-plane. 
(b) An infinite straight dislocation making an angle () with the Xl-axis. 

(11.5) 

where S is the region bounded by L. Since none of the subscripts in (11.5) are rele­
vant to the argument that follows we may simply rewrite this relation as 

(11.6) 

where T(XI' X2) denotes any component of the stress tensor T(P). On the other 
hand, taking into account that Green's tensor function G satisfies the identity 
(cf. Sect. 6.4) 

(11.7) 

for any x :F 0 and for any non-zero real number A., it is easily seen from (11.5) that 
the function f satisfies the identity 

(1 I .8) 

for any R = VXf + X~:F 0, where Xl = Xl - x{, X 2 = x2 - x~. 
Putting A. = R-I into (11.8) and taking into consideration that Xl = R cos e, 

X 2 = R sinO (Fig. Il.la), it results 

(11.9) 



11. Dislocation loops in anisotropic media 171 

where 8(e) = f(cos e, sin e). For further use we also note that, by virtue of (11.8), 

8(e + n) = f( -cos e, - sin e) = f(cose, sin e) = 8(e). (11.10) 

Next, by making use of Euler's theorem on homogeneous functions, we deduce 
from (11.8) that 

and hence 

wherefrom it follows that 

f(xi - xi, X2 - x~) = _a - [(Xl - xDf(xl - X~, X 2 - x~)] + 
ax~ 

Introducing this result into (11.6) and transforming the surface integral into a line 
integral by Green's theorem, we have 

(11.11) 

On the other hand, inspection of Fig. l1.1a shows that 

dx~ = dl COSIX, dx; = dl sinlX, Xl - x{ = R cosO, X2 - x; = R sine, 

and hence (11.11) becomes, considering also (11.9), 

~( ) - f 8(e)sin(e - IX) dl 
./.IXI ,X2 - - • 

L R2 
(11.12) 

In order to determine 8(e), we consider an infinite straight dislocation line 
--? 

Lo directed parallel to MP and having the same Burgers vector as L (Fig. 1.11 b). 
Let us denote by a(e) the stress field of Lo evaluated at a point Po situated a unit 

--? 
distance away from Lo in the direction ofo X MP, and by a(e) the same component 
of a(e) as T(xt> X2) for T(P). Then, we may calculate a(e) by using the same formula 
(11.12), provided that IX is replaced bye, and e by the angle 0' between OXI and the 
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~ 
vector MoPo, where Mo is a current point on Lo. Thus 

~ 8(0') sin(O' - 0) dl' 
u(O) = - ~ 

L8 II MoPo 112 
(11.13) 

But now 

~ 

IIMoPol1 = cosec (0' - 0), dl' = cosec2(0' - O)dO', 

and hence (11.13) reduces to 

(6+" 
u(O)= - 1 8(0') sin(O' - O)dO'. (11.14) 

Differentiating this equation with respect to 0 yields 

and a second differentiation gives 

.. d2u@L = (6+" 8(0') sin(O' _ O)dO' _ 8(0 + n) - 8(0), 
d02 )6 

wherefrom, in view of (11.14) and (11.10), it follows that 

8(0) = _ .!. [U(O) + d2U(0)]. 
2 d02 

(11.15) 

Finally, by substituting this result into (11 .12), we find 

T(Xt, x2) = - - u(O) + sm(O - IX) dl, 1 f 1 [ d2U(0)] . 
2 L R2 d02 

and the theorem is proved, since T(xt , X2) and u(O) are corresponding, but otherwise 
arbitrary components of T(P) and a(O). From the above proof and (11 .2)2 it is 
apparent that similar relations hold for the strain field and the displacement gradient 
of a planar dislocation loop. 

Since the tensor a(O) is known in the general anisotropic case and for an arbi­
trary orientation of the dislocation line, formulae of the type (11.4) allow the com­
putation of the elastic field of planar and, as we shall see below, even of non-planar 
dislocation loops. This has stimulated the occurrence of a series of papers devoted 
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to the numerical calculation of a(O) and of its angular derivatives by either starting 
from the analysis given in Sect. 10.3 (Malen [224], Malen and Lothe [225]) or using 
an integral formalism that avoids the solution of the sextic equation (10.11) and 
is more adequate for the purposes of numerical computation (Asaro, Hirth, Barnett, 
and Lothe [9]). 

When considering complicated dislocation configurations, it is frequently 
more convenient to decompose them into finite dislocation segments, the stress 
field of each segment being calculated with the aid of (11.4), and then to sum up 
the individual contributions of all segments. With the notation in Fig. 11.2 we have 
for the dislocation segment AB: 

R = Ilx - x'II = p cosec(O - IX), dl = p cosec2(0 - d) dO, 

where p denotes the distance from the field point P to the segment AB. Substituting 
these expressions into (11.4) and integrating by parts twice the term containing the 
second derivative of a(O), we obtain (Brown [43], Asaro and Hirth [8]): 

T(P) = - - - a(O) cos(O - IX) + sm(O - IX) • 1 [ da(O). J lOB 
2p dO lOA 

(11.16) 

As the x1x2-plane can be arbitrarily rotated around AB it is obvious that (11.16) 
completely determines the stress field of the dislocation segment. In view of the 
wide applicability of this formula, Asaro and Barnett [10] have elaborated a nu-

Fig. 11.~. The geometry of a straight 
dislocation segment AB. 

merical method which permits the direct calculation of the functions a(O) and 
oa(O)/dO, without solving the sextic equation (10.11). The attractive feature of for­
mulae (11.4) and (11.16) is that it is possible to calculate the values of a(O) and 
of its angular derivatives over a sufficiently large range of orientations and to store 
the results in some convenient form for later use (see also Sect. 12.3). 

Clearly, the elastic field of any planar or non-planar dislocation loop may be 
approximated by that of a corresponding polygonal loop, i.e. of a union of finite 
dislocation segments, but is not obvious a priori that going from a segment in one 
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plane to another in a different plane does not introduce some "termination" errors, 
especiaHy when angular derivatives do intervene in the calculations. However, 
Bacon, Barnett, and Scattergood [396] succeeded to demonstrate that (11.16) actuaHy 
gives the three-dimensional contribution of a dislocation segment, by using the 
foHowing argument (see Fig. 1 1.3). 

p 

~ 
/; ,1\ 

/ / I. 1\ 
/r' / I I \ 

:.;. ~ j I ~ 

/{ 'b'h n\ ~~ 
w ~ 

I I ~ 
" I E' C 0' 

Fig. 11.3. Schematic construction 
of a polygonal dislocation from 

bi-angular dislocations. 

An arbitrary non-planar polygonal dislocation ABeDE ... is replaced by 
a union of by-angular dislocations A' ABB', B' Bee', ... , such that aH (infinite) 
rays AA', BB', ... pass through the current field point P. Clearly, the stress field 
of each by-angular dislocation can be computed by formulae (11.4) and (11.16) 
without termination errors. On the other hand, when summing these stress fields, 
the rays AA' and A'A, BB' and B'B, etc. bring no net contribution, since they have 
equal Burgers vectors and opposite directions. Consequently, the total field is given 
simply by (11.16) successively applying (11.16) to the dislocation segments AB, Be, 
CD, ... 

By using (11.6), Korner, Prinz, and Kirchner [439] have constructed isostress 
lines around finite segments of partial dislocations in silver crystals, and used them 
to visualize various interaction effects between segments of partials, as weH as the 
zigzagging of partials in unstable directions. 

Shortly after the publication of the results of Lothe and Brown in 1967, 
Indenbom and Orlov [168-170] have elaborated a very ingenious procedure for the 
calculation of Green's tensor functions of linear homogeneous differential operators 
with partial derivatives and constant coefficients for n-dimensional infinite spaces 
(where n is an odd integer) from the corresponding Green's tensor functions of a 
hyperplane. In particular they have proved the foHowing generalization of Brown's 
theorem. 

Theorem (Indenbom and Orlov [168]). The stress field T(x) of a piecewise 
smooth dislocation loop L is given by 

(11.17) 

where t is the unit vector tangent at x' to L, and a(x, 't) denotes the stress field at x of 
an infinite, straight dislocation with the same Burgers vector as L, passing through 
the origin, and parallel to 'to 
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Proof First, note that (11.2)2 may be rewritten as 

(11.18) 

where 't is the unit vector tangent at x' to Land 

(I 1.19) 

Moreover, it may be shown that (11.18) is equivalent to 

(11.20) 

Indeed, by making use of Stokes' formula (1.54), 

and considering (1.11) and (11.19)2, the difference between the right-hand sides of 
(11.20) and (11.18) may be transformed into the surface integral 

( hi [3Tlf.~(x - x') + (xm - x;") TWm(x - x')] dsJ• 
)s+ 

On the other hand, Tlf,Xx - x') is a homogeneous function of order -3 in the 
components of x - x', i.e. 

I1f.W.x) = IAI-3Tlf.~(x) for any A =F 0, x =F 0, (11.21) 

and hence, by Euler's theorem, the integrand of the surface integral vanishes. 
Let us apply now the relation (11.20) to an infinite straight dislocation passing 

through the origin, parallel to 't, and having the same Burgers vector as L. Denoting 
the corresponding displacement gradient by P(x, 't) and putting x' = l''t, we obtain 

(11.22) 

It can be readily proved, by considering (11.21), that pex, 't) is a homogeneous 
function of order -1 in the components of x and of order 0 in the components of 
't, i.e. 

P(AX, Jl.'t) = IAI-1P(x, 't) for any A, Jl. =F 0, x, 't =F o. (11.23) 
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Next, decomposing the integration interval in (11.22) into the union (- 00, 0) u 
u (0, 00), operating in each integral the change of integration variable [' = lIs, 

.and taking into account (11.21), we find 

(11.24) 

Now let us apply on both sides of this equation the operator xkxm0210TkoTm' Since 

Xk _ 0_ T,!!!) (r - xs) = - ~ T!!!) (r - xs) 
:1 '},r d ,],r , 
uTk S 

we obtain 

Dividing again the integration interval into (- 00, 0) U (0, 00), integrating by parts 
twice each integral, and taking into consideration that 

d1iP.) (r - xs) 
lim s '},r = 0, lim Tfj!r('t - xs) = 0, 

s .... ±oo ds s .... ±oo 

we get 

Next, we replace x by 't, and 't by x - x' i: 0, the latter substitution being possible 
~n account of (11 .23). Then 

Finally, introducing this result into (11.22) yields 

(I 1.25) 

and the theorem is proved, since (11.25) and (11.3) imply (11.17). 
Indenbom and Orlov [168] have also proved that (11.17) generalizes Brown's 

result (11.4), and have applied (11.25) and (11.23) to show that the displacement 
gradient of a dislocation ray with initial point at the origin and directed parallel to 
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the unit vector 't is 

H(x) = + [P(X, 't) - Tn' OP~~n X) ]. (11.26) 

Formulae of the type (I 1.26) can be also used to obtain the field of polygonal dislo­
cations and to study dislocation interactions (cf. also Indenbom and Dubnova 
[432], OrIov and Indenbom [456]). 

Asaro, Hirth, Barnett, and Lothe [9) have derived formulae which allow the 
numerical computation of the directional derivatives involved in (11.25). However, 
when handling complex dislocation configurations, it seems preferable to use the 
two-dimensional formalism based on Brown's theorem, as explained above. 

In the next section, we shall come back to the application of Lothe-Brown­
Indenbom-Orlov geometrical techniques in connection with the calculation of 
self-energies and interaction energies of dislocations. 

11.2. Willis' method 

Willis [383] has obtained a direct evaluation of the integrals occurring in (11.1) 
and (11.2)2 by using the expression of Green's tensor function obtained by Fourier 
transformation of the equilibrium equations (Sect. 6.4). This method leads in some 
cases to results which are more explicit than those given by the method of Lothe, 
Brown, Indenbom, and Orlov. The relationship between the two methods has been 
investigated by Malen [226] and by Asaro, Hirth, Barnett, and Lothe [9]. 

With the notation in Sect. 6.4, we deduce from (6.55) that 

G (x _ x') = _1 _ Re ( Dtik) e-ik.(x-x') dV'. 
hp 8n3); D(k) 

Differentiating this relation with respect to X, and taking into account that Re( - iz) = 
= Imz, we have 

G (x - x') = _I_1m ( k,DMk) e-ik,(x-X')dli 
hp.1 8n3)i D(k) 

and, by substituting this result into (11.1) and (11.2)2> we infer that 

u (x) = _ _ I_he. Im( ds'.( k,D:ik) e-ik,(x-x')dli. 
p 8n3 t tJhl )s+ J)i D(k) 

(11.27) 

H (x) = _I_e. '" e . 1m I dx' ( k,D:P(k) e-ik'(X-X')dv. 
pr 8n3 qJr"t tJhl J L q)i D(k) 

(11.28) 

Willis' procedure consists in evaluating the integrals involved in (11.27) and 
(11.28) in the real space S as well as in the phase space i, for various dislocation 

12-c. 120 
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configurations. We shall briefly review below the results available in the literature for 
straight dislocations and dislocation loops. 

Infinite straight dislocation. Consider first an infinite straight dislocation with 
Burgers vector b, passing through the origin, and directed along the unit vector J, 
arbitrarily oriented with respect to the standard crystallographic axes. Let In and 
o be two arbitrary orthogonal unit vectors, such that J = m X 0 (Fig. 11.4). 

Xz 

Fig. 11.4. Orthogonal frame asso­
ciated with a straight dislocation 

line with unit vector I. 

Neglecting the influence of the dislocation core, one may choose as cut surface 
S the infinite strip x· 0 = 0, - R ~ X· In ~ 0, which is bounded by the given dislo­
cation line and by a parallel dislocation line distant R from it; R is assumed to be 
large enough such that the field contribution at x be negligible compared to the contri­
bution of the dislocation passing through the origin. Then, by evaluating the inte­
grals in (11.27) and (11.28), Willis [383] obtains 

3 

uix) = - 1m ~ njFjimA) In (x. InA/R), (11.29) 
A=1 

3 

Hp,(X) = Ejr.l. 1m t FjimA)/(x.mA)· (11.30) 
}.=1 

Here and in the following we denote for any unit vector k: 

1 kID;h(k) }. k ). 
Fjp(k) = -;- btC,jhl oD(k) k = + oco , 

n q ---'--''--

okq 

(11.31) 

where coA, A. = 1,2,3, are the three roots with positive imaginary parts of the 
sextic equation 

D(k+ o co) = o. (11.3 2) 

Since the orientation of J with respect to the co-ordinate axes is arbitrary, 
it is no more necessary to transform the elastic constants, as in Sect. 10, from the 
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standard crystallographic axes to those associated with the dislocation line. It is 
easily proved that Willis' solution (11.29) does not depend on the choice of the 
unit vectors m and D, as was to be expected. It may be also shown that (11.30) is 
equivalent to the equation 

3 

Hpr(x) = - 1m ~ njm:Fjim'-> !(x.m).), 
).= 1 

which results directly from (11.29) by partial differentiation with respect to Xr• 

Clearly, Willis' method requires the solving of a sextic equation of the same 
type as (10.9). In addition, the solution (11.29) is applicable in this form only when 
the roots a/'- are simple; the degenerate cases of multiple roots must be considered 
separately, by using a suitable limiting process 1. 

An alternative approach based on the technique elaborated by Barnett [16] 
for the numerical computation of the derivatives of Green's tensor function (see 
Sect. 6.4) has been applied to dislocation problems by Barnett and Swanger [15], 
Asaro and Hirth [8], and Asaro and Barnett [10]. It has the advantage of avoiding 
the solution of a sextic equation as well as of degenerate cases. Moreover, high 
accuracy may be obtained after reasonable computation times by using standard 
Romberg integration schemes (cf. also Meissner [244]). 

Finite straight dislocation segment. For a finite straight dislocation segment of 
direction I, connecting the points (X and ~ and having the Burgers vector b, Willis 
[383] obtains from (11.28) after a somewhat more complicated calculation 

where p(x) is the distance from x to the dislocation segment, 

D= 
«(X - x) x (~ - x) 

II«(X - x) x (P -x)11 
, g(x, ex) = D X «(X - x) 

II(X - xli 

g(x, ~) = D X (~ - x) 
IIP- xii 

3 

fjP(k) = 1m ~ Fjp(k).), 
.1.=1 

(11.33) 

(11.34) 

(11.35) 

and w\ A = 1,2,3, are the three roots with positive imaginary parts of the sextic 
equation 

D(g + DW) = 0, 

1 The form assumed by the solution (I1.29), (11.30) in the isotropic limit has been given 
by Meissner [244 J. 
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where g is given by (11.34)2 and (11.34)3 for ce and p, respectively. Inspection of 
(11.34) reveals that n is a unit vector perpendicular to the plane passing through 
the points ce, p, x while g(x, ce) and g(x, P) are vectors situated in this plane and 
perpendicular to ex - x, and respectively p - x (Fig. 11.5). 

Fig. 11.5. Geometrical variables 
used in Willis' formula for the 
displacement gradient of a straight 

dislocation segment. 

It may be seen that, as II ce II and liP II tend to infinity, g(x, ce) and g(x, P) tend 
to - m and m respectively, and (11.33) reduces to (11.30), as it should be. 

By using a similar approach as Willis', Sekine and Mura [471] have recently 
determined the displacement field and the displacement gradient of a finite straight 
dislocation dipole in an unbounded anisotropic elastic medium. The results are 
expressed in terms of line integrals along a contour on a unit sphere. 

Dislocation loops. Clearly, the finite dislocation segment considered above is 
not a real orystal defect, since dislocations cannot end within an otherwise perfect 
crystal region. In exchange, it provides the elastic field of a "dislocation element", 
by the integration of which it is possible to obtain the elastic field of a finite dislo­
cation loop. More precisely, let us consider an arbitrary smooth, open or closed, 
dislocation are, which is represented parametrically by 

x' = x'(t), t E [a, b], (11.36) 

where t is the arc length. The displacement gradient produced by this dislocation arc 
may be obtained by putting ce = x'(t), P = x'(t) + I(t) At in (11.33), performing 
the appropriate limiting process as At ... 0 and then integrating with respect to 
t. The result reads 

Hpr(x) = _1 E irs (b I.(t) ~ Jjp[g(X, x')] dt, 
2 ).. pet) dt 

(11.37) 

where pet) is the distance of x to the tangent at x'(t) to the loop. Integrating 
by parts, it follows that 

Hpr(x) = -Eir• --jjp[g(x, b)] - --ijp[g(x, a)] + 1 { I.(b) I.(a) 

2 pCb) pea) 

+ (b f,. [g(x, x')] ~ ( IsCt) ) dt} , Ja JP dt pet) 
(11.38) 

where a = x'(a), b = x'(b), and g(x, x') = n X (x' - x)/llx' - xII. 
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Now, the total field produced by a dislocation loop may be found by dividing 
the loop into smooth arcs and summing up their contributions of the form (11.38). 
This remark has been the starting point of the calculation done by Bacon, Bullough, 
and Willis [II] for the self-energy of a rhombus loop constrained to slip on a {111} 
glide prism in f.c.c. metals. By calculating the elastic and the core energy of the 
loop it has been found that the minimum-energy configuration is close to the {012} 
orientation, in accordance with experimental data on rhombus-shaped vacancy 
loops in quenched aluminium. 

Another case of curvilinear dislocation studied by Willis [383] is the elliptical 
loop, defined by the equations 

(I. X')2 (m. X')2 
- - - + --- -1 o·x'=O, a2 b2 -, 

(11 .39) 

where {I, m, o} denotes an arbitrary orthonormal frame (Fig. 11.6). In this case, 
after performing the integrations in (11.6) and (11.7), one obtains 

(11.41) 

where r is the unit circle in the plane of the lOop and having the same centre as 
the loop, g is the unit vector perpendicular to 0 and connecting the origin with a 
current point on r, hence Ilgll = 1, g·o = O. 

Fig. 11.6. The geometry used to 
apply Willis' formula to an ellip­

tical dislocation loop. 

For a plane circular loop, by setting a = b = R in (11.41) and taking into 
consideration that (g .1)2 + (g. m)2 = 1, we obtain 

(11.42) 

This formula has been applied by Meissner [244] to calculate the distortions pro­
duced by circular dislocation loops in copper and a-uranium, the latter being known 
as a highly anisotropic material. 
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11.3. Self-energy of a dislocation loop 

Consider a dislocation loop L lying in an anisotropic elastic body occupying a 
region "r of traction-free boundary Y. Isolate the dislocation core by a thin tube 
Io of radius ro and denote by S a cut surface connecting 1:0 with Y, and by So 
the part of S not enclosed by Io (Fig. 11.7). 

Fig. 11.7. On the definition of the 
self-energy of a dislocation loop. 

L 

The total self-energy ir t of the dislocation loop is defined by 

ir, = "If!'o + ir, 

where "If!'o is the potential energy of the dislocation corel, and "If!' is the strain energy 
of the part -ro of the body not enclosed by I o' i.e. 

(11.43) 

By taking into account that 

Tkm,m = 0 in -r 0' 

and making use of Gauss' formula (1.52), we obtain from (11.43) 

(11.44) 

where 

"If!'cut = - 2-b. ( Tn ds, 
2 )so 

"If!'tube =2-( (Tn).uds. 
2 ).~'. 

(11.45) 

1 This part of the self-energy can be calculated only by a combined atomistic-continuum 
model (sec Sect. 16). 
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It should be noted that 0 denotes in (11.45)1 the unit normal to S in the sense given 
by the right-hand rule with respect to the positive sense chosen on L, while in (11.45)2 
it designates the inner unit normal to I'o (Fig. 11.7). 

The expression (11.44) is also valid for a finite dislocation loop in an infinite 
body, for the stresses decay in this case as r-3 as r = IIxll--. 00, and hence the sur­
face integral taken on !/ vanishes again as !/ is continuously deformed to infinity_ 

By using one of the methods presented above in this section it is possible to 
numerically evaluate both integrals in (11.45), at least for an arbitrary polygonal 
loop. Thus, Bacon, Bullough, and Willis [11] have used Willis' solution for the 
elastic state of a straight dislocation segment in order to calculate the strain energy 
"Ir of a rhombus-shaped dislocation loop constrained to glide on a {111} prism in 
aluminium and copper. 

A very careful analysis of the self-energy of a planar dislocation loop and of 
the associated self-force has been undertaken by Gavazza and Barnett [419]. Before 
reviewing their results, however, we will rewrite the expression given in Sect. 10.3 
for the strain energy of an infinite straight dislocation in a more invariant form. 

Let L(I) be an infinite straight dislocation lying in an infinite anisotropic elastic 
medium along the unit vector I. Denote by 0 the unit normal to the slip plane, and 
let m = 0 X I. Choose the cut surface S as the half-plane defined by x· 0 = 0, 
m· x ~ 0, and denote as before by So the part of S not enclosed by a thin cylindrical 
tube I'o of radius ro surrounding the dislocation line. Clearly, we may express 
the results obtained for the straight dislocation in terms of the Cartesian firame 
{I, m, o} by simply noting that the frame used in Sect. 10.3 was rei' e2, es}, 
where e1 = - m, e2 = - 0, ea = I. Thus, from (10.58) and the subsequent 
analysis, it follows that the strain energy stored per unit dislocation length between 
the cylindrical surfaces of radii ro and R is 

w(l) = - ~ b· ( To ds, 
2 ~SR 

(11.46) 

where S R denotes the part of S of unitary length along L and such that r 0 ~ m· x ~ R. 
Next, let us designate by 0'(1), as in the proof of Brown's theorem, the stress field 
evaluated a unit distance away from L(I) in the direction of m. Then 

T(x + Am) = a(l)jA for any A i= 0, xE L. (11.47) 

Substituting (11.47) into (11.46) and taking into account that '0 ~ }, ~ R on S R' 

we find 

w(I) = - - b· 0'(1)0-' 1 ~R d}' 

2 '0 }, 
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wherefrom it follows tha t 

w(l) = E(I)ln(Rjro), (1l.48) 

where 

E(I) = - ~ b· a(l)o 
2 

(1l.49) 

is the so-called prelogarithmic factor of the strain energy of a straight dislocation. 
Let us consider now a planar dislocation loop L of Burgers vector b and use 

the notation in Fig. 11.1. Starting from Brown's formula (11.4), Gavazza and Barnett 
([419J, App.) have proved the following lemma, which we state without proof. 

Lemma. Let x' be a current point on a planar dislocation loop L, 1 the unit 
tangent to L at x, and m the unit principal normal to L at x'. Then the stress field of 
L at x' + Am, A> 0, admits of the following asymptotic representation 1 for A _ 0: 

T(x/+Am)= a(l) +_I_ [a(l)+d2a(l) ]In( 8p )+J(L,X/), (1l.50) 
A 2p d(X2 A I 

where (X is the angle between a fixed direction in the plane of the loop and I, p is • the 
radius of curvature of L at x', and the tensor field J(L, x') is bounded as A _ o. 

Inspection of (1l.50) reveals that the singularity of the in-plane self-stresses 
of a dislocation loop L at x' is that of an infinite straight dislocation L(I) tangent 
to L at x' plus a weaker curvature-dependent logarithmic singularity. 

Next, Gavazza and Barnett [419] write the variation of the strain energy corres­
ponding to an arbitrary virtual displacement along and normal to L, in the form 2 

(11.51) 

where f, br and dl depend on the current point x' of L. Then, in accordance witt 
Eshelby [107, Ill], the elementary in-plane self-force on and normal to the elemen 
dl of L at x' is defined as the product f d/. 

Here are the main steps of the argument used by Gavazza and Barnett to 
derive the expression off. First, a planar cut So is chosen, passing through Land 
bounded by its intersection with the tube r o' say Lo. Then, the variation of iIIcn ! is 
shown to be given by 

(1l.52) 

1 It should be remembered that formulae (11.1-4), and hence also (11.50), hold rigorously 
only if the influence of the core tractions on the dislocation stresses outside 2'0 is neglected. 

2 In the whole analysis the variation lJ1Y t of the potential core energy is not taken into 
account. 
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where TO is the stress field of a fictitious dislocation loop of line Lo and Burgers vector 
b. Next, the asymptotic representation (I 1.50) is used to evaluate the fields T and 
TO on Lo and L, respectively, thus obtaining from (11.52) 

{rll'"cut= ~l {_I E(I) __ I [E(I) + d2E(l)] In (_8P ) _ J(L, XI)} dl + O(ro)' 2h P P d~ ~ 
(11.53) 

where J(L, x') = - b . J(L, x') n, and E(I) denotes the prelogarithmic factor given 
by (11.49). 

The second step of the proof is the evaluation of the tube contribution Ml'"tube 
to {fif". Here the assumption is being made that the value ofif'"tube associated with 
each elementary segment dl of L at x' can be evaluated 1 using only the stresses and 
displacements of an infinite straight dislocation L(I) tangent to L at X'. By making 
use of this approximation, 1f'"tube and its variation are shown to be given by 

(11.54) 

o if'" tube = - F(I) + Or dl + O(r 0)' f 1 [ d2F(I) ] 
L P dCl(2 

(11.55) 

where 

F(J) = ~ t· U r 0 dO ~2" 
2 0 

(11.56) 

is precisely the first integral in (10.58) calculated for a straight dislocation directed 
along I. Finally, by summing (11.53) and (11.55), neglecting terms of the order 
O(ro), and comparing with (11.51), one obtains the following result. 

Theorem. (Gavazza and Barnett [419]). The component on the prinCipal normal 
m of the seif-force exerted on the element dl of a planar dislocation loop L at x' is 
fdl, where 

f = + {E(I) - [ E(I) + d:~~IL ] In ( ~ ) _ [ F(I) + d::~I) ]} - J(L, x'). 

(11.57) 

Clearly, E(I), F(I) and their angular derivatives may be calculated by using 
the explicit solutions obtained by Stroh and Willis for the infinite straight dislocation 
and described in Sects. 10.3 and 11.2, respectively. Alternatively, E(I) and its second 

1 Bacon, Bullough, and Willis [11] have used the same approximation and asserted that the 
error made is of the order rolA as compared to unity, where "1 is the length of the dislocation 
loop. 
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angular derivative may be calculated by using a numerical method developed by 
Barnett and Swanger [15], Barnett, Asaro, Gavazza, Bacon, and Scattergood [17], 
and by Asaro and Hirth [8], which allows the direct evaluation of the in-plane stress 
components of a planar dislocation loop without solving sextic algebraic equations. 

A compilation of numerical values, obtained on these lines for the preloga­
rithmic factor and its first and second angular derivatives, as well as for the stress 
vector acting on the slip plane of an infinite straight dislocation, has been given by 
Bacon and Scattergood [394, 395] for a few slip systems in cubic and hexagonal 
close-packed crystals. They use a Cartesian frame {iI, i2, i3}, where it = bib, i3 = n, 
the orientation of the dislocation line in the slip plane with normal n being given 
by the angle lJ which is chosen such that b X 1 = (b sin lJ) n, where 1 is the unit vector 
along the dislocation line. The computed quantities are E(lJ), E'(lJ), E"(lJ), and the 
(;omponents 't'1(lJ), 't'2(lJ), 't'3(lJ) of the vector t(lJ) = (1[2) a(lJ)n. Clearly, in the chosen 
frame, E(lJ) = -'t'I(lJ)b, while the stress vector acting on the slip plane with unit 
normal n at the point x + Am with x E L(I) is given by t(x + Am) = 2t(lJ)/A, A i= O. 
All quantities are fitted to trigonometric polynomials in 0; it is remarkable that 
accuracies of better than 0.5% could be generally obtained by using at most 4 to 5 
harmonics. 

No attempt has been yet made to evaluate the self-energy and the self-force of 
a non-planar 1 dislocation loop by starting from the stress field given by the formula 
of Indenbom and Orlov (Sect. 11.1). 

12. Interaction of single dislocations 

12.1. Interaction energy 
between various elastic states 

Let us consider a linear elastic body 31, which occupies a region "Y of boundary 9'. 
By a kinematically admissible state of 31 we mean an admissible state that satisfies 
the kinematic equations (6.1), the constitutive equations (6.3), and the displacement 
boundary condition (6.20)lon the part9' 1 of the boundary 9'. We call potential energy2 
4I{ d} corresponding to a kinematically admissible state d = [u, E, T] the difference 
between the strain energy ir and the work !t' done by the body forces f and by the 
surface tractions to prescribed on the part 9'2 of 9'(9'1 U 9'2 = 9',9'1 and 9'2 
have no common interior points), i.e. 

(12.1) 

1 Recently, however, Shoeck and Kirchner [468] have proved by using dimensional analysis 
that the cut contribution 'lrcut to the strain energy of a non-planar loop can be expressed as 

1r cut = [h E (I) (It] In (Llro), where i is some linear extension of the loop, e.g. the square 
root of its largest plane projection area. 

2 For adiabatic thermoelastic processes, 'Ir coincides with the internal energy U, and I/> is 
called the enthalpy, being usually denoted by H. For isothermal thermoelastic processes 'Ir coincides 
with the free energy F, and I/> is called the/ree enthalpy, being usually denoted by G (cf. also Sect. 4). 
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The importance of this concept for linear elastostatics results from the following 
extremal property. 

Principle of minimum potential energy. Let 0 be a solution of the mixed boun­
dary-val-ue problem of linear elastostatics. Then 4>{0} ~ <P{j} for any kinematically 
admissible state J, and equality holds only if J differs from 0 by a rigid displacement. 

Proof By setting 0' = 0 - 0, we have 

E~I = .} (U~. l + Ul.k)' T~I = CklmnE:"n in f; u~ = 0 on [/1' (12.2) 

On the other hand, definition (12.1) implies that 

<P{j}-<P{o}=+( (i'.E-T.E)dv-( to.u'ds-( f·u'dv. (12.3) 
~ )~ ~ 

Next, in view of (12.2)3' we can replace the integral taken on [/2 by the same 
integral extended to [/, and hence, by Gauss' formula (1.52), and taking into account 
that 0 satisfies (6.2) and (6.20)2' we obtain 

Substituting this result into (12.4) yields 

<P{ J} - <P{o} = 1f/'(E')= ~'Y WeE') dv. 

Since the strain energy density WeE') is positive definite, we conclude that <P{o} ~ 
~ <P{ J} for any J, and <P{ o} = <P{ o} only if E = E, i.e. if 0 and :; differ by a rigid 
displacement. 

It is worth noting that Kirchhoff's uniqueness theorem for the mixed boun­
dary-value problem follows as a corollary of the principle of minimum potential 
energy. Indeed, let 0 and J be two solutions of the mixed problem.Then, <P{o} ~ 
~ <P{ j}, <P{ j} ~ <P{o}, and hence 0 and J must be equal to within a rigid displacement. 

If the surface tractions to are prescribed on the whole boundary of the body, 
i.e. if [/2 = [/, and if 0 is an elastic state, then (12.1) and the theorem of work and 
energy (6.20) imply that 

<P{o} = -"II'"=-!.( T·Edv = -~( to . uds - ~( f'D dv. (12.4) 
2 )'Y 2 )S' 2 )'Y 

Whenever the potential energy may be expressed as a function of a finite or 
infinite number of generc1lized co-ordinates of the system, the partial derivatives of 
the potential energy with respect to the generalized co-ordinates, corresponding to 
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any kinematically admissible state and taken with opposite signs, may be considered 
as generalized forces that tend to bring the system to an equilibrium configuration. 
Such definitions, which are introduced by analogy with similar concepts used in 
analytical mechanics and thermodynamics, are justified by the fact that the equili­
brium state corresponds, according to the above principle of minimum potential 
energy, to the vanishing of the generalized forces. 

By potential energy of interaction 4>int{<1, <1*} between two kinematically ad­
missible states <1 and <1*, we mean the difference between the potential energy of the 
state <1 + <1* and the sum of the potential energies of the states <1 and <1* taken sepa­
rately, i.e. 

4>int{O, -o*} = 4>{o + -o*} - 4>{o} - 4>{-o*}. (12.5) 

For the sake of simplicity, we assume in the following that //2 = // and tha t 
o and -0* are elastic states corresponding to the external force systems [f, t] an d 
[f*, t*], respectively. It then follows from (12.5) and (12.1) that 

4>int{O, -o*} = +~.y (T.E* + T* .E) dv- ~.S" (t ·u* + t* .u) ds-

-~.y (f.u* + f* .u) dv, (12.6) 

and, by Betti's reciprocal theorem (6.17), we obtain 

pint{-o,-o*} = -~.y T·E* dv = -~.S" t·u* ds -~.y f'u*dv= 

(12.7) 

Sometimes it is more convenient to use the potential energy of interaction 
instead of the total potential energy 4>{<1 + -o*}. For instance, if ° and 0* are singular 
elastic states produced by two crystal defects, then the potential energy of interaction 
may assume a finite value, although linear elastostatics predicts infinite values 1 

for both 4>{<1} and 4>{d*}. For this reason, we will adopt (12.6) as a definition of the 
potential energy of interaction whenever the integrals involved are convergent. 
In particular, let ° = [u, E, T] and <1* = [u*, E*, T*] be two singular elastic states 
produced by the external force systems [f, t, P], and respectively [f*, t*, P*], where 
P and p* are systems of concentrated loads with disjoint domains f!) and f!)*, res-

1 The real finite values of these potential energies may be computed by using an ato­
mistic description of the close neighbourhood of the defects and by taking into account that 
real crystals have always finite dimensions (see Sects. 16 and 22). 
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pectively. Then, applying (12.6) to the region obtained from -r by eliminating dis­
joint balls of radius t1 centred at the points of 57), letting t1 -+ 0, and taking into 
account (6.68) and (6.69), we find 

4>int{a, a*} =..!. ( (T ·E* + T*· E) dv - ( (t 'u* + t* .0) ds -
2)f )~ 

- ( (f.u* + f* ·u) dv - ~ P(x'). u*(x')- ~ P*(x'). u(x'). (12.8) 
lr x' EJj x' EJj" 

By the reciprocal theorem for singular elastic states (6.70), this relation may be 
also rewritten as 

4>int{a,a*}=-( T.E*dv=-( t.u*ds-( f·u*dv- ~ P(x').u*(x')= 
)f )~ )f x'EiB 

= - ( T*·E dv = - ( t*·u ds - ( f*·u dv - ~ P*(x'). u(x'). (12.9) 
lr )~ )f x' E!P" 

This definition of the potential energy of interaction is still applicable for infinite 
regions with finite boundaries, provided that the singular elastic states vanish rapidly 
enough at infinity, e.g. when conditions (6.71) are fulfilled. 

If the position of a defect D situated in an infinite elastic medium may be 
uniquely characterized by the position vector x of some characteristic point of the 
defect, then the force exerted by an elastic state a* on the defect is by definition 

F = - graclx 4>int{D, a*}. (12.10) 

We will apply now the above considerations to the interaction between the 
singular elastic state a = [u, E, T] produced by a dislocation of line L and Burgers 
vector b and a regular elastic state a* = [u*, E*, T*] produced by the surface tractions 
t*. Then 

TkI • 1 = 0 in -r""L, 

Ttt.1 = 0 in -r, T~nl = It on~. 

(12.11) 

(12.12) 

From the definition (12.6) and considering (12.11h, we deduce that the inter­
action energy is given by 

4>int{L, a*} =..!.. ( (T ·E* + T* .E) dv - ( t*. u ds. 
2 )f )~ 
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In order to show that the volume integral is convergent we first isolate the dislocation 
line by the closed surface I composed of the two faces S + and S- of the cut S used 
to generate the dislocation and of the tube Io of radius '0 surrounding the loop L 
(Fig. 7.5). Then 

( (T.E* + T*.E) dv = lim ( (T .E* + T*·E)dv, Jy ro-+O }'Yo 

where "Yo denotes the region bounded by I and the outer surface Y. Next, taking 
into account that T. E* = T* . E = Tk/Uk,l' we infer by partial integration and consi­
dering (12.12) that 

~( (T.E*+T*.E)dv=( t*.uds+( (T*o).uds, 
)~ k 1 (12.13) 

where 0 denotes the outer unit normal to I (with respect to "Yo). From the last 
three relations it follows that 

IPint{L, o*} = lim ( (T*o).u ds. 
ro-+O J!: (12.14) 

But T*o must be continuous across S, while u satisfies the jump condition (9.1). 
Thus 

IPint{L, o*}= lim (( t*·u ds - b· ( T*o ds), 
r 0-+0 }Eo }so 

where now D denotes the unit normal to S in the sense given by the right-hand rule 
with respect to the positive sense on L, while So is the part of S not enclosed by I o' 
To evaluate the first integral in the right-hand side of (12.14), we decompose it 
into integrals taken on circular cylindrical surfaces corresponding to the division 
of L into small straight segments. Then, according to Sect. lO, u diverges as In '0' 
and hence is o(rol), as ro - O. On the other hand, t is continuous in the vicinity of 
L, and hence, the limiting value of the integral taken on Io is zero. Thus, the inter­
action energy has the finite value 

(12.15) 

where now the integration is extended to the whole cut surface S. 
In order to determine the force exerted by the stress field T on an infinitesimal 

segment dl of the dislocation loop, let us assume that this segment undergoes a 
virtual translation c5x. The variation of the oriented area element ods is 

(12.16) 
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and the corresponding variation of the interaction energy is 

By comparing this result with definition (12.10), we see that the force exerted by 
the stress field T on the dislocation segment dl is (Peach and Koehler [265]) 

dF = -(T*b) x dl, (12.17) 

its direction being perpendicular to the dislocation segment. From (12.17), we also 
conclude that the total force exerted by the stress field T on the dislocation loop is 

F = - ~ (T*b) x dl. (12.18) 
.lL 

Equation (12.13) yields also another interesting result. By making use of 
Betti's theorem (12.7) for the elastic states,; and 0*, which are regular in "Yo, and 
taking into account (12.11), we successively obtain from (12.13) 

lim2.( (T.E*+T*.E)dv=lim( t.u*ds=lim( t·u*ds, 
ro~O 2 Jro ro~O )l: ro~O )l:o 

the last transformation being permitted because both t = Tn and u* are continuous 
across S. On the other hand, since u* is continuous in the vicinity of L, and the 
resultant force of the tractions acting on 1:0 from the dislocation core is zero, we 
conclude, by making use of the mean theorem of the integral calculus that the above 
limit vanishes. This result, which is due to Colonnetti [79), may be formulated as 
follows: The part of the strain energy that is due to the interaction between an elastic 
state produced by surface tractions and a state of self-stress is zero. 

12.2. Elastic interaction between dislocation loops 

It is easily seen that formula (12.15) holds also for the interaction between two 
non-intersecting loops of lines Land L *, i.e. 

<Pint{L, L*} = - b· ~s T*n ds, (12.19) 

where T* is the stress field of the dislocation loop L *, and it is assumed that the cut 
surface S does not intersect L *. The proof proceeds on the same lines as before, 
but L* must be also isolated by a surface 1:* of the same type as E. Then, a rea­
soning similar to that leading to (12.14) yields 

<Pint{L, L*} = lim ( (T*n)·u ds + lim ( (T*n)·u ds, 
r o~O )l: r :~o )l:* 
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where rt is the radius of the tube It surrounding the loop L *. On the other hand 
the second limit in the right-hand side vanishes, since u is continuous in the vicinity 
of L * and the resultant force of the tractions acting on I* is zero; hence the last 
relation reduces indeed to (12.19). 

In order to derive the elastic energy of interaction between two dislocation loops 
Land L* in an isotropic medium, we simply introduce (9.20) into (12.19), thus 
obtaining 

4>int{L, L*} = - ph;: r nr dsf [~R,mmt(Erst dx;+ E pSt dx~) + 
4rr)s L* 2 

where R = Ilx -x* II. By transforming this equation with the aid of Stokes' for­
mula, we find after some intermediate calculation (Blin [31]) the relation 

4>int L, L = - dx, --EijkEkln ibj + - b,b" + { *} p f f [I b * I * 
2n L L* R 2R 

(12.20) 

whose symmetry with respect to Land L* is obvious. Kroner [190] put (12.20) into 
the more elegant form 

(12.21) 

where 

(12.22) 

The elastic energy of interaction per unit length of two infinite straight dislo­
cations with lines Land L * parallel to the unit vector J and having Burgers vectors b, 
respectively b*, results from (12.20) as (Nabarro [257]): 

w(L, L*) = - ~ {[(b' J)(b* ,1) + _1 -(b X I). (b* X I)] In R + 
2n 1 - v 

+ 1 [(b X J)' R][(b* X J) . R]} , 
(I - v) R2 

(12.23) 
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where R is any vector perpendicular to I and connecting L to L*, and R = IIRI!. 
We mention one more result due to Kroner [190] and concerning the elastic 

energy of interaction between two coaxial circular dislocation loops of the same 
radius a, with the same orientation and Burgers vector b parallel to the axis: 

<l'int{L, L*} = J1b2ak(K - E)/(1 - v), (12.24) 

where K and E are complete elliptic integrals of the first and second kind, respectively, 
and of modulus k given by the relation k 2 = 4a2/(4a2 + d 2), where d is the distance 
between the planes of the two loops. 

The elastic energy of interaction between dislocation loops situated in an 
anisotropic medium may be evaluated by making use of the results presented in the 
preceding section. Thus, the interaction between two coplanar dislocation loops 
can be successfully calculated by means of Brown's formula (11.4). Indeed, let us 
consider two coplanar dislocation loops Land L * having the same Burgers vector b. 
Choose the x3-axis of a Cartesian frame parallel to the unit normal n to the plane 
of the loops (Fig. 12.1). From (12.19) it results 

(12.25) 

where S is the plane region bounded by L, and taken as cut surface. Substituting 
now (11.4) in to (12.25) and taking into account (11.49) we deduce that (Brown [43]) 

<l'int{L, L*} = .!. ( ds J _1_ [E(O) + d2E(O)] sin (0 - a) dl*, (12.26) 
2)s TL* R2 d02 

Fig. 12.1. Two dislocation loops 
lying in the x1x2-plane. 

L 

where R = IIx - x* II, and E(O) = -(1/2)b . a(O)n = -(1/2)b j(J'i3(O) denotes, as 
before, the prelogarithmic factor in the expression of the elastic self-energy per unit 
length of an infinite straight dislocation of Burgers vector b and directed along x - x*. 

13-c. 120 
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Moreover, denote by m(x) the in-plane inward unit normal to L at a current 
point x (Fig. 12.1). Then the perpendicular projection dF(x) on m(x) of the force 
dF(x) exerted by the dislocation loop L * on the line element dl of L at x is given 
(Brown [43]) by 

dF(x) = {l _1 [E«() + d2E«()] sin«() - a) dl*} dl. JL* R2 d()2 
(12.27) 

Indeed, by (12.17) and taking into account that m x dl = -n dl, we successively 
have 

dF(x) = m(x).dF(x) = -m(x).[(T*b) x dl] = 

= (T*b)·[m(x) x dl] = -(T*b)·n dl = -b.(T*n) dl, 

wherefrom (12.27) follows at once by considering (11.4) and the definition of E«(). 
Since E«() may be explicitly calculated for general anisotropy and an arbi­

trary orientation of the dislocation line, it is apparent that equations (12.26) and 
(12.27) allow to solve various problems concerning the interaction between coplanar 
loops and the stability of plane dislocation configurations by using only straight 
dislocation data (Lothe [219], Barnett, Asaro, Gavazza, Bacon, and Scattergood 
[17], Asaro and Hirth [8]). 

An approximate analysis has been undertaken by Korner, Svoboda, and Kir­
chner [437] for the interaction between dislocation segments in regions with free 
boundaries, and has been subsequently applied by Korner, Karnthaler, and Kirchner 
[438] to study the trapezoidal splitting of partial dislocations in thin foils of Ag and 
Cu-10 at% AI; the results obtained seem to be in satisfactory agreement with 
experimental data. However, as pointed out by these authors, the problem of the 
interaction of dislocations in finite anisotropic bodies involves some still unsolved 
aspects, e.g. the consideration of end effects for dislocation lines emergi ng at free 
surfaces and the rigorous fulfillment of the boundary conditions. 

12.3. Groups of dislocations 

The evaluation of the interaction energy and of the interaction forces between dislo­
cations is essential for the understanding and prediction of the equilibrium confi­
gurations of various groups of dislocations, e.g. dislocation walls building small-angle 
grain boundaries and dislocation pile-ups occurring in front of strong obstacles to 
dislocation glide. Such dislocation groups are known to playa very important role 
in both plastic deformation and ductile fracture. 

In order to illustrate the way of handling groups of dislocations by the methods 
presented in this section, we shall briefly consider two basic approaches that allow 
the determination of the equilibrium configurations of planar dislocation pile-ups. 

The method of orthogonal polynomials. Assume that n straight dislocations are 
situated in the plane X2 = 0, have the same Burgers vector b, and are directed along 
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the positive xa-axis. Let aI, a2' ... , an be the values of the co-ordinate Xl = X corres­
ponding to the equilibrium configuration of the pile-up (Fig. 12.2). 

Since now dl, = ~,adl, it follows from (12.17) that the in-plane component 
of the force exerted per unit length of the dislocation j is 

Fig. 12.2. Group of n parallel 
straight dislocations lying in the 
x1x3-plane and having the same 

Burgers vector. o 

(12.28) 

x,=X 

On the other hand, according to Sect. 10.3, the contribution of the jth dislocation 
to (12.28) is 

(12.29) 

where A = Kbf(2n) and b is the magnitude of the Burgers vector. We recall that 
the energy factor K is given in the general anisotropic case by (10.76), while in the 
isotropic case it equals (Jlb)j2n and Jlbj[2n(1 - v)] for screw and edge dislocations, 
respectively. 

Next, let -rex) be the resolved shear stress (Le. the component in the glide 
plane and in the glide direction of the stress field) produced by the external forces 
and all other crystal defects not belonging to the pile-up. The equilibrium of the 
pile-up requires the vanishing of the in-plane net force exerted on each dislocation, 
i.e. 

n A 
~ + -r(aj) = 0, j = 1,2, .. . ,n. 
i=laj-ai 
i*J 

(12.30) 

We will indicate now the main lines of the method proposed by Eshelby, Frank, 
and Nabarro [108] for solving this system of equations 1. 

Consider the polynomial 
n 

I(x) = IT (x -ai) 
i=l 

I This method has been applied for the first time by Stieltjes in 1885 to illustrate the possible 
applications of the orthogonal polynomials to finding out the eqUilibrium configurations of electric 
charges. 
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with roots a1> a2, ... , a". It is easily proved that the pile-up, exc ept the jth dislocation, 
produces the resolved shear stress 

(12.31) 

Passing to the limit for x -+ aj with the aid of I'Hospital's rule and substituting 
the result obtained into (12.30), we find 

f(a) = 0, 
f"(a.) . 

A J + 'rea) = 0, i ] = I, ... , n. 
2f'(a) 

(12.32) 

Clearly, all equations (12.32) are fulfilled if f(x) is a polynomial of degree n 
having the simple real roots aI' a2, ... , an' and satisfying the differential equation 

f"(x) + (2fA}r:(x)f'(x) + q(n, x)f(x) = 0, (12.33) 

where the function q(n, x) is assumed to be finite for x = aj,j = 1,2, ... ,11, but 
is otherwise arbitrary. 

Sometimes it is interesting to consider pile-ups containing, besides the n 
mobile dislocations, m - 11 more dislocations that are fixed by various obstacles 
at points x = x,,, ex = 11 + 1, ... ,m. In this case the reduced stress produced by 
the fixed dislocations must be add ed to 'rex), and hence (12.33) becomes 

f"(x) + 2 ['r(X) + t 1 ]f'(X) + q(n, x) f(x) = 0. 
A ,,=,,+1 x - Xa: 

(12.34) 

Moreover q(n, x) may eventually tend to infinity as x approaches one of the values 
x"' since it is not necessary that the net reduced stress exerted on fixed dislocations 
vanishes. Denoting 

'" F(x) = f(x) n (x - Xa:), (12.35) 
.. =,,+1 

'r(x) '" 1 m 1 
Q(n, x) = q(n, x) - 2 - ~ - ~ , (12.36) 

A ct=n+l x - XII ct,p=n+l (x - Xa:)(X - Xp) 
ct1'P 

the differential equation (12.34) becomes 

F"(x) + (2jA)'r(x)F'(x) + Q(n, x)F(x) = 0, (12.37) 

i.e. assumes the same form as before. However, the reduced stress generated by all 
(mobile and fixed) dislocations is now equal to AF'(x)jF(x). 
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It is interesting that some well-known orthogonal polynomials are solutions 
of the equation (12.34), having thus a direct application in the theory of dislocation 
pile-ups. Here are some of the situations that can be easily treated by means of such 
polynomials. 

(i) n dislocations situated in the interval [ -0, 0], from which n - 2 are mobile 
and two are fixed at points x = ±o; t(x) = O. The corresponding solution of (12.34) 
reads 

f(x) = P~_l(XjO), (12.38) 

where P~_I(X) is the derivative of Legendre's polynomial of degree n -1. The resolved 
shear stresses acting on the dislocations fixed at points x = ±o are ±n(n - I)Aj(4a). 

(ii) n dislocations situated on the ray [0, (0), from which n - 1 are free and 
one is fixed at the origin. The external reduced shear stress is assumed to be constant 
and directed towards the fixed dislocation, i.e. t(x) = -to with to > O. The corres­
ponding solution of (12.38) is 

f(x) = L~(2toXjA), (12.39) 

where L~(x) is the derivative of Laguerre's polynomial of degree n. For large values 
of n, the length of the interval covered by the pile-up on the xl-axis is L = 2nAjto' 
while the total resolved shear stress acting on the fixed dislocation is -mo. 

(iii) n free dislocations under the action of a linearly varying applied shear 
stress, t(x) = txx, tx > O. Denoting by [-0,0] the interval occupied by the pile-up 
on the xl-axis in the equilibrium configuration it results that 

f(x) = HII(x VtxjA), 0 = V(2n + I)Ajtx, (12.40) 

where H,,(x) is Hermitte's polynomial of degree n. 

The method of the orthogonal polynomials has been also used to study the 
elastic field produced by planar dislocation pile-ups in the cases (i) - (iii), as 
well as in various other situations (fixed dislocations with Burgers vector n b, pile-ups 
of dislocation loops, etc.), by Stroh [322], Chou, Garofalo, and Whitmore [67], 
Chou and Whitmore [68], Kronmiiller and Seeger [195], Chou [69,72], Head and 
Thompson [157], Mitchell, Hecker, and Smialek [250], and Smith [307, 308]. 

Numerical results concerning dislocation pile-ups, obtained by direct solving 
of the equilibrium equations, have been given by Mitchell [249] and by Hazzledine 
and Hirsch [153] for straight dislocations, and by Marcinkowski [233] for coaxial 
circular glide-dislocation arrays. 

Seeger and Wobser [293] have numerically investigated a related problem, 
namely the stable configurations for a pair of parallel straight dislocations gliding 
on octahedral planes of f.c.c. crystals and in basal planes of h.c.p. crystals. Finally, 
Kronmiiller and Marik [199] have investigated, also by numerical computation, 
the stability of dislocation pile-ups under a spatially-oscillating shear stress and in 
the presence of Lomer-Cottrell sessile dislocations, as well as the consequences of 
the results obtained for work-hardening theories based on long-range stresses. 
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The method of singular integral equations. For large values of n, Leibfried [212] 
proposed to replace the real distribution of the straight dislocations in a pile-up 
by a continuous distribution with density D(x), defined such that the resultant Bur­
gers vector of the dislocations comprised between x and x + dx equals b D(x). 
In this case, the equilibrium equation (12.29) is replaced by the singular integral 
equation 

(a' D(x) dx = T(~) for ~ E [a, a'], 
)a ~-x A 

(12.41) 

where [a, a'] is the interval occupied by the dislocation pile-up in the equilibrium 
configuration. In addition, D(x) has to satisfy some supplementary conditions arising 
e.g. from the prescription of the total number of the dislocations in the pile-up 
or of one or both of the values a and a' (fixed dislocations). 

For the cases (i) - (iii) considered above the solutions of equation (12.41) 
with the adequate supplementary conditions are (Leibfried [212]): 

(i) D(x) = (n/n)(a2 - X2)-1/2 for xE (-a, a), 

(ii) D(x) = (2n/nl)(L/x - 1)1/2, L = V2nA/To for x E (0, L), 

(iii) D(x) = (rx/nA)(a2 - X2)1/2, a = V2nA/rx for x E [-a, a], 

and D(x) = 0 outside the indicated intervals. The graphs of D(x) in these three 
cases are schematically represented in Fig. 12.3a, b, c, respectively. 
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Fig. 12.3. Schematic representation of the surface dislocation density D(x). 
(a) Case (i), D(x) = (n/n) (02 - x2)-112. (b) Case (ii), D(x) = (2n/nL) x 

x (L/x - 1)1/2. (c) Case (iii), D(x) = (rx/nA) (a2 - xZ)1/2. 

The method of the singular integrals is effective whenever n is large and the 
elastic field is evaluated at distances sufficiently large from the pile-up. This method 
has been employed by Kronmiiller and Seeger [195], Saxlova-Svabova [281] and Li 
[214] for calculating the stress field of straight dislocation pile-ups, and by Barnett 
[13], Chou and Barnett [73], Kuang and Mura [203], Louat [221], and Tucker [361] 
to investigate the equilibrium configuration of dislocation pile-ups near grain or 
phase boundaries. 
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For the study of dislocation walls 1 and of the modelling of crack propagation 
by coalescence of dislocations at the head of a pile-up, we refer to the book by 
Hirth and Lothe [162], Sect. 21, where further literature on this topic may be also 
found. 

13. Dislocation motion 

13.1. Dislocation glide and climb 

Under suitable energetic conditions, a straight dislocation can move in any direction, 
except the direction of its own line. 

The motion of an edge dislocation is said to be a glide or a climb process, 
according as the dislocation velocity is contained in the slip plane or is perpen­
dicular to it. The dislocation glide proceeds without material transport, the atomic 
rearrangement taking place gradually behind the moving dislocation. On the con­
trary, dislocation climb involves a local change of the crystal density, corresponding 
to the lengthening or the shortening of the extra atomic half-plane, which may be 
brought about e.g. by vacancy diffusion away, respectively towards, the dislocation 
line. Since diffusion requires a considerable specific energy, dislocation climb is 
generally significant only at sufficiently high temperatures. 

In the case of screw dislocations the glide plane is not uniquely defined because 
b Ill. In other words, any atomic plane passing through b may serve as slip plane 
for a screw dislocation. Consequently, the motion of screw dislocations proceeds 
always by glide, and this explains their higher mobility versus edge dislocations. 
At sufficiently high temperatures and/or applied stresses screw dislocations can even 
cross slip from one glide plane to another, as long as the intersection line of these 
planes is parallel to b. 

Since dislocations have a very low effective inertia, their speed increases rapidly 
after overcoming the glide obstacles, until a limiting speed is attained, corresponding 
to the dynamic equilibrium between the forces exerted on the dislocations by applied 
tractions and other crystal defects, on one side, and the dragging forces produced 
by various dissipative mechanisms, on the other side. As the accelerating time is 
4 to 5 orders of magnitude smaller than the time of free motion between obstacles, 
the dislocation motion may be considered mainly as being uniform. Therefore, 
we shall treat in what follows only uniformly moving dislocations; for accelerating 
dislocations we refer to Kiusalaas and Mura [180] and Hirth and Lothe [162], 
Sect. 7.7. 

13.2. Uniformly moving dislocations 
in isotropic media 

The study of the elastic field of uniformly moving dislocations in isotropic media 
started some thirty years ago. Thus, Frank [121] and Eshelby [106, 107] have consi­
dered uniformly moving edge and screw dislocations, respectively, while Nabarro 

1 In this connection, see also a recent paper by Hirth, Barnett, and Lothe [429], devoted 
to dislocation arrays at interfaces in bicrystals. 
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[256] proposed a more general method for studying the motion of a dislocation loop 
whose shape changes during the motion 1. 

Consider first a screw dislocation which moves uniformly in an infinite isotropic 
elastic medium. Choose the xs-axis of a Cartesian system of co-ordinates along the 
positive direction of the dislocation, and the xl-axis along the dislocation velocity 
vector. The equations of motion are given by (6.28) withfk replaced by the inertial 
term - Prflk' i.e. 

k = 1,2,3. (13.1) 

Since the displacement vector must have the form u(O, 0, ua), where Ua depends 
only on Xb X2' and t, we see that the first two equations (13.1) are identically satis­
fied, . while the third one reduces to 

-+--- -- Ua=O, ( 02 02 I 02 ) 

oxi ox~ c; ot2 
(13.2) 

where c, = (f.ljPo)I/2 is the speed of the elastic transverse waves. 
Making in (13.2) the change of variables of "relativistic" type 

X~ = (Xl - VI)jy" x~ = X2, x~ = Xa, I' = (I - vxjcDjy" (13.3) 

where v is the (constant) dislocation speed and y, = (1 - v2jC;)I/2, we obtain 

(13.4) 

i.e. the form of (13.2) is preserved in the new variables. On the other hand, since 
the new frame moves uniformly together with the dislocation, and v is a constant, 
the right-hand side of (13.4) must vanish. Moreover, the displacement field must 
satisfy with respect to the moving system of co-ordinates the same "equilibrium" 
equations and the same jump condition (8.58) as a stationary screw dislocation 
with respect to a fixed frame. 

Hence we conclude that the solution is given by 

b(J' 
Us = - --, 0' E ( -n, n), 

2n 
(13.5) 

1 In Nabarro's approach the motion and/or extension of a dislocation loop is repre­
sented by the sudden creation and annihilation of infinitesimal loops along the primary loop. In 
particular, the stress tensor of the moving dislocation loop can be calculated by using again (11.3), 
but replacing G(x) by the time-dependent Green's tensor function G(x, t), and performing an 
extra integration in time over the elementary acts of creation. 
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where, in view of (8.37) and (13.3), 

cotan- l 
Xl - vI 

for X2 > 0 
I'tX2 

0' = 0 for X2 = 0, Xl > vt (l3.6} 

cotan- l 
Xl - vI 

-1t for X2 < o. 
y,x2 

Next, by substituting (13.5) into (6.1) and the result obtained into (6.5), we deduce 
that the only non-zero components of the stress tensor are 

(13.7) 

In order to determine the total energy of the moving dislocation we must 
add to the strain energy also the kinetic energy, whose density per unit volume is 

Then, by taking into account (13.5-7), we deduce, by a calculation similar to that 
performed in Sect. 8.2, that the total energy per unit dislocation length, stored be­
tween two circular cylindrical surfaces of radii, 0 and R and having the dislocation 
line as axis is 

W /lb2 R 
e= - =--ln-· 

Yt 41tYt '0 
(13.8) 

Since Yt -t 0 as v -t ct ' the dislocation energy tends to infinity as v -t Ct. Hence, 
within the framework of linear elasticity, the dislocation cannot achieve speeds 
greater than the limiting value Ct. This "relativistic" effect should be probably correct­
ed when the strong distortions in the :dislocation core are also taken into account. 

By expanding Ytl in a power series with respect to (V/C t )2 and retaining (for 
v ~ C t) only the first term of the expansion, we obtain from (13.8) 

(13.9) 

Since the second term in the right-hand side of this equation represents the kinetic 
energy per unit dislocation length, the coefficient 

m t = wid (13.10) 
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is sometimes called the effectil1e mass of the dislocation per unit length. Moreover, 
it may be shown that this analogy may be also applied when writing down the 
equation of motion of the dislocation under the action of applied loads and of 
various dragging forces. 

Let us consider now a uniformly moving edge dislocation in an infinite iso­
tropic elastic medium. Choose the xa-axis along the positive direction of the dislo­
cation line, and the xl-axis along the common direction of the Burgers vector and 
of the dislocation velocity vector (Fig. 13.1). Since the necessary calculation is much 
more intricate than for the screw dislocation, we confine ourselves to indicate the 
results concerning the stress field, referring for details to Eshelby [106] and Hirth 
and Lothe [162], Sect. 7.3. The only non-zero stress components are 

Tn = bX2Ci ["'(1 - Y7) + 2Jl _ Jl(1 + y1) ], 
1tV2 y,ri y,ri 

(13.11) 

T. = bX2Ci [ '" - Y1('" + 2J1) + Jl(1 + yi) ] 
22 2 2 2' 1tV y,rl Ytrt 

where 

while c t = V JlI Po and c, = V (A. + 2Jl)1 Po are the speeds of the transverse and longitu­
dinal elastic plane waves, respectively. It may be proved that the stress state (13.11) 
reduces as v -+ 0 to that determined in Sect. 8.1 for the stationary edge dislocation. 
In addition, it may be shown (Weertman [376]) that the total energy of the disloca­
tion per unit length tends to infinity as v -+ C t and that for v ~ c t the effective mass 
per unit length of the edge dislocation is given by 

m =-- 1 + -.!.- , W ( C
4

) 

ci c1 
(13.12) 

where w is the strain energy (8.54) stored per unit dislocation length. 
The above analysis has been recently extended by Moos and Hoover [452] 

to uniformly moving edge dislocations in an elastic strip of finite width having 
clamped boundaries. 
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A problem of particular interest is the interaction of moving dislocations. 
As shown by Weertman [376], edge dislocations of like sign and gliding in the same 
plane will attract rather than repel one another provided their speed ranges between 
the Rayleigh vave speed c, and Ct. This anomalous behaviour may be explained by 

Fig. 13.1. Uniformly moving edge 
dislocation. 

o 
v -

X, 

the fact that the kinetic energy of a moving dislocation may surpass its potential 
energy at sufficiently high speeds (v> c,). Screw dislocations do not display a similar 
behaviour since their kinetic energy can never be greater than their potential energy. 

13.3. Uniformly moving dislocations 
in anisotropic media 

The first systematic study of the uniform motion of dislocations in anisotropic 
media has been undertaken by Saenz [280]. Later, Bullough and Bilby [45] and 
Teutonico [346] have investigated the case of the straight dislocations perpendicular 
to a plane of material symmetry, by extending to the dynamic case the method used 
by Eshelby, Read, and Shockley [109} for stationary dislocations. The same method 
has been used by Cotner and Weertman [81], Van Hull and Weertman [367], and 
Weertman [377, 378] for more complicated situations in which the elastic states pro­
duced by edge and screw dislocations do not separate from each other, as well as 
by Teutonico [347] and Stroh [324], who considered the general anisotropic case 
and dislocations of arbitrary orientation and character. 

Assume that an infinite straight dislocation of Burgers vector b moves with 
the constant velocity v in an infinite elastic medium with arbitrary anisotropy. Choos­
ing as before the x3-axis of a Cartesian frame along the positive direction of the 
dislocation line, and the xl-axis parallel to v, the elastic state will be independent of 
X3 and will depend on Xl and t only through the combination Xl -vt, where v = I!vll, i.e. 

(13.l3) 

Introducing the new independent variables 

(13.14) 
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the equations of motion 

become 

(13.15) 

where 

(13.16) 

and ('),1' denotes the partial derivative with respect to xi, I = 1,2. 
Now, it is easily seen that the equations of equilibrium, the jump conditions 

(l0.18), and the boundary conditions (10.19) - (10.22) from the static case remain 
unchanged, provided that the variables Xk are replaced by x~ and the elastic constants 
Cklmn by the "apparent" elastic constants c;"mn' Nevertheless, the solution of the sextic 
equation (10.9) requires a special discussion. Since the apparent elastic constants 
depend on v, the nature of the roots of this equation will depend on v, too. We have 
seen in Sect. 10.1 that for v = 0 the sextic equation (10.9) admits only complex 
roots. On the other hand, it may be shown that for sufficiently large values of v 
all roots are real. Consequently, there exist in general three critical speeds, say 
VI ;?; V2 ;?; Va, such that for Va = Va, IX = 1,2,3, the pair of complex conjugate 
roots Pa, Pa changes from complex to real values. For v < Va the roots Pa are all 
complex and the dynamic elastic state will have the same features as the static one, 
the dislocation motion being described as subsonic. For v > Va at least two roots 
are real and the motion is accompanied by the generation of waves, being accordingly 
termed supersonic (Stroh [324J). 

We confine ourselves to considering only the subsonic case. Then, by neglecting 
the core boundary conditions, we infer, in view of the results given in Sect. 10.3, 
that 

Uk = ~ 1m i A~o<D~ In z; + u2, 
11: .. =1 

(13.17) 

1 3 'L'D' 
Tlk = - - 1m :E P .. k; " 

11: .. =1 zIt 
(13,18) 

where 

z; = Xl - vI + P~X2' Imp" > 0, IX = 1,2,3, (13.19) 

while the parameters p~, A~a, L~a, D~ can be calculated from C~'mn following the 
same prescription as that used to derive the parameters Pa' Ak<x' Lh , D" from Cklm., 

in the static case. 
It may be shown (Stroh [324]) that for v ~ V3 the prelogarithmic factor of the 

total energy tends to infinity. Hence Va plays in the anisotropic case the role of an 
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upper speed limit, like the speed C I of the transverse elastic plane waves in the iso­
tropic case. The numerical calculations done by Teutonico [346,347] have shown 
that, as in the isotropic case, there exists a speed range, depending on the material 
symmetry and on the dislocation orientation, for which two like edge dislocations 
aUract rather repel one another. Moreover, in the general anisotropic case, when 
the elastic states corresponding to screw and edge dislocations do not separate from 
each other, both screw and edge dislocations can display this anomalous behaviour. 

Besides the problems already mentioned, Stroh [324] has studied the waves 
generated by the supersonic dislocation motion, as well as the uniformly moving 
dislocations in an anisotropic elastic half-plane. Beltz, Davis, and Millen [24] have 
extended Brown's formula (11.4) to uniformly moving dislocation loops, while Malen 
[223] has investigated the stability of moving dislocations. 

The motion of single dislocations can be also studied by using the theory of 
continuous distributions of dislocations, especially by means of Green's tensor 
functions of elastodynamics (see, e.g. Mura [253], Stenzel [319, 320], and Kosevich 
[440], Sect. 7, for the linear theory, and Bahr and Schopf [397] for the non-linear 
theory). Partial atomic models of moving dislocations have been also considered. 
Thus, Stenzel [320] has proposed a slightly modified Peierls-Nabarro model to 
describe the motion of a dislocation under the action of external loads, while Rogula 
1466] has elaborated a more complex model, called "pseudo-continuum", which 
includes some of the non-local crystal properties in the continuum description. 



CHAPTER III 

NON-LINEAR EFFECTS IN THE ELASTIC FIELD 
OF SINGLE DISLOCATIONS 

We have seen in the preceding chapter that dislocations may be described as line 
singularities of the elastic field: linear elasticity theory predicts stresses and strains 
that vary as the inverse first power of the distance from the dislocation line and, 
therefore, are unbounded as this distance goes to zero. Thus, close to the singularities 
the strains become very large, and non-linear effects must be taken into account. 
On the other hand, in regions sufficiently far from dislocations, the stresses and 
strains are sufficiently small and may be adequately described by the linear theory. 
For this reason, and also on account of its simplicity, the linear theory of elasticity 
continues to be successfully applied for simulating crystal defects, e.g. in the study 
of the long-range stress field of dislocations, the interaction between distant imper­
fections, and in the calculation of defect energies 1. 

The above discussion suggests that one of the main applications of the non­
linear theory of elasticity in modelling dislocations could be the study of the disloca­
tion core. However, this requires caution. Indeed, very close to the dislocation line 
the atomistic nature of the crystal defect is just as important as the deviations from 
linear elasticity, so that a local continuum theory, even taking into account non­
linear effects, cannot give a complete description of the dislocation core. Moreover, 
the second-order elasticity, which is the only approximation of non-linear constitu­
tive equations for which sufficient experimental data are available at present, proves 
to be inadequate for the description of the large strains of the order 50 percent or 
more occurring in the very neighbourhood of the dislocation line, since it does not 
allow for the potential energy of crystal to be a periodic function of the relative 
displacement of two neighbouring crystal planes. Therefore, the right solution in 
applying non-linear elasticity to the study of the dislocation core requires the coupling 
of the non-linear elastic model with the atomic one, and the use of semidiscrete me­
thods (Sect. 16). 

There still exists a different kind of applications of the non-linear theory of 
elasticity in modelling crystal defects (cf. Seeger [292]). Thus, we may be interested 
to study a quantity for which the linear theory gives an unrealistic evaluation, e.g. 
a vanishing result. For instance, linear elasticity predicts a vanishing effect of dis­
locations on the average strains, and hence on the macroscopic density of crystals; 

1 Actually, most of the dislocation energy is stored in the long-range stress field; only 
about ten percent of the dislocation energy is due to the dislocation core (cf. also Sect. 16.1). 
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on the contrary, second-order elasticity indicates, in agreement with experimental 
resu I ts, that dislocations produce a positive volume expansion (Sect. 15). 

There exist also typical non-linear coupling effects, which simply disappear 
when applying the superposition principle valid in the linear theory. The best known 
exa~ple is the scattering of elastic waves from dislocations and other imperfections. 
When the linear elastic field of dislocations and that of the elastic waves are super­
posed they do not perturb each other. The experimentally observed scattering of 
elastic waves by strain fields can again be accounted for only within the framework 
of non-linear elasticity (Sect. 20). 

In all the examples above, second-order elastic effects can no longer be ignored, 
although strains are still not very high. This suggests the solving of the non-linear 
boundary-value problems by an iteration procedure, in which a linear elastic boun­
dary-value problem is to be solved at each step; generally, the first two steps are 
sufficient to exhibit the lowest order non-linear effects looked for. That is why we 
will begin this chapter by expounding an iteration scheme which is adequate for the 
study of the elastic field of single dislocations (Sect. 14). Similar iteration schemes 
that are applicable in the case of continuous distributions of dislocations will be 
given in Sects. 19 and 20. 

14. Solving of non-linear boundary-value problems 
by successive approximations 

14.1. Willis' scheme 

The elastic field equations have been linearized in Sects. 2 and 4 under the assumption 
that the magnitude of the displacement gradient H is much smaller than unity, 
and neglecting second and higher powers of H. The solution of non-linear elastic 
boundary-value problems can be found by an iteration scheme involving the solution 
of a linear boundary-value problem" at each step, the first one being given by the 
linear theory of elasticity. To develop such a scheme, we again assume that IIHII < 1, 
but take also into consideration higher powers of H. Specifically, we keep at the 

n'th stage of the iteration all terms uptoand including those ofn'th order in IIHII. 
The first systematic iterative method for the solution of non-linear elastic 

boundary-value problems has been elaborated in 1930 by Signorini [298], who 
further developed his ideas in [299, 300]. Later on, Signorini's scheme has been 
independently generalized by Green and Spratt [146] and by Rivlin and Tapakoglu 
[279] (see also Truesdell and Noll [358], Sect. 63, and Capriz and Guidugli [55]). 
Willis [382] has adapted Signorini's scheme to the case of single dislocations and of 
continuous distributions of dislocations, by using Eulerian co-ordinates. This 
approach will be preferred in this book, since it avoids the rather complicated dis­
cussion implied by the correct definition of the deformation produced by dislocations 
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in terms of Lagrangian co-ordinates 1. In what follows, Willis' scheme will be extend­
ed to include the influence of the core boundary conditions. 

Consider an elastic body ~, free of surface and body forces, occupying a 
simply-connected region 1'" of boundary fI' in a deformed configuration (k), con­
taining a dislocation of line L. Assume that L is either a closed curve in 1'" or a line 
ending at fI'. Denote by 1"'0 the doubly-connected region obtained by cutting out a 
thin tube of boundary 1:0 around the dislocation line. Let S be a smooth and two­
sided barrier rendering 1"'0 simply-connected. By cutting the body along Sand 
allowing it to relax, it will occupy a natural configuration (K). Denote by X and x 
the position vectors of a current material point X in the configurations (K) and (k), 
respectively. For the sake of simplicity, we assume that after the deformation from 
(k) to (K) the cut faces remain in contact with each other. Then, as shown in Sect. 7.3, 
the deformation produced by the dislocation may be described by one of the mappings 
(7.1) or (7.4). 

We choose arbitrarily a positive sense on L and define the positive side S+ 
and the negative side S- of S according to the convention adopted in Sect. 7.3 and 
illustrated in Figs. 7.5 and 7.6. Then, the jump of the displacement vector u(x) across 
S is given by 

u+ (x) - u- (x) = b, (14.1) 

where x is the position vector of a current point on S, u+(x) and u- (x) denote the 
limiting values of u(x) on S+ and S- , respectively, and b is the true Burgers vector. 

The Cartesian components of the finite strain tensor are given by (2.30) as 

(14.2) 

W.hen using Eulerian co-ordinates, it is necessary to express H in terms of grad u. 
To this end we introduce (7.2) and (7.5) into the relation FF-l = 1, thus obtaining 

(1 + H)(1 - grad u) = 1, 

wherefrom it follows that 

(14.3) 

where (. ),/ denotes, as usual, differentiation with respect to x" 
By taking into account (7.2), the non-linear constitutive equation of elastic 

materials (4.40) may be written as 

(14.4) 

1 In this connection see also Sinclair et al. [474], Petrasch [460],and Teodosiu and So6s [479]. 
Alternative iteration schemes using Lagrangian co-ordinates have been also developed and applied 
for determining the non-linear elastic field of single straight dislocations (Seeger and Mann [289], 
Teodosiu [337], vol. 2, Sect. 15, Seeger, Teodosiu, and Petrasch [295], Gairola [418]). 

14 - c. 120 
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where, by virtue of (7.5) and (4.43), 

(14.5) 

(14.6) 

and c and C are the tensors of the second- and third-order elastic constants, res­
pectively. 

In the absence of body forces, the balance of the linear momentum requires 
that 

Tk/ ,l = O. (14.7) 

Assuming that the external surface 9' of the body is free of external loads, 
we have 

Tn = 0 on 9', (14.8) 

where n is the outward unit normal to 9'. In order to determine the elastic state 
produced by the dislocation it is necessary to prescribe either the boundary value 
u* of the displacement vector on I o' or the traction t* exerted upon ko from the 
dislocation corel. Thus, we must have either 

u = u* on ko' (14.9) 

or 

Tn = t* on k o• (14.10) 

Since the deformed body is in equilibrium, we require that the resultant force 
P and couple M of the tractions acting on Io vanish, i.e. 

P == ( t* ds = 0, 
)x. 

M == ( x X t* ds = o. 
)x. 

(14.11) 

(14.12) 

When the traction boundary condition (14.10) is satisfied, equations (14.11) and 
(14.12) are merely restrictions on the given surface traction t*. 

1 The vectors u· and t* can be evaluated by using semidiscrete methods that combine the 
elastic and the atomistic models of the dislocation (see Sect. 16). In this case, the equilibrium of 
the forces acting on 1:0 is assured by modifying the positions of the atoms inside the dislocation 
core at the same time with the elastic state in "'0' 
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We will solve the traction non-linear boundary-value problem formulated 
above by an iteration scheme, based on the following hypotheses: 

(i) The prescribed traction on 1:0 and the true Burgers vector are proportio­
nal to a small parameter e, i.e. 

t* = st*(l), (14.13) 

This hypothesis is justified by the fact that t* vanishes together with b. The numerical 
choice of I> is immaterial, since it appears in the final result only through the combi .. 
nations I>t*(1) and I>b(l). 

(ii) There exists a solution u(x) of the boundary-value problem that depends 
analytically on I> and vanishes for I> = 0, i.e. 

u = l>u(U + 1> 2U(2) + .. , (14.14) 

Introducing (14.14) into (14.3), we obtain 

R = eu(\) + e 2(u(2) + u(l)u(l) + ... kl k,l k,l k,p p ,l (14.15) 

Next, substituting (14.15) into (14.2) yields 

I> e2 
D = --- (u(I) + u(ll\ + - (U(2) + U(2) + U(l) u(U + u(l)u(l) + u(1)u(l) + kI 2 1,1 l.id 2 k,l I,k k,p p,l p .k p,l p,II I,p • •• 

(14.16) 

Then, introducing (14.14), (14.16) into (14.5), (14.6), respectively, and the results 
obtained into (14.4), and considering also (14.15), we deduce that 

where 
T(1) _. C u(I) 

U - klmn m,n' 

T = _u(I) T(l) + U(I) '"1) + u(I) T(l) + 
III m,m kI l,mA inl I,m 11m 

(14.17) 

(14.18) 

(14.19) 

Substituting now (14.13), (14.14), (14.17) into (14.1), (14.7), (14.8) and (14.1 0), 
and equating like powers of 1>, we obtain a sequence of linear traction boundary­
value problems, namely, at the first step 

u~)+(x) - ui1)-(x) = bZ) on S, 

T(l) -- 0 nl) - c U(l) 
kl,l -, kl - klmn m,n in 1'"0 "S, (14.20) 
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at the second step 

T,cz)1 = 0 
"I, ' 

on S, } 

in "1'"0 "S, 
on fJ' u 1:0, 

(14.21) 

and so on. In the following we will consider only the first two steps of the iteration, 
for the subsequent steps involve elastic constants of fourth and higher orders, which, 
in general, are not available. 

The traction boundary-value problems (14.20) and (14.21) can be formulated 
in terms of the displacement fields U(l) and U(2), respectively, as 

and 

where 

CllmnU~!nl = 0 in "1'"0" S, 

C U(I) n _ {O on fJ' 
"'mn m.n I - *(1) 

t" on 1:0 

U~2)+(x) - ui2)-(x) = 0 on S, \ 

Cklm.ufJ!nl + !P) = 0 in "1'"0" S, 

CklmnufJ!..n, = t,,*(2) on fJ' U 1:0, 

,(2) _". 
Jk - 'kl.It 

(14.22) 

(14.23) 

(14.24) 

play the role of a body force and a traction, respectively. It is easily proved, by 
using Gauss' theorem, that the resultant force and the resultant couple of the forces 
(14.24) are zero. 

When the traction boundary condition (14.10) on Eo is replaced by the dis­
placement boundary condition (14.9), we put 

u* = I>U*(I). (14.25) 

Then, using the same technique as above, we find that the first two steps of the 
iteration involve the solution of two mixed linear boundary-value problems. Namely, 
the last equations (14.22) and (14.23) should be replaced by 

ck,mIlUg!/ln, = 0 
uP) = ut (1 ) 

on fJ', } 
on 1:0, 

(14.26) 
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and, respectively, 

Ck/mllui:!"n, = tk on g, } 
U~2) = 0 on ro. 
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(14.27) 

Clearly, the boundary-value problems to be solved at the first step correspond 
to a Volterra dislocation of translational type with prescribed tractions or displa­
cements on the boundary of the dislocation core. Consequently, we shall also require 
the continuity across S of the infinitesimal strain tensor corresponding to u(1) together 
with its partial derivatives of the first two orders, as well as that of the infinitesimal 
rotation tensor corresponding to u(1). Since grad um is continuous across S, so 
is 't, and hence the boundary-value problems corresponding to the second step are 
classical boundary-value problems of linear elasticity. Assuming as usual that the 
strain density function W2 is positive definite it follows that any two solutions of the 
traction boundary-value problems differ by an infinitesimal rigid displacement. 

In the original form of Signorini's scheme the arbitrary infinitesimal rotation 
corresponding to each step of the iteration is determined such that the body forces 
and surface tractions corresponding to the following step be equilibrated. On the 
other side, in the case of a single dislocation, the only external forces acting on the 
part of the body occupying the region i' 0 are those applied on the core boundary 
ro. Moreover, these forces must be self-equilibrated in the deformed configuration 
of the body, since the dislocation core itself is in equilibrium. Consequently, 
when using a semi discrete method, the infinitesimal rigid rotations occurring at 
each step must be used as adjustable parameters, together with the tractions on ro 
and the positions of the atoms inside r o' for minimizing the potential energy of the 
whole body. 

When studying the elastic field of a single dislocation loop lying in an infinite 
elastic medium, we shall require, on physical grounds, that the stress T vanish and 
the finite rotation R approach the unit tensor at infinity, i.e. 

lim T(x) = 0, 
1 ,xl 1 .... 00 

lim R(x) = 1, 
Ilxi 1->00 

(14.28) 

since the lattice distortion gradually disappears at large distances from the dislo­
cation line. 

By using (2.11 -13) and (14.14 -17), it may be shown [479] that, up to the 
second step of the iteration, equations (14.28) are equivalent to 

.lim T(II)(X) = 0, lim co(n)(x) = 0, n = I, 2, (14.29) 
Ilx!' .... oo Ilxll .... oo 

where co(n) denotes the infinitesimal rotation vector at the n'th step. Replacing the 
boundary conditions on g by (14.29)1' and the condition (14.12) by (14.29)2' we 
conclude, by virtue of Bezier's theorem (Sect. 6), that the solutions of the successive 
linear traction boundary-value problems are unique to within an infinitesimal trans­
lation. It is worth noting that, in view of (14.18) and (14.19), equations (14.29) are 
also equivalent to 

lim grad u(n)(x) = 0, n = 1,2. 
11"'11 .... 00 

(14.30) 
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Finally, if the displacements instead of the tractions are prescribed on 1:0, then, 
by virtue of Bezier's theorem, each linear boundary-value problem for the infinite 
medium has at most one solution satisfying (14.30). 

14.2. Second-order effects in the anisotropic elastic field 
of an edge dislocation 

Second-order effects in the isotropic elastic field of an edge dislocation were deter­
mined by Pfleiderer, Seeger, and Kroner [270], by disregarding core effects and 
applying an iteration scheme formulated in Eulerian co-ordinates, which had been 
previously elaborated by Kroner and Seeger [191]. 

Seeger, Teodosiu, and Petrasch [295) have determined the second-order effects 
in the anisotropic elastic field of an edge dislocation, under consideration of the 
core boundary conditions, and using an iteration scheme formulated in Lagrangian 
co-ordinates. Their results have been completed and partly corrected by Teodosiu 
and S06s [479), by using Willis' iteration scheme in Eulerian co-ordinates and remov­
ing some residual discontinuities occurring across the cut surface in the second 
step of the iteration, corresponding to a generalized Somigliana dislocation 1. 

In the following, we shall summarize the results obtained by these authors. 
Consider a straight edge dislocation lying in an infinite anisotropic elastic 

medium ·j/ and take the axes Xl and X3 of a Cartesian system of co-ordinates along 
the positive direction of the dislocation line and along the true Burgers vector, 
respectively. Let us assume that the dislocation lies along a two-fold axis of mate­
rial symmetry or, equivalently, that any plane which is parallel in the natural state 
to the xlx2-plane is a plane of material symmetry. 

We apply the non-linear theory of elasticity to the region j/ 0 situated outside 
the dislocation core, the latter being considered as an infinite tube bounded by a 
circular cylindrical surface 1:0 of radius '0 and axis Xa. Let us denote by ro the 
intersection line of Eo with the Xlx2-plane and by LI the region outside Fo in this 
plane (Fig. 10.1). We assume, on physical grounds, that the tractions acting on 1:0 
from the dislocation core do not depend on X3 and are parallel to the Xl x2-plane, 
and hence the elastic medium is subjected to a state of plane strain. Then, by 
taking the half-plane X 2 = 0, Xl ~ - '{) as cut surface S rendering j/ 0 simply­
connected, we may define in the region j/ 0" S a single-valued displacement 
field, whose Ca,rtesian components must have the form2. 

u", = u",(xp), U3 = 0, (14.31) 

where xp are the co-ordinates in the Xlx2-plane of a current material point X in the 
deformed configuration. Moreover, since now b = bel> where b=eb<u is the magni­
tude of the true Burgers vector, the jump conditions (14.20)1 and (14.21)1 corres­
ponding to the first two steps of the iteration assume the simplified form 

(14.32) 

1 Similar results have been obtained by Petrasch [460] in the particular case of the ortho­
tropic medium, by using a different reasoning, based on symmetry and continuity conditions. 

2 Throughout this subsection Greek indices range over the values 1, 2; the summation over 
these indices will be always explicitly indicated by the symbol ~. 
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for Xl E (-00, -ro]. According to the discussion above, we shall also require that 

lim U~~MXI' X2) = 0, n = 1,2, (14.33) 
P-->OO 

where p = V xi + x~. 
The first linear boundary-value problem (14.20), specialized to conditions 

(14.31-33), has been solved by Teodosiu and Nicolae [338], by using a complex­
variable technique. Since this technique is similar to that employed in Sect. 8.1 
for the isotropic case, we reproduce here only the main intermediate results that 
are further used in the second step of the iteration. 

By introducing the complex variables 

Z = Xl + iX2' 

the complex displacement 

and the complex stresses 1 

eO) = TiP + TW, cPU) = TiP - TW + 2iTg) , 

(14.34) 

(14.35) 

we obtain from (14.20) and (14.31-33), like in Sect. 8.1, the jump condition 

(14.36) 

the equilibrium equation 

oe(1) ocP(1) 
--+--=0 

oz oz ' 
(14.37) 

the constitutive equations 

2 OU(l) = AcP(l) + Bib(!) + 2Ce(!) I 
oz ' 

oU(1) + ~_U(l) = CcP(1) + CcP(1) + 2De(l), 
oz OZ 

(14.38) 

and the boundary conditions 

{-(e(l) + cP(l)e-2iO) = t:(I) + ittlI ) for Z= roei8, 0 E (-n,n], (14.39) 

oU(1) oU(1) 
--, -- --.0 as p --.00, 

oz oz 
(14.40) 

1 Note that the stress component T 33 #- 0, but it does not intervene in the successive 
boundary-value problems. Its value can be obtained directly from (14.18) after the calculation of 
u(1) and U(2). 
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where 

(14.41) 

1:(1) and 10*(1) are the radial and the tangential components of t*(U, respectively, f) 
is the polar angle in the z-plane, and A, B, C, D are determined by the relations 

Next, the eqUilibrium condition (14.37) is identically satisfied by setting 

02p(l) 
«p(l) = -4 - -, 

OZ2 

02pm 
(3<1)=4--

OZOZ' 
(14.42) 

where P(U is Airy's stress function. The function P(l) must also satisfy the compati­
bility equation written in stress components, i.e. the Beltrami-Michell compatibility 
equations (6.25) specialized to the state of plane strain. We can deduce these equa­
tions in a more direct way, by eliminating Um between equations (14.38) and taking 
into account (14.42). After some intermediate calculation, it results 

fI! p(1) = 0, 

where fI! is the real differential operator 

(14.43) 

0' 0' 0' _ 4C 0' + B- _0' . !t' == B -- - 4C-- + 2(A + 2D)--oz' OZ30Z OZ20Z2 OZO"Z3 OZ' 

(14.44) 
This operator can be decomposed into the product 

!t' == B(~ -"11~) (~- '12~) (~-1'3~) (~-I',~), o Z oz 0 Z oz 0 Z oz 0 Z OZ 

(14.45) 
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where Yk' k = 1, ... ,4, are the roots of the algebraic reciprocal equation 

By4 - 4Cya + 2(A + 2D)y2 - 4Cy + B = O. (14.46) 

As shown by Green and Zerna [145], when the strain energy function is pOSItive 
definite, the roots of equation (14.46) are complex, and their moduli cannot equal 
unity, so that they can be denoted by Y1' Y2, Il'i1' 1/12, where IY11 < 1, IY21 < 1. 
For further use, we note that 

YI Y2 B --=---=- , 
Y/Y2 B 

1 1 4C 
YI + Yz + -=- + -=-- = ----=- • 

"II "12 B 
(14.47) 

We assume I in the following that YI =F Y2' Since the operators 2k == ~ -oz 
- Yk -~, k = 1, .. , ,4, are linear independent and have constant coefficients, it fol­oz 
lows by Boggio's theorem [401] that the general solution of equation (14.43) equals 
the sum of the general solutions of the equations Ii'"Pl) = 0, k = ], ... ,4. 

By introducing the new complex variables 

(14.48) 
we find that 

(1 - YIYl)2 02 

11 OZI OZ1 

and hence the general real solution of the equation !l't2aP(l) = 0 is 

where 'o1(ZI) is an arbitrary analytic function of ZI' Analogously, the general real 
solution of the equation fi7 22 4P(1) = 0 is 

where 'o2(Z2) is an arbitrary analytic function of Z2' and 

(14.49) 

Hence, the general solution of Eq. (14.43) is 

P(l)(Xl> X2) = 2Re ~ 'o..(za). (14.50) .. 
1 The case )'1 = )'2 may be studied by a method similar to that used in th_e isotropic case. 
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Introducing (14.50) into (14.42) yields 

4>(1) = - 4 ~[y~a;'(z .. ) + a;'(z .. )], 8(1) = SRe b y .. a;'(z .. ). (14.51) .. .. 
Next, by substituting (14.51) into (14.3S) and integrating the system of equa­

tions obtained, we find I 

U(I)(XI , X2) = b [b .. a~(z .. ) + p .. a~(zJ] + wll)iz + u~l) + iV~I), (14.52) .. 
where w(J), U~l), vbl ) are arbitrary real constants and 

b .. = -2(Ay .. - 2C + Bly .. ), (14.53) 

The expression Wbl)iz+U~l) +Ml) corresponds to an infinitesimal rigid displacement 
and can be determined by prescribing the value of the displacement vector and that 
of the elastic rotation at an arbitrary point of the medium. By considering (14.52), 
it may be seen that both conditions (14.40) can be satisfied at the first step by taking 

(14.54) 

and requiring that 

lim a~' (z .. ) = 0, 0: = 1,2. (14.55) 
p-+oo 

Since the strain and rotation components corresponding to the Volterra dislo­
cation occurring at the first step must be continuous across S, the functions a;'(z .. ), 
C( = 1,2, must be single-valued in the regions .,1" that correspond to .,1 in the z,,-planes, 
and hence can be developed in Laurent series in those regions. Moreover, by virtue 
of (14.55), these series may contain only negative powers of z ... Consequently, by 
integrating them with respect to z .. , we find 

0: = 1,2, (14.56) 

where x .. and Oil) (0: = 1,2; k = 1,2, ... ) are arbitrary constants. The denomina­
tors 1 + Y .. , 0: = 1,2, have been introduced as integration constants into the argu­
ments of the logarithmic terms in (14.56) in order to allow the calculation of these 
terms by means of (S.36) and (S.37) without introducing any cut except the negative 
xI-axis, which coincides with the discontinuity line of the displacement 2. 

1 The reasoning is very similar to that used to derive the representation (8.30) in the iso­
tropic case. 

2 It may be shown that the ratio z .. !(1 +Y .. ) coincides with the variable denoted by z .. in 
Lekhnitsky's representation used in Sect. 10. 
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The coefficients Xa. will be determined, as usual for single dislocations, by the 
jump condition (14.36) and by equation (14.11) which expresses the vanishing of the 
resultant force exerted on ro by the dislocation core. By virtue of (10.105), equation 
(14.11) and the condition that the tractions acting on the cut faces be self-equili­
brated at each point of the cut are equivalent with requiring that 

fr t dl = 0, (14.57) 

where r is any smooth closed curve encircling ro anticlockwise in the x1x2-plane, 
and I is the curvilinear abscissa on r. Since in our case ta = 0, equation (14.57) is in 
its turn equivalent, to within terms of third order in e, with the conditions 

n = 1,2. (14.58) 

On the other hand, by making use of (10.103), we successively obtain 

= -- (Tn + T22) - - (Tn - T22 + 2,T12) - . i [dZ . . dZ] 
2 dl dl 

(14.59) 

Consequently, considering also (14.35) and (14.42), we have 

t(l) + it(l) = ~ (e(1) dz _ <1>(1) dz ) = 2i ~ ( of(l) ) 
1 2 2 dl dl dl oz 

and, introducing this result into (14.58), we deduce for n = 1: 

(14.60) 

Next, from (14.48-50) it follows that 

aF(l) --
- _- (Xl> X2) = ~ [Ya.Q~(ZCl) + Q~(za.)]. oz a. 

(14.61) 

Substituting now (14.56) into (14.61) and the result obtained into (14.60) yields 

£(Ya.Xa. - xa.) = O. (14.62) 
IX 
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On the other hand, introducing (14.52) into the jump condition (14.36), and 
considering (14.56) we find 

(14.63) 

Equations (14.62) and (14.63) provide two conditions for the determination of the 
parameters "1 and "2' Following [3381, we first simplify (14.63) by taking into consi­
deration (14.53) and (14.62), thus obtaining 

(14.64) 

Eliminating X-I and "2 between equations (14.62), (14.64), and their complex 
conjugates, we get 

Making use of (14.47), this system can be further solved to give 

"2 =-

where 

ib(l)(1 - )'2»'1)'2 

4nBv2 V3V4 
(14.65) 

In [338], the coefficients a~~ (k = 1,2, ... ) have been also determined in 
terms ofthe complex Fourier coefficients of the function 1:(1)+ iI8*(1), by using the 
boundary condition (14.39). However, since the latter are not known a priori, it 
proves more advantageous, when applying semidiscrete methods, to consider as 
unknowns, besides the positions of the atoms inside Eo, the coefficients a~l~ themselves, 
instead of the Fourier coefficients of the tractions acting on Eo. In this case, the 
solution of the first linear boundary-value problem (14.20) of the iteration scheme 
is given by (14.51), (14.52), and (14.56), with "/Z determined by (14.65). 

We proceed now to solve the second linear boundary-value problem (14.21) 
of the iteration scheme. The only differences from the first problem are the presence 
of the non-linear term 't in the expression of T(2) and the continuity of U(2) across 
the cut S. 

By introducing the complex displacemen t 

(14.67) 
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and the complex stresses 

we obtain from (14.21) and (14.31-33) the equilibrium equation 

ae(2) i}cfJ(2) 
--+-- =0, 

iJz· iJz 

the constitutive equations 

iJ U(2) iJ {j(2) - - --- + -- = C(cfJ(2) - cfJ ) + C(cfJ(2) - cfJ ) + 2D(e(2) - e ) 
iJz iJz 0 0 0 , 

and the boundary conditions 

iJU(2) 
- -, 

i}z 

where the functions 

i}U(2) 
-- -+ 0 as p -+ 00, 

iJ-Z 
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(14.68) 

(14.69) 

(14.70) 

(14.71) 

(14.72) 

(14.73) 

depend only on grad u(O and hence are known from (14.19), (14.52), and (14.56). 
By the first equation (14.21) we must also have 

(14.74) 

The equilibrium condition (14.69) is identically satisfied by putting as before 

!l2F(2) 
e(2) = 4_u __ , 

i}zi}z 
(14.75) 

where £<2) is Airy's stress function corresponding to the second iteration step. By 
a reasoning similar to that leading to (14.60) we conclude that (14.58) implies the 
continuity of iJ £<2) fiJz across the cut S, i.e. 

iJF(2) iJ£<2) 
-- (Xl> 0+) - -- (Xl' 0-) = 0 for Xl E (-00, -'0]' 
i}z iJ-Z 

(14.76) 
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Clearly, we could derive the compatibility equation to be satisfied by F(2} 
as above, by eliminating U(2) between equations (14.70). However, the subsequent 
integration of the equation obtained and of system (14.70) proves to be much more 
difficult than it was for the first iteration step. That is why it is better to adopt an 
apparently longer way [295J, which, however, greatly simplifies the subsequent 
procedure. 

We recall that the operator !l' assumes a particularly simple form when choos­
ing Zl and Zl or, alternatively, Z2 and Z2 as independent variables, instead of Z and 
z. Let us first take Z2 and Z2 as independent variables in (14.70) and (14.75). By using 
the relations 

we obtain after some algebraic manipulation the system 

(14.77) 

--+--=2Re <52 --+ - +-- + out 2) OU(2) {02F (2) ( <52 BV~) 02F(2) 

OZ2 oz 2. OZ~ 12 1~ OZ20Z 2 

(14.78) 

Integrating (14.77) with respect to Z2 yields 

- - oF<2) - OF(2) 
lJ<2) - 12U(21 = (P2 - 12<52) -- + (Y2P2 - <52) ---:::- + 

OZ2 OZ2 

+ (4V2tl ~[(~ + 12P2) eo + 12~2 «Po + P2 ~o1 dz2 + ,,'(Z2), 

where ,,(Z2) is an arbitrary analytic function of Z2. Eliminating U(2) between this 
equation and its complex conjugate yields 

(2) 2 - - ;: oF<2) __ - _ _. OF(2) 
v2U = (12P2 - 1'2<52 + 12P2 - U2) - - + (12'Y2P2 - 12<52 + P2 - 'Y202) -=- + 

OZ2 OZ2 

+ (4V2tl {12 ~[(~2 + 12P2)eO + 1;J2«P0 + p2~o1 dZ2 + 

(14.79) 
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Finally, introducing (14.79) into (14.78), we find 

= 2Re [k e + k ([J + Oh(Z2, I2~ + ~ tI"(Z)], 
4 0 5 0 ;)- k " 2 

vZ2 0 

(14.80) 

where 

(14.81 ) 

k _;52 + 12P2 
1- 4k 

o 

k4 = (l + "1212)D - C12 - CY2, 
ko 

k5 = _ AY2 - (l + Y212)C + BY2 • 

ko 

Change now in (14.80) the independent variables Z2 and I2 by Zl and Zl' Since 

(14.82) 

and hence 

a _ Va 0 + V4 0 
aZ2 - -;:- f}Zl -;:- oj 1 ' 

(14.83) 

it follows that 

a2p<2) _ = 2Re [k e + k ([J + ah(Z2' -Z2) + ~ "(Z)]. 
a a- 4 0 5 0 a- k t'/ 2 

Zl Zl Z2 0 

(14.84) 

The general solution of this equation is 

F(2)(Xl> X2) = 2Re ~ oo.,(Z .. ) + FO(Zl' II), (14.85) 
II 

where ool(Zl) is an arbitrary analytic function of Zl' 

and FO(Zl' II) is a particular solution of the equation 
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In order to obtain the expression of U(2), we first note that, by virtue of (14.83), 

Hence, considering also (14.81), equation (14.79) may be rewritten as 

Next, replacing F(2) by (14.85) yields 

U(2)(Xl' X2) = t [(j"ro~(z,,) + PClro~(zCl)] + UO(x1, x2), (14.87) 
II 

where 

(14.88) 

Finally, by substituting (14.85) into (14.75), we deduce the complex stresses 

(14.89) 

The complex potentials ro~(Zl) and ro~(Z2) can be determined by using the 
boundary conditions (14.74), (14.76), provided we are able to calculate two inde­
finite integrals that are necessary to obtain h(Z2, Z2) and OFO(OZI from (14.81) and 
(14.86), respectively. Since the functions eo and cPo occurring in (14.81) and (14.86) 
are quadratic in the partial derivatives of U(l), it is easily seen that the amount of 
algebra necessary to calculate h(Z2' Z2) and oFO/ozl increases very rapidly with the 
number of terms taken into account in the expression (14.56) of Q~(z .. ). Therefore, 
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following an idea of Seeger, we content ourselves with determining only those terms 
which are at most of the order O(p-l) in the expression of the displacements and 
O(p-2) in the expression of the stresses, as p -+ 00. In this way, we attempt to find 
out the most significant correction to the classical solution, which neglects boundary 
conditions on r 0 and second-order effects and retains only the terms of order 
O(p- l) in the expression of stresses. 

The final result of this calculation reads 

(14.90) 

Uo(Xz, X2) = AO(XI' X2) + ~ [<> .. A .. (xz, x2) + PilA .. (Xlt x~)], (14.91) 
It 

where 

(14.92) 

while II> • •• , 19, WI' ••• , Ws are parameters depending only on the elastic constants 
of second and third orders and whose explicit expressions are given in the Appendix 
of [479]. 

From (14.85), (14.87), (14.90), and (14.91) it follows that 

U(2J(XI' X2) = Ao(Xz, X2) + ~ {<> .. [(i)~(Z .. ) + A .. (xz, X2)] + 
It 

(14.94) 

Inspection of (14.92) shows that AO(XI' X2) is continuous across S, while AI(xl> xJ 
and A2(XZ, X2) have the jumps 

(14.95) 

15-120 



226 III. Non-linear elastic effects of dislocations 

where 
(14.96) 

In view of the continuity conditions (14.74) and (14.76), it may be shown that the 
part of the solution (14.93), (14.94) corresponding to the functions (()~(ZCl) must 
represent a generalized Somigliana dislocation of the type considered in Sect. 10.6, 
i.e. with variable displacement jump across the cut S and a distribution of non-equili­
brated tractions acting on the cut faces. As shown in Sect. 10.6, the solution to this 
problem may be found by setting 

(14.97) 

and requiring that the functions w~(z«) satisfy the jump conditions on S and vanish 
at infinity, while w~(z«) must be continuous across S, vanish at infinity, and fulfil 
the boundary conditions on r 0' modified by the contribution of w~(z,,). In our case 
we may satisfy the jump conditions resulting for w~(z«) from (14.74), (14.76), and 
(14.93-96) by simply taking 

ex = 1,2. (14.98) 

On the other hand, in agreement with the approximation adopted above, we shall 
take 

ex=I,2, (14.99) 

interpreting the coefficients a~~ as adjustable parameters. 
Summarizing the above considerations we conclude that the non-linear elastic 

displacement field is given up to terms of order 0(82) and O(p-l) by the expression 

where 

while x,,, K«, Uo(Xl> X2) are given by (14.65), (14.96), and (14.91), respectively. Since 
Xl and X2 are proportional to b(]), while Kl> K2, and Uo(Xl> X2) are proportional to 
the square of b(l), and since b = 8b(1), the final expression (14.100) of the displace­
ment field does not depend on the choice of the small parameter 8, as was to be 
expected. 
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The solution obtained depends linearly on two arbitrary complex constants, 
Al and A 2• When using a semidiscrete method, these constants should be considered 
as adjustable parameters in the expression of the total potential energy, together 
with the positions of the atoms inside the dislocation core, and are to be calculated 
by minimizing this energy (see also Sect. 16). Finally, Uo + ivo gives a rigid translation 
that can be determined by prescribing the displacement of an arbitrary point of the 
elastic medium. 

14.3. Second-order effects in the elastic field 
of a screw dislocation 

Second-order effects in the isotropic elastic field of a screw dislocation have been 
determined by Seeger and Mann [289] as early as 1959, by using an iteration scheme 
based on Lagrangian co-ordinates, and requiring that the core surface ko be trac­
tion-free. A slightly more general problem, corresponding to a uniform radial pressure 
acting on ko, has been solved by Teodosiu [337], by using a similar formalism. 
In this subsection we will consider the same problem, but formulated in Eulerian 
co-ordinates. In Sect. 19, we shall also describe the results obtained in a different 
way by Willis [382] concerning the second-order effects in the anisotropic elastic 
field of a screw dislocation. 

Consider a screw dislocation lying in the axis of an infinite circular isotropic 
elastic cylinder of radius R. Assume that the outer surface of the cylinder is free of 
external loads. 

Let us use a system of cylindrical co-ordinates with the unit vector ez directed 
along the axis of the cylinder in the positive sense of the dislocation line. We apply 
as above the non-linear elasticity theory outside a circular cylindrical surface of 
radius r 0 < R and axis e=. Let r 0 and r denote the circles of radii r 0 and R, respecti­
vely, situated in an arbitrary cross-section of the cylinder, and let Lt be the region 
bounded by ro and r (Fig. 8.1). 

Denote by p, 0, z the cylindrical co-ordinates of a current material point in 
the deformed configuration and assume that the displacement vector u(r, 9, z) is 
of class C2 in the whole elastic cylinder, except the surface S: X2 = 0, -R ~ Xl ~ 
~ -ro, across which the component Uz experiences the jump 

Uz(p, n, z) - uz(p, -n, z) = -b, (14.101) 

where b is the magnitude of the true Burgers vector, while the components Ur and 
Uo are continuous across S. 

Clearly, the elastic state of the infinite cylinder does not depend on z. Moreover, 
as already mentioned in Sect. 8, in the isotropic case the displacement gradient and 
the stress tensor do not depend on O. For the same symmetry reasons the tractions 
acting on ko from the dislocation core must reduce to a pressure \ say p. 

I The value of this pressure could be determined only by a semidiscrete method, combining 
the atomic and continuum models of the dislocation. 
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In order to determine the second-order effects by means of the iteration scheme 
described in Sect. 14.1 we set 

b = eb(1), (14.102) 

As argued above, this hypothesis is justified by the fact that P - 0 as b - O. 
Since t*(1)= PIe n = -e for p = ro and t*(1) = 0 n = e for p = R the 

P' P 'P' 
traction boundary conditions to be satisfied at thefirst step of the iteration are 

{
- pel) for p = ro, 

T(l)= 
PP 0 for p = R, 

while the jump condition (14.101) yields 

(14.103) 

(14.104) 

The solution of the first boundary-value problem can be easily deduced from the 
results obtained in Sect. S. Indeed, we have seen in Sect. S.2 that the linear elastic 
state corresponding to a screw dislocation in an infinite isotropic elastic cylinder 
is given by 

b(I)O 
U{l) - - ---z - , 

21t 

b(l) 
h~V= - - , 

21tp 
(14.105) 

where h(l) = grad U(l), and the other components of u, h, and T are zero. Clearly, the 
elastic state (14.105) satisfies the traction boundary condition (14.103)2. Therefore, 
we have to superpose on this state a solution of the field equations of linear isotropic 
elasticity that corresponds to the internal pressure p(1) acting on the surface p=ro and 
to zero tractions on the surface p=R. On the other hand, this last solution can be 
directly derived from the results obtained in Sect. 8.1, by putting b = 0, t\}l = _pel) 
in (8.43~5), and equating to zero all other coefficients (11) and (12). It then follows 
that the only non-zero coefficients ak and bk are 

r~p(1) 
a = , 

o 2(R2 _ r~) 
(14.106) 

Substituting (14.106) into (S.35), and the result obtained into (S.26) and (S.30) (with 
(/)0 = Uo = Vo = 0), we find 

U(Il = k[(1 - 2v)p + R2/p]eiO, (14.107) 

T~~ = 2Jlk (1 - ~: )- TW = 2Jlk ( 1 + :: } TW = 4vJlk, (14.108) 
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where 

and the other displacement and stress components vanish. Next, by (14.34), (1.64)2' 
and (1.73) we have 

and hence (14.107) implies 

U(l) + iu(l) = U(l) e-iO 
pO, 

u~) = k[(1 - 2v)p + R2/p], 

while (1.75) yields 

ug) =0, 

the other components of the displacement gradient being zero. 

(14.109) 

(14.110) 

Finally, by superposing the elastic states given by (14.105) and (14.108-110), 
we find the solution of the first iteration step: 

u~) = k[(1 - 2v)p + R2/p], u~l) = -b(l)(}/(2n), 

h~~ = k(1 - 2v _R2/p2), h~~ = k(1 - 2v + R2/p2), 

hW = -b(1)/(2np), 

T~~ = 2Jlk( 1 - R2 / p2), TW = 2Jlk( 1 + R2/ p2), 

(14.111) 

Let us consider now the second linear boundary-value problem (14.21) of the 
iteration scheme. By taking into account (5.26) and (5.33) we deduce that the ex­
pression (14.19) of'tu becomes in the isotropic case 

". - () [-.!. h(O h(O + ).h(0 h(l)+ (~ - ;.) (e(l) )2 + V e(l)e(l) ] + 
'Ill - 11 2 mn mn mn nm 2 mm 2 mn mn 

(14.112) 
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where el}i. = (hL}'! + MJD/2. Next, substituting (14.111) into (14.112), we obtain 
after some intermediate calculation 

't1J: = 'tzlJ = - -- (l - Jl + v2)(1 - 2v) + (2Jl + va) I - 2v + - , kb(l) [ (R2 )] 
~ ~ 

(14.113) 

where 

while the other components of 't are zero. As 't is independent of () and z, and 'trlJ = 
= 'tr: = 0, we deduce from (14.113) and (1.77) that the only non-zero component 
of div 't is 

where 

It is easily seen now that the boundary-value problem (14.21) is independent 
of () and z. Therefore, we shall seek its solution under the form U(2)= u~)(P )ep- Hence, 
by (1.75), the only non-zero components of the displacement gradient h(2) = grad U(2) 

are 

d (2) 
h(2) _ Up 

pP - d;' 
(2) 

h(2) _ Up 
88 --. 

P 
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Introducing this result into (14.21)3 and considering (5.26) yields 

d (2) (2) 

T~2J = (J. + 2/1) dUP + J. ~ + 1:pp, 

P P 

(14.114) 

U(2) du(2) 
TW = J. -p- + (J. + 2/1) -p- + 1:1J1J, 

P dp 

nil = ). (dU~2) + U~2») + 1:zz , 

dp p 

while the other components of T(2) are zero. Next, by substituting (14.114) into 
(14.21)2 and taking into account (1.77), we see that the last two equilibrium equations 
are identically satisfied, whereas the first equation becomes 

(J. + 2/1) ~ +-~ _!!L = ~ + ~, ( 
d2 (2) 1 d (2) (2) ) 

d p2 P dp p2 p3 pO 

which is a differential non-homogeneous equation of Euler type. The general solution 
of the corresponding homogeneous equation is 

where C1 and C2 are arbitrary constants. By making use of Lagrange's method, we 
find the general solution of the non-homogeneous equation 

up -- C2P -- -. (2) _ C1 + + 1 (a1 Inp + a2 ) 
p A + 2/1 2 P Sp3 

(14.115) 

Finally, by introducing (14.93) into the first equation (14.114), and the result 
obtained into the boundary condition (14.21)4' we find 

- -- + 2(J. + /1)c2 + - 1 - --- lnp - -- - + 1:pp = 0, 2/1C1 al ( /1 ) J. + 3/1 a2 
p2 2p2 A. + 2/1 A. + 2/1 4p4 

a relation that must be satisfied for r = r 0 and r = R. After determining the constants 
C1 and C2 from these two conditions we may immediately obtain the displacement, 
the displacement gradient, and the stress fields by using the formulae 
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the terms in the right-hand sides being given by (14.111) and (14.113-115). It 
should be noticed that the parameter e does not occur in the final result since it 
intervenes only through the combinations eb(l)= band ep(l) = p. It is also worth 
noting that, in the second-order approximation of non-linear elasticity, the dislo­
cation produces displacements both in the p and z directions, an effect entirely 
absent from the linear approximation. 

14.4. Determination of second-order elastic effects 
by means of Green's functions 

We end this section by expounding a method elaborated by the author [341] for the 
calculation of the second-order elastic effects produced by a straight dislocation in 
an anisotropic medium, by means of Green's functions. This method generalizes the 
procedure employed by Willis [382] to compute the non-linear elastic field of a screw 
dislocation, by allowing the consideration of the core conditions, too. 

Consider a straight dislocation in an infinite anisotropic elastic medium, lying 
along the xa-axis ofaCartesian system of co-ordinates denoted by Xl> X2' Xa (Fig. 10. 1). 
We make use throughout of the notation in Sect. 10. Since the elastic state produced 
by the dislocation depends only on Xl and X2' the derivatives with respect to Xa vanish 
identically, but we will not make use explicitly of this property, in order to avoid 
complicating notation. 

The linear boundary-value problems corresponding to the first two steps of 
the iteration described at the beginning of this section are given by (14.22), (14.23), 
and (14.30). They become in our case 

and, respectively, 

lim U~l.), = 0 
p-+oo 

(2) + jj(2) - 0 
cUm1lu m,1I' k-

C U(2),.n - t* (2) kim" m, ,- k 

lim u~:~ = 0, 
p-+oo 

(14.116) 

in Lt, 
(14.117) 

where p = Vxi + x~, fl2) = Tkl.h t:(2) = -Tk,n" na = 0, Tu is given by (14.)9). 
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and (.),1 denotes as usual partial differentiation with respect to the co-ordinate Xl 

in the deformed configuration of the medium. 
The boundary-value problem (14.116) has been solved in Sect. 10.2, its solu­

tion being giyen by (10.43), (10.37), and (10.42). Apparently, this solution cannot be 
applied as well to the boundary-value problem (14.117), due to the presence of the 
body force !Pl in the equilibrium equations. However, this case may be reduced to 
that of the absence of body forces, by determining a particular solution of (14.117)z 
with the aid of Green's tensor function Gk.(Xh X2) of the generalized plane strain, 
which was defined in Sect. 10.3. Indeed, since hIll = O(p-l) as p -+ 00, we have also 
1: = 0(p-2), f(2l = 0(p- 3) as p -+ 00, and hence f(2l satisfies the condition (10.98). 
Consequently, by applying (10.100) we infer that a particular solution of (14.117)z 
is given by 

(14.118) 

where, by virtue of (10.88) and (10.89), 

(14.119) 

From the solution given in Sect. 14.2 for an edge dislocation it is obvious that the 
particular solution ij need not be continuous across the cut X2 = 0, Xl E (-00, - To] 

and the corresponding tractions acting on the cut faces may not be pointwise equi­
librated. Consequently, we have to supplement ij by the displacement field of a gene­
ralized Somigliana dislocation (cf. Sect. 10.6). 

Let us denote by 

the stress vector corresponding to the displacement ii and assume, like in Sect. 10.6, 
that both ii(xt> 0+) - n(xt> 0-) and 't(xl , O+)+t(XI' 0-) are analytic vector-valued 
functions and such that thefirstis 0(1) and the second O(x12) as IXII -+ 00. Develop­
ing these functions in power series for Xl E (- 00, -To] we have 

(14.120) 

for Xl E (-00, -To]. By using the results in Sect. 10.6 we may find the solution of 
the boundary-value problem (14.117) in the form 

(14.121) 
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such that both u and ii satisfy the equilibrium conditions in A without body forces, 
as well as the boundary condition (14.117)4 at infinity, u satisfy the conditions (14.120) 
with opposite signs, on the cut, while ii be continuous together with its partial deri­
vatives of first two orders across the cut and satisfy the traction boundary condition 
(14.117)3 on r o, modified by the contribution of ii and u. Then, ii will be given by 
(10.111)1' (10.112), and (10.114), with qkm defined by (10.108), where now 

Pk = 1 (tt(2) - t k) dl. 
Jr. 

Next, u is given by (10.115)1' (1O.1l6), and (10.121), with hm defined by (10.122), 
where now 

and i*(O), t*(O) denote the stress vectors corresponding on ro to the displacement 
fields ii and U, respectively. Finally, the constants uZ, corresponding to a rigid transla­
tion of the whole medium, may be further determined by imposing the value of 
the displacement field at an arbitrary point of the medium. 

Alternatively, when the traction boundary conditions (14.116)3 and (14.1l7)3 
on ro are replaced by the displacement boundary conditions (14.26)2 and (14.27)2' 
respectively, we may again apply the results obtained at the end of Sect. 10.6. Then, 
a and ii preserve their expressions, but UO is given by (10.126), while the coefficients 
aam occurring in the expression of u are determined by (10.127) and (10.128), where 
now 

and U*(O), u(O) denote the values on Fo of u and ii, respectively. 
Thus, both the traction and the displacement boundary-value problems 

occurring at the second step of the iteration have been reduced to the calculation 
of the integral (14.118), with G given by (14.119), and f(2) expressed by (14.19) and 
(14.24)1 in terms of the solution determined at the first step of the iteration. Such 
integrals can be calculated, for example, by using the residue theorem, as has been 
done by Willis [382] to calculate the second-order effects in the elastic field of a screw 
dislocation lying along a two-fold axis of material symmetry. Unlike Willis, who 
neglected the boundary conditions on r o' and eliminated the singularities of the 
particular solution on a rather intuitive reason, the above approach allows the 
calculation of the integral (14.118) on A, which makes it convergent. 

15. Influence of single dislocations 
on crystal density 

Experimental evidence proves that dislocations produce a positive volume change 
of crystals. For isotropic media, this effect has been quantitatively described by 
Zener [391] in 1942, without making explicit use of second-order elasticity. Zener's 
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formula, based on thermodynamic arguments, was subsequently used by Seeger 
and Haasen [288] to study the influence of isolated dislocations on crystal density, 
and has been generalized to cubic crystals by Seeger [287]. 

In 1960, Zener's formula has been derived from second-order elasticity theory, 
independently, by Pfleiderer, Seeger, and Kroner [270] for isotropic materials, and 
by Toupin and Rivlin [354] for isotropic materials and cubic crystals. In this sub­
section we mainly follow the method used by the latter authors, by employing, 
however, an Eulerian formulation. 

15.1. Mean stress theorem and its consequences 

Consider a body fJ4 in equilibrium under the action of the surface tractions t and 
body forces f. Denote as above by "I' the region occupied by fJ4 in the deformed 
configuration, by V its volume, and by [J> the boundary of "1'. The symmetric tensor 

T(-r) = - Tdv - 1 ~ 
V f 

is called the mean stress. 
The starting point of our considerations is the so-called mean stress theorem 

(Chree [75]), which is expressed by the relation 

1'("1') = + (~S' x t ds + ~f X r dv ). (15.1) 

To prove (15.1), we first note that 

By making use now of the integral transformation (1.52) for fixed k, m, and 
taking into account that 

we obtain 

(15.2) 

a relation which is equivalent to (15.1), since T = TT. 
Consider now a multiply-connected body in a state of self-stress (cf. Sect. 6.2). 

In this case, we have t = r = 0, and hence (15.2) reduces to 

~.,. Tkm dv = 0, k, In = 1,2,3. (15.3) 
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We arrive thus to the following result, which seems to have been formulated for 
the first time by Albenga [2]: The mean value of each Cartesian stress component 
over a body that is in equilibrium in a state of self-stress is zero. It is interesting 
to note that this result does not depend on the constitutive equation of the material 
(except indirectly, through the configuration assumed by the body in the deformed 
state); in particular it holds for non-linear elasticity, too. 

For a homogeneous linearly elastic body it follows at once from (15.3) and 
(6.4) that 

k, m = 1,2,3. (15.4) 

Thus, the linear elasticity theory predicts a vanishing value for each Cartesian com­
ponent of the strain tensor, too; in particular, the mean value of the infinitesimal 
dilatation of a self-stressed body is also zero. Clearly, this consequence of the mean 
stress theorem is no longer valid in the non-linear case. However, the general result 
(15.3) may still be used to compute the (non-zero) mean value of the non-linear 
volume change. 

15.2. The volume cbange produced 
by single dislocations 

In order to apply the above results to the case of single dislocations we shall neglect 
the effect of the tractions exerted by the dislocation core on the internal boundary 
of the elastic continuum. A more precise treatment would require the consideration 
of the contribution of these tractions to the surface integral in the right-hand side 
of (15.2). 

The mean volume change per unit underformed volume is defined by 

- V- v. e = 0 , 

Vo 
(15.5) 

where Vo is the volume of the region occupied by the body gj in the natural state. 
On the other hand, by (2.26), (2.8), and (7.5) we have 

where 

d V = j = det F-I = det (1 - b), 
dv 

b(x) = grad u(x). 

A direct calculation prove s that (15.6) may be rewritten as 

dV 
- = 1 - J. + IIh - III., 
dv 

(15.6) 

(15.7) 

(15.8) 
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where Ib' lIb' IIIb are the principal invariants of h. Multiplying both sides of (15.8) 
by dv and integrating over V yields the volume change of [JI from the natural state 
to the deformed one: 

(15.9) 

Next, we apply the results obtained in Sect. 14.1 concerning the second-order 
elastic effects of dislocations by writing 

(15.10) 

.and neglecting terms of third and higher orders in e. Substituting (15.10) into (15.9) 
.and considering (5.4-6) yields 

The first integral in the right-hand side may be now eliminated by using (15.3). 
To this end we first introduce (14.17) and (14.18) into (15.3), thus obtaining 

Next, multiplying both sides of this equation by Spplcl' summing up for k, I = 1,2,3, 
.and taking into account that (4.50) and (4.45) imply 

(15.12) 

we obtain 

(15.13) 

Finally, by introducing (15.13) into (15.11) and taking into consideration the expres­
sion (14.19) of 'ru, we find 

V -v. = .,2 ~ P 1.(1) 1.(1) dv 0" mnrs"mn"rs, .,. (15.14) 

where 



238 III. Non-linear elastic effects of dislocations 

Formula (15.14) gives the desired expression of the (non-linear) volume change in 
second-order elasticity theory. 

It is important to note that the calculation of the mean dilatation e from 
second-order elasticity involves the elastic constants of third order, but requires 
only the knowledge of the displacement gradient h(l) from the first step of the itera­
tion, i.e. from linear elasticity. The parameter e occurs in the final result (15.14) 
only through the combination eh(1), which, as shown in Sect. 14, does not depend 
on e. Furthermore, when a Lagrangian description is being used for the iteration 
scheme (see, e.g. Teodosiu [337], p. 186, Gairola [418], p. 290), formula (15.14) is 
simply replaced by 

v - Vo = e2 ( P mnrsmJ~m}) d V, 
)1'0 

(15.16) 

where "1'"0 is the region occupied by the body in the natural state, H(l) is the displace­
ment gradient from the first step of the iteration, and P mnrs is given by the same rela­
tion (15.15). This is not a surprising result, however, since dv = dV + O(e) and 
all terms of third and higher orders in e have been neglected in (15.16). 

In view of the discussion above, we shall rewrite (I5.15) and (15.16) in the 
unified form 

v - Vo = ( PmnrsHmnHrs dV, 
).Yo 

(15.17) 

where H = eH<l) = eh(1) means the infinitesimal displacement gradient, and no 
distinction is being made between the natural and the deformed configurations when 
calculating the integral in the right-hand side. 

Formula (15.17) assumes a much simpler form in the isotropic case. Indeed, 
from (5.26) and (15.12) it follows that 

and hence 

3 
s ----

ppll - 3l + 2Jl. ' 

Substituting this result into (15.15) yields 

On the other hand, by (5.33), 

<>kI 
Sppkl = -----'--

3l+2Jl. 
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and hence, considering also (5.26), equation (15.18) becomes 

p = _ ). - 2Jl + 3 VI + 3V2 8 8 _ 
mnrs 2(3..1. + 2Jl) mn rs 

_ ~_ (I + 4Jl + 3 V2 + 4va ) (8 8 + 8 8). 
2 3), + 2Jl mr ns ms nr 

(15.19) 

Finally, introducing (15.19) into (15.17), we obtain 

v _ v. = _ A - 2Jl + 3 VI + 4V2 ( (E )2 dv _ 
o 2(3..1. + 2Jl) JV'O mm 

_ (I + 4Jl + 3 V2 + 4va ) ~ E E d mn nm v, 
3). + 2Jl "'0 

(15.20) 

where E = -} (H + HT) is the infinitesimal strain tensor. 
We may further relate the mean value of the dilatation to the mean values 

of the dilatational and shear parts of the stored energy function. To this end, we 
first rewrite (6.14) in the form 

o 

). 
W = - (tr E)2 + Jl tr E2. 

2 

Introducing the deviator E of the strain tensor, defined by 

o 1 
E = E - 3 (tr E) 1, 

we have 
o 2 0 

E2 = E2 + '3 (tr E) E + } (tr E)2 1, 

o 
and hence, since tr E = 0, 

tr E2 = tr E2 + { (tr E)2. 

Substituting (15.23) into (15.21) yields 

where 
o 

Ws = Jl trE2, 

(15.21) 

(15.22) 

(15.23) 

(15.24) 

(15.25) 
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and K = ,1. + 2/1/3 is the bulk modulus. Wd and Ws are called the dilatational and, 
respectively, the shear part of the stored energy function W, on account of the follow­
ing reasoning. Given any homogeneous strain field E, it is always possible I to 
find a Cartesian frame {O, ed such that 

(15.26) 

where 

In other words, any homogeneous strain field may be decomposed in a uniform 
dilatation of amount e, and three simple shears of amounts "l> "2, and "a, with res­
pect to the direction pairs (e2' ea), (ea, e1), and (eI, e2), respectively. On the other 
hand, a direct calculation shows that 

o 0 

trEd = trE, tr E. = 0, Es=E, 

and hence 
o 

Ws = J.l. trE;, 

these relations justifying the terminology adopted above. 
Let us define now the mean values Wd and Ws of the dilatational and shear 

parts of the stored energy by the relations 

(15.27) 

Introducing now (15.23) into (15.20) and taking into account (15.27) we find 

e = - ~ (1 + VI + 2 V2 + 8 va/9 ) W _ A. + 2/1 + V2 + 4 va/3 W (15.28) 
K K d J.l.K .' 

which is the desired result. 

1 See, e.g. Gurtin [150], pp. 35-37. 
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15.3. Derivation of Zener's formula 
in the isotropic case 

The coefficients of W4 and Ws in equation (15.28) may be given an interesting 
physical interpretation by considering the apparent elastic constants characterizing 
the response of an elastic material to an infinitesimal deformation superimposed upon 
a uniform finite dilatation. 

We first remark that the constitutive equation of second-order elasticity(5.34) 
may be rewritten in direct notation as 

T = A(tr E) 1 + 2flE + { ~ tr(HTH) + ( ~l - A ) (tr E)2 + v2 tr E2} 1 + 

+ 2(A - f.l + v2)(tr E) E + flHHT + 4(f.l + v3) E2. 

The pressure associated to the stress tensor T is defined by 

1 
P = - 3 trT. 

Hence, by (15.29), 

p = -Ktr(E + + HTH) + } (A + 2f.l - 3vl /2 - 2v2)(tr E)2 -

(15.29) 

(15.30) 

(15.31) 

Suppose that the body is subjected to a uniform finite dilatation of deformation gra­
dient Fo = cd. Then, Ho = Eo = (a - '1)1 and (15.29) shows that the corresponding 
stress tensor To reduces to a hydrostatic pressure, namely To = -Pol, where, by 
virtue of (15.31), 

Po = -3(a - 1)[K + (a - 1)( -K/2 + 3vl /2 + 3V2 + 4va/3)]. (15.32) 

Let us superimpose now on the uniform finite dilatation a second uniform 
infinitesimal dilatation of amount p, whose deformation gradient from the first 
state is FI = (1 + p)1. The total deformation gradient is F = FIFo = (1 + p) aI, 
and hence H = E = (a + ap - 1) 1. Then, the corresponding stress tensor T 
reduces again to a hydrostatic pressure, i.e. T = -p 1, where p may be obtained 
directly from (15.32) by simply replacing a with (P + l}at:. Hence 

p = -3(a + ap - 1)[K + (a + ap - 1)( -K/2 + 3VI/2 + 3V2 + 4va/3)]. (15.33) 

According to (6.6), the apparent bulk modulus can be defined as 

K* = -lim p - Po = _ lim p - Po = 
P -+0 tr EI P -+0 3 P 

= a[K + (a - 1)( -K + 3v1 + 6v2 + 8vs/3)], (15.34) 

6 -120 
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where all constants, including K, must be taken with their values in the natural state. 
Since this state is characterized in our case by a = 1 and Po = 0, we deduce from 
(IS.32) and (IS.34) that 

dK* 

dK* I __ da 

dpo Po=O dpo 
da «=0 

(IS.35) 

Clearly, this derivative determines the variation of K* for moderate values of Po. 
Next, we consider an infinitesimal shear of amount y, whose deformation 

gradient is F2 = 1 + ye1e2' superimposed on the initial uniform dilatation. 
For the total deformation from the natural state we have 

Substituting the last two expressions into (1S.29) we obtain for the shear stress T12 
corresponding to the direction pair (e1, e2) the expression 

T12 = ay(j.L + (a - 1)(3A + 2J.l + 3v2 + 4va)]. (1S.36) 

The apparent shear- modulus is defined by 

J.l* = lim (T12/y) 
,,-to 

and hence, by (15.36), 

J.l* = a(j.L + (a - 1)(3A + 2J.l + 3v2 + 4va)]· (IS.37) 

The variation of J.l* for moderate values of Po is determined by the derivative 

dJ.l* 

dJ.l* I - da 
dpo Po=O dpo 

da «=1 

(1S.38) 

Finally, by substituting (1S.3S) and (IS.38) into (IS.28), we derive Zener's 
formula for the mean volume change per unit underformed volume in second-order 
el asticity 

(IS.39) 
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where both moduli K and p, as well as the derivatives of the apparent moduli, are 
taken with their values in the natural state. The reasoning leading to (15.39) has 
been generalized by Toupin and Rivlin [354] to cubic crystals belonging to sub­
system 7 (see also Seeger [287]). 

Starting from (15.39), Seeger and Haasen [288] have calculated the mean value 
of the dilatation produced by straight dislocations in isotropic media. In order to 
derive their result, we make use of equations (8.52) and (8.60)2, which give the 
strain field of straight dislocations in isotropic media. Then, taking also into 
account that 

K= 2p(l+v) , 
3(1 - 2v) 

equations (15.27) and (15.39) yield for an edge dislocation 

W = In--- Kb2 (1 - 2 V)2 R 
a 8n2(R2-r~) I-v ro' 

pb2 1 - v + v2 R 
Ws = In-, 

6n2(R2 - r~) (1 - V)2 ro 

e _ b2 
[ 1 ( I - 2v )2 (dK* _ 1) + 

4n2(R2 - r~) 2 1 - v dp 

+ 2 1 - V + v2 (dP* _ £)] In~, 
3 (1 - V)2 dp K ro 

and for a screw dislocation 

Alternatively, one can correlate the volume expansion per unit dislocation length 

dv = n(R2 - r~) e 

with the strain energy w, stored per unit dislocation length, which is given by (8.54) 
for an edge dislocation and by (8.62) for a screw dislocation. The result reads 

t5v = ~ [I - v - 2V2_1 (dK* -I) +_1 - v + v2 2 ( dp* _£)] w 
3 1 - v K dp 1 - v J1 dp K 
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for an edge dislocation, and 

15v = ~ (dJl* _~) w 
Jl dp K 

for a screw dislocation. By using the above formulae and the experimental values 
of the constants for various polycrystalline materials (Cu, Ni, AI, Fe, and NaCI), 
Seeger and Haasen [288] found in all cases that a dislocation produces a positive 
expansion, hence a decreasing of the crystal density. 

16. Study of the core of straight dislocations 
by fitting the atomic and elastic models 

A thorough understanding of the strength of crystalline materials and in particular 
of metals rests ultimately on knowledge of the atomic arrangements and movements 
around lattice imperfections (dislocations, point defects, grain boundaries). Indeed, 
it is these imperfections that make possible the plastic flow and the nucleation and 
propagation of cracks at applied forces that are several orders of magnitude lower 
than those necessary to fracture a perfect crystal. 

Unfortunately, the highly distorted regions close to crystal defects cannot 
yet be studied experimentally. On the other hand, the well-developed techniques 
of continuum mechanics, based on linear or even non-linear elasticity, break down 
near crystal defects, since they lead to infinite values of the stress and displacement 
fields which are physically unacceptable. Finally, the fully atomic models based 
on lattice theory lead to correct predictions of the atomic arrangements around 
imperfections, but must be restricted to bounded atomic blocks containing a not 
very large number of atoms, in order to save computing time. Therefore, the only 
reasonable way seems to be the application of semidiscrete methods, which make 
use of the lattice theory for the close proximity of crystal defects and of the elasticity 
theory for the remaining of the crystal, each of these theories providing the boundary 
conditions necessary for the other one. 

In the following, we shall confine ourselves to consider the distortions within 
the core of straight dislocations. After examining the main effects of these distortions 
on the processes taking place in crystalline materials we shall review the methods 
used to determine the atomic arrangement around straight dislocations. 

16.1. Influence of the highly distorted dislocation core 
on the physical-mechanical behaviour of crystals 

To illustrate the high distortions within the dislocation core we reproduce in Fig. 
16.1, after Gehlen, Rosenfield and Hahn [127] the atomic arrangement near a 
(100) edge dislocation in (X iron, as determined by means of a semidiscrete method 
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with 780 atoms in the region treated atomistically. The triangles and the squares 
represent individual iron atoms on two consecutive (100) planes. The plus sign 
marks the theoretical position of the dislocation line in the elastic calculation. 
The unit extensions of the bonds AB, DE, BE, and CD, calculated in [127] with 
respect to the perfect lattice 1 were -17.1%, +50.7%, -3.6%, and +9.5%, res­
pectively. It is obvious that for such high strains, not only the linear theory but also 
the second-order theory of elasticity would yield misleading results. 

Fig. 16.1. Configuration core of a {100) 
edge dislocation in IX iron (after Gehlen, 
Rosenfield, and Hahn [127D. The tri­
angles and the squares represent individual 
iron atoms on two consecutive (100) 
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y-

L 

r'" 

-

l!. 

l!. 

""-

/::, \ 
/::, 

~ 

l!. /::, 

n. 
A + 

/::, 

0 J-
·e 

/::, 

tJ. 

M. 

T T l' 
/::, .1 

.[ 

B 

.1 .1 
E 

J' 

tJ. 1 tJ. 
tJ. tJ. 

~ -

Since dislocations interact through their elastic fields with point defects and 
other dislocations, this interaction is influenced by the actual distortion of the dislo­
cation core. The core contribution to the total interaction energy is the higher, 
the closer the interacting defects. Thus, the knowledge of the atomic arrangements 
around dislocations plays an important part in determining such properties as the 
Peierls stress, the structure and energy of jogs and kinks, the tendency of disloca­
tions to dissociate into partials, the interaction between gliding dislocations and 
short-range obstacles, the dilatational effect of dislocations, etc. We shall consider 
below in more detail some of these problems. 

The core energy. As shown in Sects. 8 and 10, the total energy stored per 
unit length of a straight dislocation may be written as 

Kb2 R 
wt = --In-+ wo, 

4n ro 
(16.1) 

where the first term in the right-hand side is the strain energy of the linear elastic 
field per unit dislocation length, R is the outer radius of a circular cylinder within 
which the energy is evaluated (the dislocation line being the axis of that cylinder) 
ro is the core radius, and Wo is the core energy per unit dislocation length. Of 
course, the theory of elasticity cannot provide any information about ro and wo, 
which are introduced in (16.1) only to avoid that wt -+ 00 as ro -+ O. However, 

1 AB and DE were taken as first-neighbour bonds, BE and CD as second-neighbour bonds. 
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by using a semidiscrete me thod, one can obtain the plot of W t vs. InR and, by com­
paring it to (16.1), the desired values of ro and WOo For example, Gehlen et al. [127] 
have found in this way for the < 100) edge dislocation in a - Fe values of r 0 between 
1.25 and 1.65 b, and of the core energy per atomic plane between 0.47 and 0.65eV, i.e. 
about one tenth of the total strain energy. It is also worth mentioning that the 
comparison of the slope of the wt-vs.-InR plot with the factor Kb2/4rr in (16.1) 
has been successfully used to discriminate between different interatomic potentials. 

Equation (16.1) may be obviously rewritten as 

Kb2 R 
wt= - -ln-, 

4rr rj 
(16.2) 

where rj = ro exp (-4rrwo/Kb2) may be interpreted as an effective hole radius, and 
is usually written as rj = bfa, with a varying between 1 and 2 for most metals, e.g. 
a = 1.6 for the (100) edge dislocation studied by Gehlen et al. [127]. On the other 
hand, if one considers instead 0 f the spatial variation of the strain energy - which 
is relatively insensitive to the computation method - the atomic configuration 
around the dislocation, one finds that the linear elastic solution matches the atomic 
displacements only at larger distances, say 10 atomic spacings. Thus, as pointed out 
in [127], even for a model with 780 atoms within the region treated by the lattice 
theory, the strains at the boundary of that region (about 14 atomic spacings from 
the dislocation line) are still between 1% and 2%. 

The evaluation of the parameters ro and Wo makes possible the application of 
(16.1) to improving the solution of such problems as: the calculation of the line 
tension, the determination of the equilibrium angles of dislocation nodes, the study 
of the tendency of dislocations to zigzag during their glide, and the calculation of 
the interaction between dislocations and other crystal defects 1. 

Peierls stress. In the dislocation theory of plastic glide it is generally assumed 
that each dislocation is influenced by a given stress state only through the so-called 
resolved shear stress, which is the component in the glide direction of the stress 
vector acting on the glide plane. The resolved shear stress that is necessary to move 
a dislocation through a crystal in the absence of any other defect is called the Peierls 
stress. The origin of this intrinsic resistance of the lattice is the periodic variation 
of the misfit energy of the atomic half-planes above and below the glide plane with 
the position of the dislocation in this plane 2. 

When the dislocation density is high the main resistance to glide and the work­
hardening are provided by the long-range interaction between dislocations, whereas 
the contribution of the Peierls stress is negligible. On the contrary, at the beginning 
of the plastic flow, when the dislocation density is rather low, this contribution may 
be significant. The PeierIs stress determines also the yield stress of the so-called 
whiskers, which are crystal wires of diameter less than one micron, containing few 
or only one dislocation running parallel to the axis of the wire. Finally, it is generally 

1 In this connection see also Gehlen, Hirth, Hoagland, and Kanninen [1301. 
2 Fore more details, see e.g. Hirth and Lothe [1621, Sect. 8.4 and Aczel and Bozan [11. 

§ 8.3. 
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accepted that the plastic behaviour of b.c.c. metals at low temperature is to a great 
extent controlled by a Peierls mechanism. 

Two main procedures have been used so far to evaluate the Peierls stress by 
semidiscrete methods: 

(i) In the first approach, which has been originally used by Nabarro [255], 
the dislocation is held in various crystallographically non-equivalent positions, 
and its core energy W t is calculated as a function of the abscissa ~ measured in the 
glide direction. Then, by using some interpolation function to define a smooth 
dependence Wt(~), one calculates the Peierls stress "Cp by the formula 

In this way and using a semidiscrete method to determine the various core confi_ 
gurations of the -}<l1l) edge dislocation on {110} planes in a-Fe, Chang and 
Graham [60] found a Peierls energy barrier of about 0.03 eV per identity distance 
along the dislocation line and a Peierls stress of 0.0066 It, in satisfactory agreement 
with experimental evidence on internal friction. More recently, the same method 
has been employed by Heinrich, Schellenberger, and Pegel [426], and by Heinrich 
and Schellenberger [427] for dislocations in b.c.c. crystals. However, such calcula­
tions do not take into account the possible changes in the core configuration under 
an applied stress. As first pointed out by Suzuki [325], this is inconvenient especially 
for the screw dislocation in b.c.c. lattices, which has a sessile equilibrium configura­
tion, and hence its core must undergo substantial changes before the dislocation 
can move. 

(ii) The second procedure consists in the semidiscrete simulation of a crys­
tallite subject to an applied shear stress. Since the core distortions are strongly 
non-linear, the superposition principle does not hold, and the presence of the applied 
stress must be taken into account from the very beginning. This was first done by 
Kurosawa [445], who calculated the Peierls stress for edge dislocations on {110} 
planes in alkali halides, and more recently by Basinski, Duesbery, and Taylor [19, 
20], and by Duesbery, Vitek, and Bowen [411] for screw dislocations in b.c.c. crystals. 
The calculation proceeds as follows. First, a finite crystallite in the form of a rectan­
gular parallelepiped composed of a certain number of repeat units is chosen. The 
initial equilibrium core configuration is determined by fixing the lateral boundaries 
of the crystallite at the positions dictated by the linear anisotropic elasticity for a 
Volterra dislocation placed in the middle of the crystallite. Along the dislocation 
line are applied periodic boundary conditions, which make the crystallite effectively 
infinite in the direction of the dislocation. 

The application of an external shear stress is simulated by imposing the corres­
ponding homogeneous strain given by linear elasticity on the initial core configura­
tion, and then allowing the atoms to relax to new equilibrium positions. The calcu­
lation always starts with stresses much lower than the Peierls stress; larger stresses 
are built up by the application of successive small stress increments. Upon choosing 
a sufficiently large crystallite (this was taken of dimensions 45b X 45b normal to 
the dislocation line in [411]), the dislocation can move through several atomic spa-
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cings without being significantly influenced by the fixed boundaries. The critical 
stress for which the dislocation starts to move through the lattice is then identified 
as the Peierls stress. Both positive and negative stresses are considered whenever 
asymmetries are expected in the dislocation motion: this is for example the case 
with +< 111> dislocations moving on {112} planes in b.c.c. crystals, for which 
the Peierls stresses corresponding to the dislocation motion in the twinning and 
antitwinning sense, respectively, have been evaluated. 

In general, two distinct critical shear stresses may exist. The first critical shear 
stress is the smallest stress for which the core undergoes an irreversible translation. 
After this first step no further movement is possible until the applied stress is in­
creased to the second critical shear stress, when the dislocation moves freely through 
the lattice. By using three distinct types of short-range interionic potentials, Duesbery 
et al. [411] have found for the -} < 111 > screw dislocation in b.c.c. crystals that the 
first critical shear stress on {llO} planes ranges between 0.020,u and 0.034,u and 
the second critical shear stress ranges between 0.029 ,u and 0.040/1. These authors 
have also demonstrated that the applied stress produces significant internal changes 
of the core structure before the dislocation can move, and hence the first procedure 
may lead to a drastic overestimation of the Peierls stress for this dislocation. Using 
long-range interionic potentials for lithium, Beauchamp, Rabier, and Grilhe [221 
arrived essentialy to the same conclusions, except that boundary conditions have 
an increased influence on the results when employing such potentials. In addition, 
they showed that the gliding on the {112} planes is strongly asymmetric, being easier 
in the twinning sense than in the antitwinning sense. 

Yamaguchi and Vitek [386, 488] thourougly studied the Peierls stresses and 
the effects of an applied stress on the core structure of non-screw-}< III > disloca­
tions in b.c.c. crystals by using three different central interatomic forces. They 
showed that the cores of non-screw dislocations lying on {II O} planes do not undergo 
any drastic changes under an external stress except a certain widening prior to the 
net movement of the dislocation. As a consequence, both procedures described 
above lead to similar values of the Peierls stress. On the contrary, for non-screw 
dislocations lying on {II2} planes, the first method appreciably overestimates the 
magnitude ofthe Peierls stress and does not show any difference between the stresses 
needed for the movement of the dislocations in the twinning and anti twinning senses. 
It was argued that this difference arises from the fact that the cores of dislocations 
lying on {110} planes are confined to a single atomic layer, while the cores of dislo­
cations lying on {Il2} planes spread across three layers [488]. 

The interaction between gliding dislocations and obstacles. A gliding dislocation 
may encounter two types of obstacles: extended obstacles, e.g. dislocation pile-ups 
or inclusions, and local obstacles, e.g. point defects or dislocations threading the 
glide plane. 

Since extended obstacles produce a long-range stress field, the contribution 
of the dislocation core to the interaction with such obstacles is relatively small (less 
than 10%). In exchange, the interaction between dislocations and short-range stress 
fields of local obstacles is strongly influenced by the high strains in the dislocation 
core (Hirth and Nix [163]). 
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Indeed, the total force exerted by a gliding dislocation segment may be written 
as (see, e.g. Teodosiu et al. [343-345]); 

where f;(~) is the force exerted by the local obstacle on the dislocation segment. 
~ is some abscissa measured in the glide direction, -r* is the difference between the 
reduced stress produced by the applied forces and the reduced stress produced by 
extended obstacles, and I is the length of the dislocation segment. Clearly, the varia­
tion and the maximum value of fj(~) strongly depend on the atomic arrangement 
around the dislocation segment and on the change of this arrangement during the 
overcoming of the obstacles. Consequently, the determination of the real core con­
figuration is of great importance for a correct evaluation of the interaction between 
gliding dislocations and local obstacles, and hence for a quantitative microstructural 
analysis of the viscoplastic behaviour of metals. 

Variation of the crystal density. As shown in Sect. 15.2, the volume dilatation 
produced by dislocations is a typical non-linear effect. Indeed, the linear theory of 
elasticity predicts zero mean volume dilatation for any source of self-stress, hence 
also for dislocations. 

On the other hand, although the second-order elasticity theory predicts a 
non-vanishing mean volume dilatation that decreases as R-2 as R .-. 00, this effect 
is substantially influenced by the boundary conditions on the dislocation core. 
which must be taken into account by a combined atomistic and elastic calculation 
(Gehlen et al. [130], Sinclair et al. [474]). The preliminary results obtained by Granzer 
et al. [143], with the aid of a semidiscrete method and using a non-linear elastic model 
outside the region treated atomistically, have led to almost exactly one-atom-vo­
lume-per-plane overall volume dilatation, in agreement with other theoretical and 
experimental results. 

The considerations above emphasize the significant influence exerted by the 
core distortion on various processes taking place in crystals. In the following we 
will focus our attention on the semidiscrete methods used to simulate crystal dislo­
cations and to determine their core configurations. 

16.2. The semidiscrete method with rigid boundary 

In order to simulate a single dislocation by a semidiscrete method it is customary 
to divide the crystal into two regions. Region I, which is the next neighbourhood 
of the dislocation line, is treated as a discrete lattice. In this highly distorted region 
the continuum theory does not apply; atom positions are considered individually, 
with some interatomic potential being assumed to give the potential energy in 
terms of the atom positions. Region II, the remainder of the crystal, is considered 
as an elastic continuum; clearly, any displacement field satisfying the equilibrium 
equations of the elasticity theory provides also the equilibrium atom positions 
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when evaluated at the discrete lattice points. However, the only atoms which need 
to be explicitly considered in region II are those whose positions are required for 
the calculation of the forces exerted on the atoms of region I. 

On coupling the atomistic and continuum models of the dislocation, suitable 
boundary conditions must be introduced on the separation surface 1:0 between 

Fig. 16.2. Concentric arrangement 
of regions for the rigid-boundary 
method and for Sinclair's f1exible-

boundary method. 

regions I and II. For a straight dislocation, the internal boundary 1:0 is generally 
chosen as a circular cylindrical surface of radius r 0 having the dislocation line as axis 
(Fig. 16.2), or as the lateral boundary of a rectangular parallelepiped having the 
dislocation line in the middle. In both cases, region I is limited to a repeat distance 
in the direction of the dislocation line, with periodic boundary conditions being 
introduced on the surfaces normal to the dislocation line in order to simulate an 
infinitely deep crystallite. 

Until recently, the most frequently used method for simulating crystal dislo­
cations has been the semidiscrete method with rigid boundary, in short: the rigid­
boundary method. This method consists in the calculation of the relaxed atom posi­
tions in region I, while the atoms situated on 1:0 and in region II are kept fixed in 
their positions given by the linear elastic displacement field as obtained by neglecting 
the core boundary conditions 1. 

The rigid-boundary method has been first applied in 1955 by Huntington, 
Dickey, and Thompson [166] to simulate an edge dislocation in NaCI, the linear 
isotropic elastic displacement field (8.50) being used for region II. A similar calcula­
tion has been done by Englert and Tompa [103] in 1961 for a two-dimensional edge 
dislocation in argon, with the aid of an IBM 650 computer. 

The development of high-speed computers coupled with recent advances in 
elaborating more realistic interatomic potentials has greatly improved the simula­
tion of crystal defects by semi discrete methods. The first truly three-dimensional 
atomistic treatment (i.e. taking into account the interaction of the atoms situated 
in a plane perpendicular to the dislocation line with neighbouring atomic planes 
within the repeat distance) has been worked out for edge and screw dislocations by 
Doyama and Cotterill [82, 89] in the middle sixties. Later on, the rigid-boundary 
method has been used to simulate various types of straight dislocations in both 
f.c.c. and b.c.c. crystals by Chang and Graham [60], Cotterill and Doyama [83, 91], 

1 For a straight dislocation lying in an anisotropic elastic medium this displacement field 
is given by (10.56). It is sometimes called the Volterra solution, although Volterra [373] has derived 
the linear isotropic elastic solution for the case when Eo is traction-free. 
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Chang [61], Bullough and Perrin [46,47], Granzer, Wagner, and Eisenbliitter [141], 
Suzuki [325], Vitek [368, 369], Gehlen, Rosenfield, and Hahn [127], Gehlen [128], 
Vitek, Perrin, and Bowen [370], Diener, Heinrich, and Schellenberger [87], Rabier 
and Grilh6 [273], PuIs and Norgett [462], most of these authors employing the 
anisotropic elasticity theory for a more exact evaluation of the atomic displacements 
in region II. At the same time, region I has been gradually increased from 20 atomic 
rows in the pioneering work of Huntington et al. [166] to 2565 atomic rows in the 
work of Duesbery, Vitek, and Bowen [411]. A systematic investigation of the effect 
{)f an applied stress on the core configuration and on the dislocation mobility has 
been undertaken by Basinski, Duesbery, and Taylor [19, 20], Gehlen [129], Yama­
guchi and Vitek [386,488], Duesbery et 01. [411], Beauchamp, Rabier, and Grilh6 
[22]. Finally, the rigid-boundary method has been used to study the interaction 
between dislocations and point defects (Perrin, Englert, and Bullough [267]), the 
kinks and jogs and the dissociation of a full jog into two half-jogs in NaCI (Eisen­
bliitter [102]), the dissociation of an edge dislocation into two partials in NaCI (Belzner 
and Granzer [399]), as well as the structure of a grain-boundary dislocation in Al 
(Vitek, Sutton, Smith, and Pond [484]). 

In spite of the progress achieved in the description of the core configurations 
by means of the semidiscrete method with rigid boundary, it is apparent that this 
method has some essential drawbacks. The most important of them is that the elastic 
solution used for region II does not take into account the boundary conditions on 
1:0 , and hence cannot be improved during the calculation of the relaxed atom 
positions in the dislocations core. 

Moreover, when adopting a linear elastic solution for region II, the rigid 
boundary introduces some artificial constraints upon region I. For example, the 
mean volume dilatation of region I must vanish (cf. Sect. 15.1), at variance with 
theoretical considerations and experimental evidence 1. 

In fact, the core configuration calculated by the rigid-boundary method con­
sists of a narrow dilated region around the dislocation line, which is compensated 
by an artificially compressed shell separating the inner core region from the elastic 
continuum, such that the mean volume dilatation of the crystal bounded by 1:0 
be zero (Granzer et al. [143]). Furthermore, the atom positions given by the linear 
elasticity theory, which is based on a harmonic interaction potential, abruptly change 
across 1:0 into atom positions computed on the basis of anharmonic interatomic 
potentials, thus making impossible a smooth passage from the dislocation core to its 
surroundings (see also Petrasch and Belzner [459]). 

In addition, calculations done with an increasing number of atoms in region I 
show a rather slow convergence even for the atom positions in the very centre of 
the dislocation core, which should be less sensitive to boundary conditions imposed 
on I'o (Gehlen et 01. [127]). That is why, several methods have been elaborated 
in the last decade, which allow the boundary 1:0 to be "flexible", i.e. to relax together 
with the atoms in region I. Before examining these methods, we will briefly review 

1 As repeatedly emphasized by Seeger (see, e.g. [470]), this unrealistic effect is likely to be 
:avoided by using the non-linear elasticity theory for region II and taking into account the boun­
dary conditions on 1:0, 
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the main procedures used to obtain the atom positions in region I: the static rela­
xation and the dynamic relaxation. 

The static relaxation permits the determination by successive approximations 
of the atom equilibrium positions. 

Let X denote the vector of the generalized co-ordinates of a system, for instance 
the co-ordinates of the atoms in region I with respect to a Cartesian frame. Assume 
that the potential energy E of the system is known as a function of X, i.e. E = E(X). 
The generalized force F associated to the vector X is defined by 

F = - aE(X) = F(X). 
oX 

(16.3) 

If X=X(e) is an equilibrium configuration of the system which corresponds to 
a minimum of the potential energy E, then, obviously, F(x(e»=o. On the other 
hand, when the system is not in equilibrium, but is closed to the equilibrium con­
figuration X = X(e), we may write in a first approximation 

F = M(X - x(e», (16.4) 
where 

M = :: t=x<e> . 
(16.5) 

Clearly, Eq. (16.4) may be rewritten as 

(16.6) 

Since M depends on x(e), the determination of Xle) from (16.6) is generally done by 
successive approximations. 

Let X = Xo be an initial configuration of the system. From (16.5) it results 
Mo = (aF/aX)x=xo' and (16.3) yields Fo=F(Xo). Introducing this result into (16.6) 
gives the first approximation, Xl = Xo - MOIFo. If required, this iteration step 
can be repeated until the magnitude of F becomes sufficiently small. Of course, the 
(numerical) inversion of the matrices Mo, Mh ... is very time-consuming. Therefore. 
this method is adequate only when merely small adjustments of the atomic confi­
guration are required. In such cases, although the linear relation (16.4) does not 
hold exactly and (16.6) gives only a first approximation of the eqUilibrium con­
figuration, it is usually possible to obtain convergence by repeating the application 
of (16.6) with M replaced by Mo, even though its components change slightly 
(Sinclair [302]). 

Another variant of the static relaxation, which proves to be advantageous 
when large adjustments of the atomic configuration are required, consists in relaxing 
each atom, independently, to a provisional equilibrium position, dictated by the 
vanishing of the resultant force exerted on this one atom by its neighbours. Then, 
this step is repeated until the whole atomic array is covered, and the relaxation of 
the whole array is repeated until the changes in coordinates of all atoms between 
succl!ssive iterations and/or residual forces are within preset limits (see, e.g. Chang 
and Graham [60]). 
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The dynamic relaxation. This method has been initially used mainly in connec­
tion with radiation damage (see Gibson et al. [13S] and especially Larsen [20S] , 
where the so-called GRAPE programs developed for the numerical application of 
the method are described in great detail). Later on, the dynamic relaxation has been 
also successfully applied for determining the core configurations (Bullough and 
Perrin [46,47]. Gehlen, Rosenfield, and Hahn [127], Gehlen [12S]). 

The method of dynamic relaxation consists in the numerical integration of 
the classical equations of motion of the atoms in region I, which are considered as 
a system of material points. The atoms situated on Eo and in region I are kept fixed 
in their positions given by the linear elastic solution obtained by neglecting the 
core boundary conditions, just like in the rigid-boundary method. 

For a system of N atoms of mass m in region I, one writes N vectorial equa­
tions of motion at time t: 

i = 1,2, ... , N, (16.7) 

where Vj = Xj is the velocity of the atom i, while Xj denotes its position vector; F j 

is the force exerted on this atom, which may be derived from the central-force pair 
potential V by the relation 

(l6.S) 

where rij = IlXj - Xj II. In order to numerically integrate system (16.7), the functions 
Xj(t) are developed in Mac-Laurin series around the current time t, thus obtaining 

wherefrom it follows, considering also (16.7), that 

xj(t + Lit) = Xj(t) + vj(t) Lit + _1_ F;(t)(Llt)2 + 
2m 

1 
v;{t + Lit) = v;(t) + - F;(t) Lit + ... 

m 

... , (16.9) 

(16.10) 

Usually, in order to reduce the number of the terms involved, equations (16.9) and 
(16.10) are replaced by the simplified relations 

Xj(t + LIt) = Xj(t) + v j (t + LIt /2), 

LIt 
vj(t + Lit) = vj(t - Llt12) + - Fj • 

m 

(16.11) 

(16.12) 
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As initial conditions, it is assumed that all atoms have been at rest, i.e. 
Viet - At/2) = 0, and that the atoms have occupied the positions predicted by the 
linear elastic solution extrapolated to region I. At each iteration step, the forces F i 
are calculated by (16.8) and the position vectors and velocities of all atoms are deter­
mined by means of the six scalar equations (16.11) and (16.12). The iteration pro­
ceeds until the potential energy reaches a minimum (for details, see Gehlen et al. 
[127]). 

The choice of the time interval is very important. In the initial stages of the 
iteration, when the forces Fi are large, the time interval At must be sufficiently small, 
say 10- 4 sec., in order to avoid large speeds producing unrealistic displacements. 
After some relaxation, however, At may be substantially increased, in order to 
save computation time. In order to reach equilibrium in the shortest possible time, 
the crystal is "quenched", i.e. all velocities are put to zero, every time the potential 
energy reaches a minimum. Calculations are then resumed and the kinetic energy 
can only increase again, while the potential energy must decrease towards the equi­
librium. 

One of the advantages of the dynamic relaxation is the possibility to avoid 
metastable positions, by suitably increasing At such that the atoms be made to 
move beyond potential barriers in one time interval. In addition, the computation 
time required is lower than the time required by static relaxation. In exchange. 
dynamic relaxation has the disadvantage of preserving all symmetry present at 
the beginning of the relaxation. Therefore, when less symmetric configurations have 
to be investigated, the symmetry must be destroyed before relaxation is started, 
by adequately choosing the initial configuration. 

16.3. Semidiscrete methods with flexible boundary 

Due to the above mentioned shortcomings of the rigid-boundary method, several 
semidiscrete methods have been developed in the last decade, which allow the rela­
xation of 1'0 and the modification of the elastic displacement field used for region II 
together with the atom positions in region 1. These methods, which are called 
flexible-boundary methods, permit a considerable reduction of the number of atoms 
in region I along with the improvement of the elastic solution used for region II, 
and release some of the strong constraints imposed by a rigid boundary. At the 
same time, by appreciably reducing the number of the atoms which need to be treated 
independently for a given level of accuracy, the flexible-boundary methods make 
possible the consideration of more complex situations, such as the interaction of 
dislocations with other crystal defects. 

Sinclair's method (F/ex-S). As seen in Sect. 10, the displacement field produced 
by a straight dislocation in an infinite elastic medium with general anisotropy rna y 
be expressed as 

3 00 

u(x) = uv(x) + 2Re t A", 1:;. aamz;m, (16.13) 
.. =1 m= 1 
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where 1 

(16.14) 

is the Volterra solution, which gives the principal part of the displace met field at 
large distances from the dislocation line, al1.m are coefficients that depend on the 
initially unknown boundary conditions on 1:0' whereas the vectors All. = Akl1.ek 
and the scalars D 11. and PI1.' IX = I, 2, 3, are completely determined by the elastic 
constants, the direction of the dislocation line, and the Burgers vector. 

Sinclair [302] approximates the series (16.13) by the finite sum 

3 n 

u(x) = Uy(X) + 2Re ~ ~ al1.mUl1.m(X), (16.15) 
a=lm=1 

where 

The basic idea of Sinclair's method is to search a minimum of the potential 
energy considered as a function of the position vectors Xi' i= 1, ... , N, of the 
atoms in region I, and of the 3n coefficients al1.m occurring in the expression (16.15) 
of the displacement field adopted for region II. Hence, by using the notation intro­
duced in the preceding subsection, 

(16.16) 

where i = I, ... , N; IX = 1,2,3; m = I, ... ,11. 

At first, let us ignore the division of the crystal into two regions. Then (16.16) 
may be rewritten as 

E = E(Xi), i = 1, ... ,00, (16.17) 

the total potential energy E resulting now by summing up the interaction potentials 
of all atoms. When only two-body (central) interaction potentials are being used, 
the dependence (16.17) becomes 

00 

E= ~ V(rl m), 

/,m_1 
J,Fm 

where rim = Ilxl - Xm II. The force Fi acting on the atom i is given by 

(16.18) 

(16.19) 

1 The introduction of ro in the argument of the logarithm in (16.13) can be always done by 
modifying accordingly the rigid-body displacement u· (for a detailed discussion of the effects of 
this choice within a non-linear analysis, see Sinclair el al. [474], Sect. III C). 
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By taking into account that 

orij Xi - Xj 
--= 
OX; rij 

(no sum), (16.20) 

the last relation may be rewritten as 

<XI X. - x. 
F; = - t V'(r;)' J. 

1=1 r/j 
j'i'; 

(16.21) 

As seen in Sect. 16.2, in order to perform the relaxation of the atoms in region 
I we need to know not only the expression of the forces, but also that of their deri­
vatives with respect to the generalized co-ordinates of the system. Since 

o oa OV 
-(av)=v-+a-, 
ox ox ox 

where a(x) is a scalar field and vex) a vector field, both of which being supposed of 
class Cl but otherwise arbitrary, it follows from (16.21) for i, I = 1, ... , N, i :F I, 
that 

oFi = _ (x;- x,)~ [ V'(ri/) ] + [ V'(ri/)] 1 (no sum), 
OX, ox, ri/ ri/ 

or 

of; = (Xi - x,)~x; - x,) [v"(ri/) _ V'(ril)] + V'(ri/) 1 (no sum). (16.22) 
ox, ril ril ril 

The case i = I may be reduced to the preceding one by noting that (16.19) and (16.20) 
yield for any fixed I 

(16.23) 

When the division of the crystal into two regions is taken into account, and 
hence (16.17) is replaced by (16.16), formula (16.21) still holds, but the summation 
extends to a finite number of atoms (the atoms in region I and those in region II 
interacting with atoms in region I). On the other hand, (16.22) and (16.23) give 
now only the part of the tensor M corresponding to the atom-atom interaction, with 
the same observation about the summation over j . In order to obtain the other 
components of M, let us consider the generalized forces 

F --~ '"'' - oaam 
(16.24) 
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associated to the adjustable parameters aam of the elastic displacement field. Since 
(16.16), represents merely another form of (16.16), we deduce from (16.24), consi­
dering also (16.19), that 

00 oE ax. 00 ax. 
F =-~-.-' =~F··--'· am ~ ~ , 

;=1 ax; oaam ;=1 oaam 

But oxFJaam =0 for region I, and (16.15) yields oxi/oarJ.m = UrJ.m(x;) for region II. 
Consequently 

FrJ.m = ~ F;.UrJ.m(x;). (16.25) 
X; Ell 

Moreover, the sum in the right-hand side extends again to the atoms in region II 
situated near .ro, since the atoms situated further away are always in elastic equili­
brium (F; = 0). 

The remaining components of M can now be easily derived with the aid of 
the basic formula (16.22). Thus, we have for the atom-field interaction: 

oFam _ of; _ _ ~ of; U (x) 
- - ..u elm '" 

ax; oaam x Ell ax • • 
(16.26) 

and for the field-field interaction: 

oFam = oFp, = ~ oFam . Upl(x.). 
oapi oaam X.ElI ax. 

(16.27) 

In Sinclair's method the numerical calculation proceeds by static relaxation, 
taking the components of x;, i = I, ... , N, and the adjustable parameters aam, 
ex = 1, 2, 3; m = I, .. . ,n, as generalized co-ordinates of the system. Thus, (16.3) 
must be replaced by (16.21) and (16.25), while (16.5) must be replaced by (16.22), 
(16.23), (16.26), and (16.27). 

By applying the above procedure to the <100) edge dislocation in a iron, 
Sinclair [302] has shown that the introduction of a flexible boundary between regions 
I and II may lead to a substantial computer-time saving. In particular, the results 
concerning the bond lengths obtained by Gehlen, Rosenfield, and Hahn [127] on 
a rigid-boundary model with 780 atoms could be recovered by Sinclair on a flexible­
boundary model with only 100 atoms in region I, which obviously means a consi­
derable reduction of the required computation. It is worth noting that Sinclair used 
both variants of the static relaxation explained in Sect. 16.2, namely the individual 
atom relaxation at the beginning of the iteration, when large adjustments of the 
configuration are required, and the simultaneous relaxation of the whole atomic array 
for the final steps of the iteration. This obviously represents a compromise, since 
the first variant is more practical but requires very many force calculations, whereas 
the second one requires few force calculations but expensive matrix manipulations. 

Later on, Sinclair [473] successfully applied his method to crack modelling 
problems. 

17 - 120 
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The flexible-boundary method with overlapping regions (Flex-I). This method 
has been proposed in 1972 independently by Teodosiu and Nicolae [338] and by 
Gehlen, Hirth, Hoagland, and Kanninen [130]. The basic idea of the method is to 
make regions I and II overlap. For a straight dislocation we can take for instance 

Fig. 16.3. Concentric arrangement 
of regions for the flexible-boundary 
method with overlapping regions 

(Flex-I). 

the interior of a circular cylinder of radius rl as region I and the exterior of a cir­
cular cylinder of radius ro < rl as region II, both cylinders having the dislocation 
line as axis (Fig. 16.3). 

Denote by Eo and EI the circular cylindrical surfaces of radius ro, respectively 
ri' One can now use the following scheme of successive approximations. First, 
the relaxation is performed for region I, by keeping fixed the atoms situated 
on and outside E] in their positions given by the Volterra solution. The next step 
is to calculate the linear elastic solution for region II, by taking into account this 
time the displacement or traction boundary conditions on Eo as derived from the 
first step, by using some interpolation procedure. Then, one performs again the 
relaxation of the atoms in region I, but keeping fixed the atoms situated on and 
outside El in their positions resulted from the second step, and so on. 

The linear elastic solutions satisfying prescribed boundary conditions 
on Eo have been derived by Teodosiu and Nicolae [338] for an edge dislocation 
lying along a two-fold axis of material symmetry, and by Teodosiu, Nicolae, and 
Paven [342] for an arbitrary straight dislocation lying in elastic medium with general 
anisotropy. They are given in Sect. 10, namely by (10.43), (10.37), (10.42), when the 
tractions are prescribed on Eo and by (10.43), (10.45) when the displacements are 
prescribed on Eo' 

The method of the overlapping regions has been applied by Gehlen 
et al. [130], again to the (100) edge dislocation in ()( iron, by using, however, 
the linear elastic solution for a dislocation lying in an isotropic medium. An inte­
resting remark made by these authors is that, when applied to a perfect lattice, 
the overlap method would yield small but non-zero atomic displacements. The 
explanation lies in the non-locality of the interaction potential, which prevents the 
forces exerted on region II atoms from being replaced by a perfectly equivalent 
distribution of surface tractions acting on Eo. In order to remove this secondary 
effect, the tractions acting on Eo must be calculated as differences between the actuall 
interatomic forces and the forces acting across Eo in the perfect lattice. 

Another significant result obtained by Gehlen et al. [130] concerns the possi­
bility of simulating the non-linear effects of the dislocation core by a pair of ortho-
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gonalline-force dipoles of different intensities located on the dilatational side of the 
dislocation field, i.e. opposite to the supplementary atomic half-plane of the edge 
dislocation (Fig. 16.4). Such a force distribution is equivalent, as regards the elastic 
far-field, with an elliptical cylindrical inclusion forced into a circular cylindrical 
hole. Clearly, this simulation holds only at sufficiently large distances p from the 

X, 

Fig. 16.4. Pair of orthogonal line-force dipoles of different inten­
sities located opposite to the extra atomic half-plane of an edge 
dislocation, used by Gehlen, Rosenfield, and Hahn [127 J to simu-

late the dilatational effect of the dislocation core. 

dislocation line, where terms of order O(p-2) or higher in the displacement field 
can be neglected with respect to the terms of order O(p-l) corresponding to the 
line-force dipoles. Nevertheless, it enables to approximate the entire long-range 
elastic field in an analytical form by only two linear elastic fields. 

The method of Hoagland, Hirth, and Gehlen (Flex-II). This flexible-boundary 
method has been proposed by Hoagland [430] and developed by Hoagland, Hirth, 
and Gehlen [431]. Recently, Sinclair, Gehlen, Hoagland, and Hirth [474] introduced 
several refinem ents of the method and extended it to allow the computation of the 
mean volume dilatation of a dislocated crystal. In what follows we give a brief 
description of the method; for details, the reader is referred to the original papers 
cited above. 

In Flex-II three regions are explicitly considered around a straight dislocation. 
For illustration, these regions are represented in a concentric arrangement in 
Fig. 16.5, although their shape need not be circular. Like in the other flexible-boundary 
methods, the atoms in region I are relaxed individually, while the atoms in regions 
II, III, and in the remainder of the crystal are displaced collectively, according 
to linear elasticity theory. However, in Flex-II, the atoms of all three regions are 
supposed to interact via the same interatomic potential. Region II contains all 
atoms on which a force may be p.xerted by at least one region-I atom, while region 
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III is that part of the remainder of the crystal whose atoms interact with region-II 
atoms. Clearly, the thickness of both regions II and III should equal the maximum 
range of the interatomic force law. 

The initial positions of the atoms throughout the crystal are usually chosen 
according to the Volterra solution. The first step is to relax the atoms of region I 

Fig. 16.5. Concentric arrangement 
of regions for the flexible-boun­
dary method of Hoagland, Hirth, 

and Gehlen (Flex-II). 

towards their equilibrium positions given by the minimum potential energy, keeping 
fixed the boundary Lo between regions I and II. The second step is to calculate the 
forces acting on region-II atoms, and to determine the displacements produced by 
them in the whole crystal by using Green's tensor function of linear elasticity. These 
two steps are iterated until the residual force exerted on each atom in regions I and 
II is less than a preset limit. 

Since the crystal outside region I is supposed to behave linearly elastic, no 
unequilibrated forces will develop in region III or beyond. Indeed, all atoms of 
these regions interact only with atoms that are displaced according to the equili­
brium equations of linear elasticity. Moreover, the atom positions beyond region 
III need not be stored during the computation, for they can be calculated at the end 
of the iteration, by summing up the effects of the unequilibrated forces exerted on 
region-II atoms at all iteration steps. 

As Green's tensor function of the generalized plane strain diverges logarithmical­
lyat the origin (cf. Sect. 10.5), it cannot be used to calculate the displacements pro­
duced by each force acting on a region-II atom in the close proximity of its appli­
cation point. Therefore, in the evolved form of the Flex-II procedure, the continuum 
Green's function is locally replaced by the lattice Green's function; this latter is 
calculated by relaxing a small block of perfect lattice with the central row of atoms 
acted by a line force and the boundary atoms kept fixed at their positions given by 
the linear elastic Green's function. 

Comparative studies (PuIs and Woo [461], Sinclair et al. [474]) of the Flex-II 
method with other flexible-boundary methods have shown that, in terms of compu­
tational efficiency for a given accuracy, Flex-II is superior. Consequently, the size 
of region I can be considerably reduced for the same level of accuracy 1. In exchange, 
the diminishing of the number of atoms in region I requires caution, since it implies 

1 For instance, in the computation of Woo and Puis [487] region I has been reduced to a 
rectangle 4.5b x 6.5b, while the boundary between regions II and III has been located only 7b 
away from the dislocation line. 
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the treatment by linear elasticity of regions relatively close to the dislocation line, 
where the strains are still of the order of a few percentages. Another apparent disad­
vantage of the Flex-II method is that it does not provide directly an improved analy­
tic form of the linear elastic field at sufficiently large distances from the dislocation 
line. However, such a form can be deduced, e.g. by supplementing the Volterra so­
lution by the linear elastic solutions corresponding to the multipolar moments (with 
respect to the dislocation line) of the line forces acting on region-II atoms accumu­
lated throughout the iteration (Sinclair et al. [474], Sect. D). 

The Flex-II method has been successfully used by Woo and PuIs [487] to 
calculate the core configuration of a/2(110){110} edge dislocations in MgO, in 
conjunction with Sangster's central-force breathing shell model, which allows taking 
into account many-body effects in the interaction between ions. These authors have 
also found that the edge dislocafion causes a volume expansion of about 0.9 at. 
vol/plane, in quantitative agreement with the result obtained by Granzer et af. 
[143] for NaCl. Finally, Woo and Puis have shown that the displacement field can 
be satisfactorily approximated beyond an average distance of Sb from the dislocation 
line by superimposing on the Volterra solution the displacement field produced by 
two orthogonal line double forces, one of strength 12.3 eV/A2, acting parallel to 
the Xl-axis and centred on the x2-axis, 0.211 A above the slip plane, and the other 
of strength 8.8 eV/A2, acting parallel to the x2-axis, and centred on the x2-axis, 
S.27 A below the slip plane. It is worth noting that the initial attempt to use ortho­
gonalline double fOices located at the same distance from the dislocation line, i.e. 
an elliptical dilatation centre of the type employed by Gehlen et af. [130], has led 
in this case to a much worse fit of the atomic displacements. 

Sinclair, Gehlen, Hoagland, and Hirth [474] have recently used the Flex-II 
method for the calculation of the overall dilatation of a finite body due to a disloca­
tion. In order to account for non-linear effects beyond region II, they have first cal­
culated the quasi-body forcesj~ = "kl,l' where "kl is determined by (l4.18) and (14.19) 
and represents the non-linear contribution of the linear displacement gradient to 
second-order elastic constitutive equations. Then, the supplementary dilatation 
produced by the moments of this force distribution have been added to the linear 
elastic dilatation. Clearly, this approach involves several approximations with res­
pect to a fully non-linear analysis based on second-order elasticity (cf. Sect. 14). 
Even so, the analysis of Sinclair et al. has emphasized once more the importance 
of the non-linear elastic contribution to the overall dilatation produced by dislo­
cations and has shown that, at least for the (100) edge dislocation in oc iron 
and the crystal array investigated, this contribution is quantitatively comparable 
with that of the linear elastic displacements corresponding to the relaxation of the 
boundary between regions I and II. 

Sinclair et af. [474] have also systematically studied the alternative choosing 
of Eulerian or Lagrangian co-ordinates for the description of the dislocated crystal, 
and, in the latter case, also the effect of using one of four different cuts for defining 
a single-valued displacement field 1. Their results show that the relaxed core confi-

I In this connection, see also Teodosiu and So6s [479]. 
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gurations are almost identical in all cases. Similarly, the change in area of a circuit 
encircling the dislocation line, calculated with respect to a perfect-fatticeareacontain­
ing the same number of atoms, is to a large extent independent of the path taken 
to create the dislocation and of the choice of the co-ordinate system. On the other 
hand, the change in area during relaxation, sometimes improperly used as a measure 
of the volume of dislocation formation per unit dislocation length, obviously de­
pends on the initial configuration. Therefore, the discrepancy between the evalua­
tions of this quantity, reported by various authors, merely requires interpretation, 
and does not correspond to any intrinsic property of the dislocation. 

Semidiscrete methods based on non-linear elasticity. All flexible-boundary 
methods presented so far are based on the use of linear elasticity theory beyond 
region I. A fundamentally different approach, which has been proposed by Seeger 
in 1968, consists in improving the elastic solution by using second-order elasticity 
and satisfying the boundary conditions on 1:0 (Fig. 16.2)1. A brief outline of the 
method has been given by Teodosiu and Nicolae [338]. Subsequently, the method 
has been applied by Granzer et af. [143], and by Petrasch and Belzner [459] for the 
simulation of the (110) edge dislocation in NaCl. 

The principle of the method is straightforward. The stress vector (or, alter­
natively, the displacement vector) on 1:0 is taken as a Fourier series of the polar 
angle with initially undetermined coefficients. Since higher harmonics lead to terms 
in the elastic solution that vanish rapidly with increasing distance from the disloca­
tion core, it is in general sufficient to consider only the first two or three harmonics. 
The non-linear elastic solution is found by an iterative procedure involving the solu­
tion of a linear elastic boundary-value problem at each step, as has been shown 
in Sect. 14. Then, the total potential energy is minimized as a function of the adjus­
table parameters occurring in the boundary conditions and of the positions vectors 
of the atoms located in region I. 

For instance, if we attempt to find out the most significant correction to the 
Volterra solution, then we should retain terms up to the order O(p-1) in the expres­
sion of the displacement field and O(p-2) in that of the stress field as p -+ 00. Then, 
as shown in Sect. 14.2, the displacement field produced by an edge dislocation lying 
along a two-fold symmetry axis in an anisotropic elastic medium is given within the 
framework of second-order elasticity theory by Eq. (14.100), which may be rewritten 
as 

(16.28) 

where 

UN(X1, x2) = ~ [c5" ( ex" + e::" ) In 1 ~"Y .. + 

+ p .. (e;( .. + e~K .. ) In z,,_ +e2Uo(x 1, xJ+ uo+ivo, 
z" 1 + y" 

(16.29) 

z" = z + y .. z, Z = Xl + iX2' Q( = 1,2. 

1 A different attempt to including second-order elastic effects in region II without consi­
dering, however, the boundary 'conditions on .Eo, has been developed by Bullough and Sinclair 
[404], by using Willis' solution for the screw dislocation (cf. Sect. 19.1). 
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By comparing (16.28) with (16.13), it may be seen that Sinclair's method 
(Flex-S) can be applied exactly as before, the only difference being that now UN(X1, X2) 

includes the non-linear known contribution given by UO(x I , x2) and the terms with 
coefficients KI% and 1(1%' In particular (16.16) becomes now 

i = 1,2, .. . , N, 

and hence the potential energy of the system depends on the 2N co-ordinates of 
the atoms located in region I and on the two adjustable complex parameters 
AI' A 2• 

Clearly, the non-linear elastic solution can be also used in conjunction with 
the flexible-boundary method with overlapping regions. For instance this can been 
done for an edge dislocation by starting from (16.28) and (16.29) and using the 
following iteration steps (cf. also Fig. 16.3): 

(i) Elastic computation of the initial atom positions in the whole arrayaccord­
ing to (16.29). 

(ii) Static relaxation of the atoms in region I with atoms on and outside :El 
being kept fixed. 

(iii) Determination of the adjustable complex parameters AI' A2 from the 
Fourier analysis of the atomic displacements on :Eo. 

(iv) Elastic recomputation of the atom positions in the whole array, this 
time according to (16.28). 

(v) Repetition of steps (ii) - (iv) until the changes in the atom positions and 
in the values of the adjustable parameters between successive iterations lie within 
preset limits. 

A procedure of this type has been employed by Petrasch and Belzner [459] 
to determine the core configuration of edge dislocations in sodium chloride and 
silver chloride. In fact, they supplemented the non-linear elastic solution (16.28) by 
terms in Z;2 and ZI%- 2 with adjustable coefficients, which certainly leads to a better 
approximation of higher-order effects. Moreover, the use of three-body interatomic 
potentials, in addition to the two-body (central) interaction potentials corresponding 
to the Born-Mayer repulsion and to the Van der Waals attraction, allowed a much 
better fit to the elastic constants, which was beneficial, especially for AgCl. The 
results obtained after 13 cycles for NaCI and 9 cycles for AgCI show a significant 
improvement against the rigid-boundary method as regards the continuity across 
:Eo of the residual forces exerted on the ions at the end of the iteration. Almost 
equal values of the core energies have been obtained for both NaCI and AgCl (about 
0.97 eV per plane for 3b-cores). 

The major disadvantage of the flexible-boundary methods based on non-linear 
elasticity is the need for an analytical solution of the non-linear boundary-value 
problem for region II. On the other side, after determining the adjustable parameters 
occurring in the solution, just this particularity becomes one of the main advantages 
of the method, since the analytical expression of the elastic far-field includes both 
the non-linear elastic and the core effects. In addition, these methods allow reducing 
region I to a relatively small number of atoms, by taking fully into account, however, 
the non-linear effects arising from the high strains at short and moderate distances 
from the dislocation line. 
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16.4. Lattice models of straight dislocatioDs 

The first models attempting to give a discrete description of the dislocation core. 
which are due to Peierls [266]. Nabarro [255]. and van der Merwe [366], have pre­
ceded the use of semidiscrete methods. Actually. they were partially discrete models 
which introduced interaction forces only between the atoms situated immediately 
above and below the glide plane (the Peierls-Nabarro model), or between the atoms 
situated on both sides of the extra atomic half-plane of an edge dislocation (the van 
der Merwe model), the remaining of the crystal being considered as a linear elastic 
continuum. Although such models. cannot provide an accurate representation 
of the dislocation behaviour in real crystalline solids, they have the merit of pro­
viding simple analytical formulae describing some characteristic properties of the 
dislocation core. In particular. the Peierls-Nabarro model permitted for the first 
time to obtain realistic values of the order 0.001 J1 of the yield stress. 

We shall now very briefly review some of the lattice models of dislocations, 
although they do not belong to the very topic of this book 1. The first fully atomic 
model has been developed by Maradudin [231] for the (110) screw dislocation in 
alkali halides, and has been subsequently used with slight modifications by Celli 
[57] for the calculation of the stored strain energy of screw dislocations in diamond 
structures. These calculations are based on the harmonic lattice theory. in which 
the interatomic forces are assumed to linearly depend on the relative displacements 
of the atoms 2. Moreover, they take into account merely the nearest neighbour 
interactions and allow only atomic displacements parallel to the dislocation line. 
i.e. the screw dislocation is generated by a rigid-body translation of each atomic row 
along its length. These two simplifying assumptions have been subsequently given 
up by Boyer and Hardy [36], who applied Maradudin's model to screw dislocations 
in aluminium, potassium, and (l iron, still neglecting. however. anharmonic effects. 
In spite of the various further improvements of the fully atomic models, achieved 
especially by using the lattice Green's function (Bullough and Tewary [53], Tewary 
[348], [480]), these purely harmonic models cannot accurately describe either the 
core configuration or the atomic interactions across the cut surface used to generate 
the dislocation, since large relative displacements occur in both these regions 3. 

Actually, fully atomic models are inferior from this point of view to semidiscrete 
models. Indeed, the latter allow the correct simulation of both the harmonic and the 
anharmonic response of the lattice, provided the interatomic potential is carefully 
constructed (cf. also Heinisch and Sines [424]). 

1 For a detailed discussion of the partial and fully atomic models of dislocations we refer 
to Bullough [SO] and Bullough and Tewary [53]. 

2 The force constants occurring in these linear laws can be determined by fitting the theo­
retical phonon dispersion curves to the experimental data obtained by neutron scattering and the 
long-wave approximation of the force law to the measured elastic constants. 

3 Holzler and Siems [165] have partly overcome this difficulty, by introducing a sinusoidal 
force law of the Peierls-Nabarro type in order to describe the interaction between the atom rows 
parallel to the line of a screw dislocation. However, the generalization of their hypothesis to arbi­
trary dislocations is by no means straightforward. 



CHAPTER IV 

CONTINUOUS DISTRIBUTIONS 
OF DISLOCATIONS 

17. Elastostatics of continuous distributions 
of dislocations 

As shown in Sect. 17, each single dislocation may be considered as a state of self­
stress in the classical elasticity theory. Sometimes, however, we are more interested 
to know the mean values of the strains and stresses produced in a crystal by a large 
number of dislocations. It is then convenient to consider the limiting case of a conti­
nuous distribution of dislocations, for which the number of dislocations tends to 
infinity, while the Burgers vector of each tends to zero, in such a way that the product 
remains finite in any bounded region. In performing this limiting process it is natural 
to assume that the product of the number of dislocations and of their individual 
core volumes tends to zero. 

In order that the theory of elasticity be applicable to continuous distributions 
of dislocations it is necessary that the mean strain produced by dislocations be 
macroscopically continuous, and this may happen only when each macroscopic 
volume element contains a large number of dislocations. A rough evaluation shows 
that this is really the case for many situations of practical interest. Indeed, a cube 
with the side of I mm may usually be considered as sufficiently small with respect 
to the size of the body and the characteristic wave lengths of its elastic state, and 
thus may be taken as macroscopic volume element. On the other hand, the total 
length of the dislocation lines amounts, even in good annealed metals, to 103-104 

mm/mm3 and increases during deformation to 108_1010 mm/mm3. This shows 
that the real dislocation density is generally sufficiently high to assure a continuous 
variation of the mean value of the deformation produced by dislocations from one 
volume element to another. 

It should be mentioned that the theory of continuous distributions of dislo­
cations may be also used to describe other continuously distributed non-mechanical 
sources of self-stress, e.g. inhomogeneous thermal or magnetic fields 1, which are 
sometimes called quasi-dislocations. 

Furthermore, by using distributions associated with lines or surfaces, it is 
also possible to use the concepts and methods of the theory of continuous distri­
butions of dislocations to study surface distributions of dislocations or even single 
dislocations (see, e.g. Kroner [190], Kunin [204], Teodosiu [335]). 

1 See Rieder [465], Kroner [192], Anthony [5]. 
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In what follows we shall briefly present the elastostatics of the continuous 
distributions of dislocations. Consider an elastic body fJI which occupies a region 
"Y in a self-stressed state produced by a continuous distribution of dislocations; 
let (k) be the configuration of the body in this state. In this case there exists no 
global natural configuration, i.e. a stress-free configuration of the whole body. 
Let N(X) denote a material neighbourhood of a material point X. We call local 
natural configuration (x) of N(X) the (real or ideal) configuration N(X) would assume 

ftA 
N(XIW(xl 

'£!) 

(k) 

Fig. 17.1. On the definition of the 
elastic distortion A. 

if it were cut out of the body and released from the constraints exerted by the rest 
of the body, the positions of all other crystal defects in N(X) being kept fixed during 
this process. The last condition prevents the occurrence of any supplementary ine­
lastic deformation during the cutting and releasing of N(X). 

Let now Y be another material point of '!veX) and denote by dx, d; the posi­
tion vectors of Y with respect to X in the configurations (k) and (x), respectively 
(Fig. 17.1). The tensor A defined by 

dx = Ad; (i7.1) 

is called after Kroner [193] the elastic distortion. We assume that, for sufficiently 
small neighbourhoods N(X), the so-defined value of A does not depend on the choice 
of the neighbourhood N(X) and of the particle Y E N(X). Consequently, by repeating 
the same procedure for all particles of the body, we may define (and eventually 
measure) the field A(x) of the elastic distortion, where x is the position of X in (k). 
Moreover, we assume that A(x) is one-to-one and of class Cl in "Y. Hence, there 
exists a continuously differentiable tensor field A-I such that 

(17.2) 

Next, assume that the body is torn into small volume elements which are 
released individually. Then, the local natural configurations thus obtained would 
generally not fit together, unless some suitable constraints are exerted on each volume 
element. The self-stresses existing in'the body in the configuration (k) are just the 
constraints which are necessary to re-establish the continuity of the body. Conse­
quently, unlike F, the distortion A is no longer the gradient of a vector field, since, 
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otherwise, the elastic strains and stresses ought to vanish in the absence of external 
loads. 

Let us extend now to continuous distributions of dislocations the definition 
of the Burgers vector that was given in Sect. 7 for single dislocations. Consider a 
smooth surface s in "Y, bounded by the closed line c, and containing the point x. 
By analogy with the reasoning leading to (7.7), we define the true Burgers vector b 
of the dislocations piercing through s, as the sum of the infinitesimal vectors d~ 
that result by the cutting and releasing operations from the infinitesimal vectors dx 
taken along c, i.e. 

(17.3) 

By virtue of (1.55) this definition may be transformed into 

b = ~s an ds (17.4) 

where 1 

(17.5) 

and n is the unit normal to s, the positive sense on c being chosen clockwise when 
sighting down along n. 

The tensor a is called the true dislocation density. This name is justified by the 
fact that a = 0 implies that A-I and A are gradients of some vector fields, and hence 
the vanishing of the self-stresses. In addition, the definition (17.5) can be also applied 
to a finite number of single dislocations, provided that the positive sense on each 
dislocation line L piercing through s is chosen such that n·1 be positive, where I 
denotes the unit tangent vector to L at the intersection point with s. In particular, 
one 0 btains for a single dislocation (Kunin [204]) 

a(x) = b l(xL)o(L), (17.6) 

where XL is the position vector of a current point on L, while DeL) is the delta-function 
ass ociated to the line L and characterized by the property 

(0 (L), IP)= ~L IP(x) dl (17.7) 

for any function IP of class Coo and of bounded support on Iff. 

1 We denote as usual by (.), s the partial differentiation with respect to the co-ordinate x. 
of the current material point X in the deformed configuration (k). 
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If (X is a continuous function of x and s is infinitesimal, we derive from (17.4) 
that 

db = (Xnds, (17.8) 

where db is the infinitesimal true Burgers vector of the dislocations threading ds. 
Clearly, A plays for continuous distributions of dislocations the same role as F 
for single dislocations. This remark enables us to use (7.12) in order to define 
the infinitesimal local Burgers vector db* and the local dislocation density (X* at x 
by the relations 

db* = A db, (17.9) 

Along with (X and (X* we shall also make use of another dislocation density. 
say ~, which was first considered by Noll [260] and defined by the relation 

(X = /a.AT, (17.10) 

where j = det A--l. In order to understand the significance of Noll's dislocation 
density, let us consider an oriented material surface element n ds through the mate­
rial point X in the configuration (k). By releasing a neighbourhood N(X) of X con­
taining the surface element, the magnitude and the orientation of the vector n ds 
wi1l change to ii ds, say. Then, by (2.25), we have 

and hence (17.8) and (17.10) yield 

db = ~ ii ds. (17.11) 

Since db and ii ds do not depend on the elastic distortion A, ei does not either, in 
contradistinction to the true and local dislocation densities, which vary under 
superimposed elastic deformations. This property will be used in Sect. 20. 

Clearly, each local natural configuration (x) is defined so far to within a rigid 
rotation. We remove this indeterminacy by requiring the mean lattice orientation, 
i.e. the preferred crystallographic directions sufficiently far from crystal defects, 
be the same for all natural configurations. Then, the elastic constitutive equations 
will be the same for all particles, provided that F is replaced by A in (4.40). 

The fundamental problem of the elastostatics of continuous distributions of 
dislocations is the determination of the stresses produced by a given dislocation density. 
The kinematic equations of this problem are (17.5) and the definition (2.15)2 of the 
finite strain tensor, which becomes now 

(17.12) 
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They must be supplemented by the constitutive equations 

the equilibrium equations 

TkI . , = 0 in-r, 

and the traction boundary conditions 

Tkln, = 0 on g, 
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(17.13) 

(17.14) 

( 17.15) 

where n is the outward unit normal to the boundary g of -r. In addition, when the 
dislocation density is given, it must fulfil the identity 

diva = 0, Ci.km,m = 0, (17.16) 

which is a consequence of (17.5) and (1.50)2' 
In order to linearize the above equations we put 1 

(17.17) 

assume that IIPII ~ 1, and neglect all terms of second and higher orders in IIPII. 
Then, (17.5), (17.9), (17.10), (17.12), and (17.13) yield a = a* = & and 

a = curl p, (17.18) 

(17.19) 

(17.20) 

while the equilibrium equations (17.14) and the traction boundary conditions (17.15) 
remain unchanged. 

The following uniqueness theorem (Teodosiu [337], vol. 2) holds for the linear 
boundary-value problem. 

If the strain energy function is positive definite, and if the dislocation density 
a is a given continuous function whose support is contained in the simply-connected 
and bounded region -r occupied by the elastic body, then the solution of the boundary-

1 The tensor II is called the infinitesimal elastic distorsion. In the case of a single dislocation, 
A-I reduces to F-l = grad :lC1(x), and II to h = grad u(x). 
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value problem (17.18-20), (17.14), and (17.15), is determined to within an infinitesimal 
rigid displacement. 

Proof Let IJ' and 1J" be two solutions of the boundary-value problem, and 
denote by E' and E" the corresponding infinitesimal strain tensors and by T' and 
Til the corresponding Cauchy stress tensors. Let 

IJ = IJ' - 1J", E = E' - E", T = T' - Til. (17.21) 

From (17.17) it follows that curllJ = 0, and hence, by (1.49)2, we have' = grad u, 
where u is an arbitrary vector field. On the other hand, (17.19), (17.20), (17.14), 
and (17.15) imply that the difference-solution (17.21) satisfies (6.22) and (6.23)2. 
Consequently, we may apply Kirchhoff's uniqueness theorem and deduce that u 
is an infinitesimal rigid displacement, and hence E = T = 0, E' = E", T' = Til 
in 1', which completes the proof. 

The first step towards constructing a theory of continuous distributions of 
dislocations has been taken by Moriguti [252], who calculated the self-stresses pro­
duced by an incompatible elastic deformation; however, his paper being written 
in Japanese, it remained unknown for almost two decades. In 1953, Nye [261] intro­
duced the concept of dislocation density which gave a particular momentum to the 
research on dislocation theory. Thus, starting from 1954, Bilby [27], Eshelby [Ill], 
and Kroner [189] rediscovered and generalized Moriguti's results. Almost in the 
same period, Kondo [184], followed independently by Bilby, Bullough, and Smith 
[28], established the relation between the kinematics of continuous distributions of 
dislocations and the geometry of non-Euclidean spaces with affine connexion. 
Namely, they showed that, when the geometry of the local natural configurations is 
described in terms of the co-ordinates of the material points in the configuration (k), 
one obtains an affine connexion with vanishing curvature tensor and whose torsion 
tensor equals the dislocation density. This idea has been further developed by Kondo 
[185], Bilby [29], and especially by Kroner [192] and Kroner and Seeger [191], 
who incorporated the geometric theory into a non-linear elastic theory of continuous 
distributions of dislocations, and developed a method of successive approximations 
for the solving of non-linear boundary-value problems. Subsequently, Gunther 
[148] constructed a non-linear dynamic theory of dislocations, and Teodosiu [332-
334] extended the non-linear theory of continuous distributions of dislocations to 
materials of grade two, by assuming that the strain energy function depends not 
only on A but alsa on Grad A. 

The plan of this book does not allow us to consider the connection between 
the geometry of the deformation produced by continuous distributions of dislocations 
and that of affine or anholonomic spaces. We will adopt, therefore, an approach that 
is closer to the modern developments in continuum mechanics (Truesdell and Noll 
[358]) and can be easily extended to the dynamic case (Teodosiu [335], Teodosiu and 
Seeger [336]). We shall devote the remaining part of this chapter to the solving of 
the linear and non-linear boundary-value problems formulated at the beginning of 
this section. For details concerning the theory of continuous distributions of dislo­
cations we refer to the monograph by Kroner [190] and to the review articles of 
Eshelby [111], Bilby [29], de Wit [385], Bullough [50], Sects. 4, 5, 13, Landau and 
Lifshits [207], Chap. 4, Rieder [276-277]. 
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In spite of its genuine elegance, the theory of continuous distributions of 
dislocations has relatively few applications in modelling crystal defects. Indeed, 
although single dislocations may be described within this theory with the aid of 
delta-functions, this approach leads essentially to the same results as the direct 
approach presented in Chapters II and III. On the other hand, in the attempt to 
develop a macroscopic theory of the elasto-plasticity on the basis of the laws govern­
ing the production, interaction, and motion of dislocations, the dislocation density 
tensor proves to be inadequate for characterizing the dislocation arrangement and 
its evolution. The explanation lies in the fact that dislocations are generated during 
deformation as closed loops, along which the Burgers vector is constant. When 
such a loop is intersected by an arbitrary plane, it occurs as a pair of dislocations of 
opposite signs, an d hence gives a vanishing contribution to the dislocation density 
tensor. This has led to the introduction of other dislocation measures, such as the 
total length per unit volume of the dislocations belonging to each glide system 
(Zarka [387-389], Teodosiu [335, 344], Kroner and Teodosiu [194]), the density 
of dislocation loops (Kroner [442]), or some statistical measures of the dislocation 
arrangement (Kroner [443]). 

However, as pointed out at the beginning of this section, the theory of con­
tinuous distributions of dislocations possesses its own field of application containing 
especially the two-dimensional dislocation arrangements such as dislocation pile-ups 
and low-angle grain boundaries. It addition, it allows to trace a fruitful analogy 
of heuristic value to the theory of relativity and the theory of non-mechanical stresses 
(Kroner [441], Anthony [5]). 

18. Determination of the stresses produced 
by continuous distributions of dislocations 

We will consider in this section various methods for solving the linear boundary-value 
problem defined by (17.18-20), (17.14), and (17.15). By applying the operator 
Eikl iJjiJXk on both sides of (17.18) and taking the symmetric part of the relation 
obtained, we find 

inc E = 1), (18.1) 

where 1') is the so-called incompatibility tensor and is defined by 

(18.2) 

It is easily seen now that our boundary-value problem almost coincides with the 
traction boundary-value problem of classical elasticity theory (Sect. 6.2), the only 
difference being the replacement of the compatibility equations (6.10) by the non­
homogeneous equations (18.1). In what follows we shall analyse several ways of 
approaching this modified problem. 
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18.1. Esbelby's metbod 

Eshelby [Ill] starts from the remark that, by virtue of the tensor identity (1.51)1> 
any class C2 solution of (18.1) may be written as 

E = sym grad u + E, (18.3) 

where E is a particular solution of the equation and u is an arbitrary vector field of 
class C3. On the other hand, if on the boundary Y of the body we have 11 = 0, 
or at least 11U = 0, then a particular solution E of Eq. (18.1) can be obtained by 
analogy with that derived by Eddington ([101, p. 128) in the general relativity theory, 
namely, 

E(x) = _ 1_ ( 11(x') - [tr11(x')]l dv'. 
41t Jv Ilx - x'II 

(18.4) 

In the general case where 1)U i: 0 on Y , one can still derive a particular solution E 
of (18.1) by means of the formula (18.4), provided that 11 is replaced by another 
tensor field 1) of class ca in the whole space C, which is obtained by extending 11 
through Y and vanishes rapidly enough at infinity for the integral in (18.4) to be 
convergent. It may shown that the field E(x) thus obtained satisfies (18.1) in "Y = 
= "Y U Y on condition that the integration in (18.4) be equally extended to the 
whole space C. 

Next, by substituting (18.3) into the other field equations and boundary condi­
tions, one obtains a traction boundary-value problem of classical elasticity theory, 
in which u plays the role of a displacement field, while the body forces in "Y and 
the surface tractions on Y are given, respectively, by 

18.2. Kroner's method 

As shown by Kroner [187] the problem of determining the self-stresses produced 
by dislocations can be successfully dealt with by means of Beltrami's solution (6.26), 
provided suitable supplementary conditions are imposed on the stress functions, 
We limit ourselves to the isotropic easel, for which the constitutive equations (17.20). 
are replaced by (6.5) or (6.8). Taking into account the identity (1.10) we may rewrite 
{l8.1) as (cf. also Sect. 2.7) : 

1 Kroner [188, 190] has also considered the possibility of extending this method to the ani­
sotropic case, for which, however, the efficiency of the procedure is greatly diminished. 
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Substituting (6.8) into this relation yields 

(18.5) 

The equilibrium equations (17.14) may be identically satisfied by using Bel­
trami's solution (6.26) in terms of the stress function tensor X. However, Kroner 
[187) ingeniously replaces the tensor X by another stress function tensor X' defined by 

(18.6) 

and subjected to the supplementary conditions 1 

X~m.m = O. (18.7) 

The easiest way to derive the relation between T and X' is to use the obvious 
analogy between (18.1), (17.14), (6.8) on one hand, and, respectively, (6.26), (18.7) 
(18.6) on the other hand. Indeed, the last group of equations may be obtained from 
the first one by replacing E, 1}, T, v, 2J1. with X, T, X',-v, (2J1.t\ respectively. 
By virtue of this analogy we directly derive from (18.5): 

(18.8) 

Finally, by introducing (18.8) into (18.5), we obtain 

(18.9) 

Thus, the new stress functions xii must satisfy the uncoupled equations (18.9) 
and the supplementary conditions (18.7). On the other hand, from the theory of 
bipotential equations it is known that in the case of an infinite medium the solution 
of (1S.9) that vanishes at infinity is given by 

X' = - _1_( 1}(x') IIx - x' II dv'. 
Sn )1 

(IS.10) 

By (17.16) and (18.2) this solution satisfies the supplementary conditions (1S.7), 
too. Consequently, the corresponding self-stress results from (1S.8) and (1S.IO). 

In the case of afinite body, as shown by Kroner [190), the formula (IS.IO) still 
gives a particular solution of the field equations provided that 11 be replaced by 

1 Kroner [187] proved that these conditions are admissible, i.e. they do not restrict the gene­
rality of the possible stress states. 

18-120 
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the tensor ij satisfying the same conditions as in Eshelby's method. Finally, the 
solution of the boundary-value problem may be obtained by adding to the parti­
cular solution (l8. lO) a solution of the homogeneous equations 

X~m,m = 0, 

such that their sum satisfy the boundary conditions (17.15) on g . Clearly, this 
comes to the solving of a classical boundary-value problem of linear elasticity, 
since now 11 = 0, i.e. the strains are compatible. 

Resuming the case of the infinite medium and substituting (18.2) into (18.lO). 
we obtain 

where (. h' = 0(. )/ox~ and R = Ilx - x' /I. Assuming that ex is of bounded support. 
integrating by parts, and taking into account that R,k' = - R,k' the last relation be­
comes 

(18.11) 

In particular, for a single dislocation, introducing (17.6) into (18.11) and considering 
(17.7), we find 

(18.12) 

where 

(18.13) 

and dxj = l/x')dl'. Finally, it may be shown (de Wit [385]) that substituting (18.12) 
into (18.8) leads to the formula of Peach and Koehler for the self-stresses produced 
by a single dislocation loop in an infinite medium (cf. Sect. 9.3). 

By employing the above method, Kroner [190] succeeded to undertake a 
systematic study of the self-stresses produced by dislocations, of the elastic inte­
raction of dislocations, and of the stress concentration near the dislocation core. 

18.3. Mora's method 

We shall present now a last method for the calculation of the self-stresses produced 
by dislocations, which makes use of Green's tensor function. Having in mind further 
applications of this method to the determination of second-order effects we insert 
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into (17.14) a term corresponding to the body forces, i.e. 

Tkl •l + he = O. (1S.14) 

Introducing (17.19)2 into (17.20) and the result obtained into (IS.14), we find 

CklmnPmn.1 + he = O. (1S.15) 

We consider the case of an infinite medium and suppose that 

(18.16) 

By virtue of (1.11), it follows from (17.18) that 

(18.17) 

Differentiating (18.15) with respect to x, and taking into account (1S.17) we obtain 

(IS.18) 

On the other hand, it was shown in Sect. 6.4 that Green's tensor function of an infinite 
elastic medium satisfies the equation 

Multiplying this equation in the sense of the convolution product by 

and comparing with (18.18), we infer that 

Pm.{x) =~,. r!p.,'(x') + CplqnEn"CXqt.I,(X')]Gmp(x - x')dv'. (18.19) 

Finally, integrating by parts and taking into account that the surface integral vanishes 
since G(x - x') = O(KI) as R = IIx - x'II -+ 00, we find 

This solution has been first obtained in a different way for the dynamic case and 
for r = 0 by Mura [253]. The above proof is due to Willis [382], App. 1. For the 
extension of formula (18.20) to the case of bounded elastic bodies we refer to the 
papers by Vaisman and Kunin [364] and by Simmons and Bullough [301]. 
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19. Second-order elastic effects 

19.1. Solving of non-linear boundary-value problems 
by successive approximatioM 

In this section we shall deal with the determination of second-order 
effects in the elastic field of continuous distributions of dislocations. We begin 
by constructing an algorithm for solving the non-linear boundary-value problem 
(17.5), (17.12-17), which is similar to that used for single dislocations in Sect. 14.1 
and is based on the following hypotheses: 

(i) The true dislocation density is given, satisfies the identity (17.16), and is 
proportional to a small parameter 6, i.e.l 

(19.1) 

(ii) The body is free of surface tractions and body forces. 
(iii) There exists a solution P(x) of the boundary-value problem that depends 

analytically on 6 and vanishes for 6 = 0, i.e. 

(19.2) 

By introducing (19.2) into (17.17), we obtain 

A-I _ l: PCl) 2P(2) 
11m - u"",-6 "m- 6 "m- ••• , (19.3) 

and from A A-I = 1 it results that 

(19.4) 

Next, by substituting (19.4) into (17.12), we find 

D = "E(l) + ,,2[E(2) + .!.. (ampCl) + p(l)P(l) + P(llP(l) + 
mil .. mn .. mn 2 \.Pmp pn pm pn pm np ••• (19.5) 

where 

E(l) - .!.. (a(l) + pel)~ E(2) _ .!.. (a(2) + P(2) 
mn - 2 \.Pmn nm , mn - 2 \.Pmn nm • 

By (19.3), we also have 

(19.6) 

Introducing now (19.4-6) into (17.13) yields 

(19.7} 

1 The choice of the parameter e is again immaterial, since the final results comprise only the 
combination ea(l) = a. 



19. Second-order elastic effects 277 

where 

(19.8) 

Cleary, (19.4-8) reduce to (14.15-19) when p = grad u as in the case of single 
dislocation s. 

Substituting now (19.1), (19.3) into (17.5) and (19.7), (19.8) into (17.14), 
(17.15), and equating like powers of 8, we obtain a sequence of linear boundary-value 
problems, namely, at thejirst step of the interation 

at the second step 

r:.1~, = 0, 

E P(l) _ (1) 
nmj In,m - (X1j , 

'7'(1) - C p(1) 
.1.11 - kim" 1II1t 

THln, = 0 on 9', 

E P(2) - 0 nmj In.m - , 

'7'12) _ P(2) + 
;Ill - CUm" mn 'rll 

TiI)n, = 0 on 9', 

(19.9) 

(19.10) 

and so on. The term 'rkl occurring at the second step is obviously known, by (19.8)3' 
from the first step of the iteration. It is also worth noting that the first step requires 
the solution of a boundary-value problem of the type considered in the preceding 
section, while the subsequent steps involve only traction boundary-value problems 
of classical elasticity theory, i.e. with (1 = O. Consequently, the determination of 
the second-order effects in the elastic field of continuous distributions of dislocations 
reduces to the solving of two known boundary-value problems, namely (19.9) and 
(19.10). 

The method of Kroner and Seeger. Kroner and Seeger [191] elaborated an 
algorithm similar to the above, adapted for the determination of the stresses pro­
duced by dislocations in an infinite isotropic elastic medium with the aid of stress 
functions. The solution of the boundary-value problem (19.9) is found like in Sect. 
18.2 by putting 

(19.11) 

the stress functions x'H> being determined by the equations 

(19.12) 
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where 

(1) _ ~ (E (1) + E (1) ) 
flkl - 2 k,.(1..I" 1,.(1.sk" , (19.13) 

The boundary-value problem (19.10) differs from (19.9) only in that equa­
tions (19.10)1 are homogeneous and the constitutive equations (19.10)3 contain 
the non-linear term Tkl' which is known, however, from the first step of the iteration. 
From (19.10)1 it follows, as in Sect. 18.2, that 

(19.14) 

In the isotropic case, by solving (19.10)3 with respect to E(2) and substituting the 
result obtained into (19.14), we find 

(19.15) 

where 

(19.16) 

Next, by putting 

TB)= 2J1 [LfXkFl + I (X:J~,,,, - bklLfX:J~)], 
1 - v 

(19.17) 

with the supplementary conditions 

(19.18) 

we deduce that the stress functions X~~2) must satisfy the equations 

(19.19) 

Consequently, the determination of linear and second-order effects in the elastic 
field of a continuous distribution of dislocations reduces to the solving of two iden­
tical systems of equations, namely (19.12) at the first step and (19.18),(19.19) at 
the second step of the iteration. The comments in Sect. 18.2 concerning the solution 
of the field equations in the case of infinite or bounded elastic bodies are obviously 
valid for both steps of the iteration. 

Actually, the iteration scheme used by Kroner and Seeger [191] was a bit 
more complicated since they assumed as given the local rather than the true dislo­
cation density; this brought about the occurrence of some supplementary terms in 
(19.19), originating from the non-linear geometric relation between the two dislo­
cation densities. The method of Kroner and Seeger was subsequently used by Pflei­
derer, Seeger, and Kroner [270] for the calculation of second-order effects in the 
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elastic field of a continuous distribution of parallel edge or screw dislocations, and 
in particular in the elastic field of a single straight dislocation in an infinite isotropic 
medium. 

Willis'method. Willis [382] employed Mura's method presented in Sect. 18.3 
for solving the boundary-value problems (19.9) and (19.10) in the case of an infinite 
elastic medium. By making use of (18.20) one may easily derive the elastic distortions 
corresponding to the first two steps of the iteration, namely 

(19.20) 

(19.21) 

provided that Green's tensor function G of the infinite elastic medium is known. 
By means of (19.20) and (19.21), Willis [382] determined the second-order 

effects in the elastic field of a screw dislocation lying along a two-fold axis of material 
symmetry. Since Willis neglected the boundary conditions on the dislocation core, 
he considered the single dislocation as the limiting case of a continuous distribution 
of dislocations and retained only the finite part of the integrals (19.21), in order to 
derive a physically realistic solution. 

Willis'method was subsequently extended by Teodosiu and Seeger [336] 
to the case of uniformly moving dislocation densities and of infinitesimal motions 
superimposed upon a strain produced by dislocations (see Sect. 20). 

19.2. Influence of the continuous distributions 
of dislocations on crystal density 

In order to calculate the mean volume change produced by a continuous distribution 
of dislocations, we may again use the mean stress theorem, as in Sect. 15.2. In fact. 
since the whole reasoning leading to (15.14) involved only the displacement gradient 
b = grad u and not the displacement field itself, it still holds . for the incompatible 
strains produced by a continuous distribution of dislocations. Therefore, we may 
derive the non-linear volume change by simply replacing h(l) with ~(1) in the final 
result (15.14) , thus obtaining 

V V. - 2 (p P(l)P(l)d 
- 0 - I: ly mnrs mn.. V, (19.22) 

where P mnrs is given by (15.15). 
Equations (19.22) and (15.15) show that the calculation of the mean dilatation 

e = (V - Vo)/Vo produced by a continuous distribution of dislocations involves 
the elastic constants of third order, but requires only the knowledge of the elastic 
distortion ~(l) from the first step of the iteration, i.e. from linear elasticity. The para-
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meter & occurs in the final result only through the combination &P<I) which does not 
depend on &. Therefore, we may also rewrite (19.22) under the form 

V - Vo = ~: mllrsPm..Prsdv, (19.23) 

where p means the infinitesimal elastic distortion produced by the continuous distri­
bution of dislocations. 

20. Infinitesimal motion superimposed upon a finite elastic 
distortion produced by dislocations 

In this chapter, we have considered so far only the elastostatics of continuous distri­
butions of dislocations, since their motion produces in general an inelastic defor­
mation of the body, which lies beyond the scope of this book 1. There exists, howe­
ver, a category of dynamic dislocation problems that can be still treated within the 
theory of elasticity, namely the propagation and scattering of elastic waves in media 
with initial strains produced by dislocations. Such problems occur in a few impor­
tant fields of solid state physics (Seeger [292], Seeger and Brand [294]). Thus, physical 
acoustics studies plane waves whose wave lengths are long enough, and hence can 
be studied by a continuum approach. The elastic interaction of such waves with 
dislocations and point defects is used, for instance, to explain and evaluate the inter­
nal friction in solids. In the theory of heat conduction the thermal motion of the 
crystalline lattice at low temperatures is modelled by a superposition of elastic 
waves. The elastic interaction between these waves and dislocations, which is called 
phonon-dislocation interaction, is of great consequence for the understanding of 
the thermal conduction in solids and for the evaluation of the phonon drag on 
moving dislocations. 

In most of these applications the amplitude of the elastic waves is sufficiently 
small to permit their treatment as an infinitesimal motion superimposed upon an 
initial strain produced by dislocations. In this case it is necessary to involve the 
non-linear theory of elasticity in order to point out the expected scattering effects. 
On the other hand, the deformations produced by dislocations are small enough to 
allow considering only the second-order elastic effects. 

We begin by presenting in a slightly different form the results obtained by 
Teodosiu and Seeger [336] concerning the infinitesimal motions superimposed 
upon a finite strain produced by a continuous distribution of dislocations in an ani­
sotropic elastic medium. At the end of this section we shall outline the method used 
to study the influence of dislocations on the low-temperature thermal conductivity 
and shall briefly review some of the results available in the literature. 

1 The connexion between the kinematics of the elastoplastic deformation and the motion of 
continuous distributions of dislocations has been studied by Kosevich [182, 183] in the linear case 
and by GUnther [148] and Teodosiu [335] in the non-linear case. For a substantiation of the 
theory of the elastoviscoplasticity of crystalline materials on the basis of dislocation dynamics we 
refer to the papers by Zarka [387 - 389], Teodosiu [335, 344], Teodosiu and Sidoroff [345], and 
perzyna [268, 269]. 
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20.1. lnfiDitesimal elastic waves superimposed upon 
an elastic distortion produced by dislocatiom 

Let us consider an infinitesimal displacement field 

u = u(x, t) 

28) 

(20.1) 

superimposed upon an elastic distortion produced by a continuous distribution of 
dislocations in an anisotropic elastic medium. For the sake of simplicity we suppose 
that the medium is infinite and free of body forces and that the stress tensor produced 
by dislocations vanishes at infinity. Such a problem appears for example, when 
studying the propagation of plane waves in an initially stressed medium. 

Fig. 20.1. Infinitesimal displa­
cement field superimposed upon an 
elastic distortion produced by dis-

locations. 

We denote by (k) and (k*) the current configuration of the body at time t 
before and after superimposing the displacement (20.1) and label by a star all quan­
tities associated with configuration (k*) (Fig. 20.1). Let 

h = grad u, (20.2) 

be the gradient of the superimposed displacement field with respect to the positions 
X of the material particles in the configuration (k). Then, we have 

A* = (1 + h)A. (20.3) 

In order to deduce the modification of the equations of motion when passing 
from (k) to (k*) it proves useful to employ a somewhat different form, which points 
out the terms of these equations that are invariant with respect to a superimposed 
elastic motion. Starting from (17.5) and (17.10), it may be shown ([336], App. 1) 
that 

(20.4) 
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where;' is Noll's dislocation density, andj =p/p is the ratio between the mass den­
sity p in the current configuration (k) and the mass density p in the local natural 
configuration (x). On the other hand, in view of (17.13)1' equations (3.22)2 may be 
written in the dynamic case as 

-O-(·A,.A OW(Dl) - x 
:'l J k IS:'lD - P k, 
uX, u r. k = 1,2,3. (20.5) 

Next, by making use of (20.4), we deduce from (20.5) that 

(20.6) 

By superimposing the displacement field (20.1),Jhis equation becomes 

A* _0_ (A* OW(D*») + A* OW(D*) E it = - x* (20.7) 
Is :'l * kr :'lD* kr :'lD* smn mn P k' 

uX/ u rs U r. 
since p and ~ are invariant with respect to a superimposed elastic motion. Next, 
by subtracting (20.5) from (20.7) and taking into account that A,~ %x,* = A/s %x" 
we find 

A _0_ (A* oW(D*). _ A OW(D») + 
Is 0 kr oD* kr oD 

~ n n 

Finally, by mUltiplying both sides of this relation by j = pIp, and considering again 
(20.4), we obtain 

_0_ [j A,s (Ak~ oW(D*) - Akr oW(D) )]= PUb k = 1,2,3. (20.8) 
OX, oD:s oDrs 

It is worth noting that although the equations (20.8) depend on A they have 
the same form irrespective of A being produced by stationary or moving dislocations. 
Let us assume now that IIgrad 011 ~ 1 and that there exists a solution o(x, t) of 
(20.8) which depends analytically on a small parameter v, i.e. 

o = vo(1) + V20(2) + .... 
Dy putting 

h(l) = grad 0(1), h(2) = grad 0(2), ... 
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expanding oW(D*)foD* in power series of D* - D, and making use of (17.12) 
and (17.13), we obtain after a straightforward but tedious calculation 1 

+ v2{[(Bjjkl(A)hW + l/Iij(A, b(l»l,j - piW)} + ... = 0, 

where 

i = 1,2, 3, (20.9) 

Equations (20.9) have been derived without making any restrictive assumption 
on the magnitude of the initial dislocation strain. Let us assume now that the elastic 
distortion A produced by dislocations may be obtained by one of the methods pre­
~ented in Sect. 19.1, under the form of the power series (19.4), i.e. 

(20.10) 

where e is another small parameter, characterizing the magnitude of the dislocation 
:strain. 

According to the relative magnitude of the small parameters v and e we diffe­
rentiate the following three cases. 

(i) e ~ v < 1. In this case ve ~ v2 and hence, by taking A = l,j = 1, D = 0, 
the corresponding error in (20.9) will be much smaller than v2• Furthermore, by 
(4.41) and (4.44), we have Bijk/(l) = Gijkl(l) = Cjjkb Fjjklmn(l) = Cjjklmn, while 
1J ij(l, b(l) = O'ij(b(l», where 

(b(l» - h(l)h(l) + 1 h(l)h(l) + 1 h(l)h(l) 
O'ij - C.jkl js kl T Cjjkl sk sl T Cijklmn kl mn' 

Consequently, equations (20.9) are equivalent up to an error of the order v2 with 
the systems 

h(l) "(I) 
Cjjkl kl,j = pU j , h(2) + (b(l) - "(2) Cjjkl kl,j 'T:jj.j - pUj , i = 1,2,3, (20.11) 

1 For details see [3361. p. 896. 
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which determine, respectively, u(l) and U(2). When u is a plane wave, these systems 
describe the lowest-order anharmonic effects due to the non-linearity of the consti­
tutive equations. Under the hypothesis (i) the influence of the strains produced by 
dislocations is negligible up to the order O(v2). 

(ii) e ~ v ~ 1. In this case we have ve ~ v2, and hence the terms containing 
ve in the first line of (20.9) must be included in the terms of order O(v2). Accordingly, 
by equating to zero the coefficients of v and v2 in (20.9), it results that 

i = 1,2,3, 

qJijU(PO » = c5i1Cjlp,P;P - cijuPMl.. + ciQuPW + cij"JJ1:> + 

(20.12) 

(20.13) 

+ Cpjk/P~;) + cij"Pi~) + CijUtuP~~). (20.14) 

The systems (20.12) and (20.13) allow the determination of u(1) and U(2). 

When u is a plane wave, system (20.13) describes the anharmonicity due to both 
the strains produced by dislocations and the non-linearity of the constitutive 
equations. 

(iii) v ~ e ~ 1. In this case v2 ~ ve and hence, by retaining in (20.9) only 
terms of the orders O(v) and O(ve), we may describe the lowest anharmonic effects 
due to the strains produced by dislocations, which now predominate over those 
arising from the non-linearity of the constitutive equation. We then obtain 

([Cjjk' + eq>ijk/(p<1)]hi}!}.j = PUb i = 1,2,3. (20.15) 

Finally, it is important to note that terms accounting for the anharmonicity pro­
duced by dislocations in (20.14) and (20.15) are completely determined by the linear 
approximation P(l) to the elastic distortion produced by dislocations. 

20.2. The influence of dislocations on the 
low-temperature lattice conductivity 

As already mentioned at the beginning of this section, the thermal motion in solids 
at low temperatures may be described by a superposition of elastic waves (phonons). 
The interaction between a dislocation and phonons arises mainly I through the 
large distortion field of the dislocation, which has a dissipative effect, called phonon 
scattering, on the travelling elastic waves, thus limiting the thermal conductivity. 
The same process is important in evaluating the phonon drag on moving dislocations, 
and hence the low-temperature mobility of dislocations (Seeger and Engelke [469], 
Gruner [423]). 

At temperatures well below the Debye temperature, phonons have large 
wave-lengths and are, therefore, more effectively scattered by dislocations, which 
possess a far-reaching distortion field, than by point defects, which distort the lattice 
only in a small spatial region (cf. Chap. V). 

The influence of the phonon scattering by the lattice defects on thermal 
conductivity has been first investigated by Klemens [435], who calculated the scatter-

1 An incident phonon may also cause a dislocation to oscillate and to emit other phonons 
(see, e. g. Ninomiya [454]); this fluttering mechanism leads also to phonon scattering. 
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ing cross sections of various defects and found that each defect has a characteristic 
wave-length dependence of the scattering cross section and a characteristic tempera­
ture dependence of the thermal resistance. For instance, the scattering cross section 
of a single dislocation is inversely proportional to the phonon wave-length, and 
its thermal resistance has a quadratic temperature dependence. The attractive 
feature of this discovery is the possibility to distinguish different types of defects 
and to study their arrangement by measuring the temperature dependence of thermal 
conductivity. 

Klemen's analysis has been based on non-linear lattice theory; however, the 
anharmonicity of the interatomic forces has been estimated in terms of a single 
parameter, the Griineisen constant, by comparing the change in the energy of a 
crystal produced by a homogeneous dilatation with that produced by thermal expan­
sion. As shown by Bross [403), this rather poor approximation may be considerably 
improved by using non-linear elasticity theory. 

The use of continuum mechanics for studying the phonon scattering is fully 
justified at low temperatures, where the phonon wave-lengths are large in compari­
son with the lattice parameter. The main advantage of this continuum approach 
is that third-order elastic constants are known for a variety of materials, whereas it 
is still difficult to get reliable experimental values for the anharmonic force constants. 
Moreover, non-linear elasticity theory allows to easily take into account the so-called 
three-phonon processes, which describe the lowest-order scattering of waves from 
each other. 

Bross' method has been successfully used in conjunction with second-order 
elasticity theory to study the phonon scattering by single screw (Bross, Seeger, and 
Gruner [39)) and edge dislocations (Bross, Seeger, and Haberkorn [40), by edge­
dislocation dipoles (Gruner and Bross [422)), and by dislocation pile-ups (Gruner 
(423)) in infinite isotropic media. Alshits and Kotowski [392) have shown, on the 
particular example of prismatic dislocation loops, that the influence of the curvature 
of dislocation loops becomes significant only at very low temperatures, where the 
phonon wave-lengths become comparable with the curvature radii of the loops. 
Finally, Bross, Gruner, and Kirschenmann [41] have described the phonon-phonon 
interaction (three-phonon processes) in the presence of edge dislocations, by the 
scattering of two elastic waves propagating in a non-linear elastic medium with 
dislocations. 

Although the temperature dependence of the thermal resistance due to the 
phonon scattering from stationary dislocations have been verified experimentally 
in several cases, the calculated values of the thermal conductivity are larger than 
those found experimentally by a factor of 10 in the case of metals, and by a factor 
of 103 in the case of ionic crystals. 

Recently, Eckhardt and Wasserbach [414, 415) have considerably enlarged 
Bross' theory, by considering the simultaneous scattering of phonons by stationary 
dislocations, and by three-phonon processes in a finite anisotropic body (crystal 
plate). The numerical results obtained by these authors for ionic cristals are in 
much better quantitative agreement with experimental data. Moreover, the theory 
developed permits to more coherently explain various effects, sometimes considered 
as anomalous, e.g. the dependence of thermal conductivity on the deformation 
history. 



CHAPTER V 

THE ELASTIC FIELD OF POINT DEFECTS 

Unlike dislocations, which are linear defects of the crystal lattice, point defects 
are lattice imperfections having all dimensions of the order of one atomic spacing. 
The point defect may be a vacant site in the atomic lattice, called a vacancy, a foreign 
atom replacing one atom of the lattice, called a substitutional atom, or an atom si­
tuated between the normal sites of the lattice, called an interstitial atom. An intersti­
tial atom is said to be intrinsic or extrinsic, according as it is of the same nature or 
of different nature with the atoms of the host lattice. Sometimes, two or more point 
defects can build characteristic arrangements which are thermodynamically stable, 
i.e. their self-energies are smaller than the sum of the self-energies of the individual 
point defects. 

The collective motion of point defects produces viscous effects at a macroscopic 
scale, which are of great importance for many processes taking place in crystals 
(see, e.g. Seeger [286], Hirth and Lothe [162], Nowik and Berry [455], chapters 7 
and 8). Like dislocations, however, each point defect moves in an almost good crystal, 
which may be considered to a large extent as an elastic medium. Moreover, the 
interaction of a point defect with other crystal defects is mostly of elastic nature. 
That is why we will devote this chapter to elastic models of point defects and to 
various methods for calculating the elastic interaction of a point defect with dislo­
cations or other point defects. 

21. Modelling of point defects as 
spherical inclusions in elastic media 

The simplest model of a point defect is given by a spherical rigid or elastic inclusion 
in an infinite isotropic medium. In both cases the elastic state possesses spherical 
symmetry with respect to the centre of the inclusion. By using spherical co-ordinates 
T, e, <p (Fig. 1.5) and assuming that the displacement vector u has radial direction 
and is independent of e and <p, we have 

u = ur(r)e" U8 = u'" = 0, (21.1) 

and; by making use of (1.84), we deduce that the infinitesimal strain tensor E has 
the physical components 

Err = dUr , 

dr 
E Ur 

88 = E",,,, = - , 
T 

(21.2) 
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Next, substituting (21.2) into (6.5) gives the physical components of the stress 
tensor 

Trr = (l + 2p) ddUr + 2l !!!-., 
r r 

(21.3) T IHJ = T,,'I' = l dUr + 2(l + p) ~'-, 
dr r 

Introducing (21.3) into (6.2), setting fk = 0, and considering (1.85), we see 
that the last two equilibrium equations are identically satisfied, while the first one 
reduces to the differential equation of Euler type 

2 d2ur + 2 dUr 2 - ° r-- r-- u-
dr2 dr r' 

(21.4) 

which admits the general solution 

ur(r) = Cr-2 + Clr, (21.5) 

where C and CI are arbitrary constants. 

21.1. The point defect as rigid inclusion 

Let us first simulate a point defect by a rigid ball of radius ro which is forced into 
a spherical cavity whose volume is by 8 v smaller than that of the ball and is situated 
in an infinite isotropic medium 1. On physical grounds, u must vanish at infinity, 
hence CI = 0, and solution (21.5) reduces to 

r = II x II = V xi + x~ + x~. (21.6) 

Here and in the following the superscript 00 is used to recall that the elastic medium 
is infinite. Next, from (21.1)1 it results that 

(21.7) 

The constant C is a measure of the "strength" of the singularity introduced by the 
point defect and is completely determined by 8v. Indeed, requiring that 4n:r~u~(ro) = 
= ~v gives 

~v = 4n:C. (21.8) 

1 This model has been firstly used by Bitter [30]. The reasoning that follows is mainly 
due to Eshelby [111]. 
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Introducing (21.6) into (21.2) and (21.3) we find the non-zero strain and stress 
components: 

Err = -2Cr-3, Eoo = Etptp = Cr-3, trE = 0, (21.9) 

(21.10) 

From (21.9)3 and (2l.10)3 it is easily seen that the mean pressure and the volume 
dilatation vanish at any point of the elastic medium (r > ro). 

Assume now that the elastic state outside the cavity is extended to the whole 
space, having the origin as singular point. We then derive from (21.7), considering 
also (1.47), that 

div UOO = -CA(r-l) = 4nCJ(x), 

Auoo = -CA[grad(r-l)] = -CgradA(r-1) = 4nC grad J(x), 

where J(x) is Dirac's distribution. By introducing these relations into (6.28) we 
find that the action of the point defect on the elastic medium is equivalent to that 
of the body force field 

f(x) = -4nC(A. + 2Jl)grad J(x), (21.11) 

acting on the elastic medium without cavity. Clearly, the field (21.11) represents 
three mutually orthogonal force dipoles without moment, having equal intensities, 
and acting at the centre of the point defect (Fig. 21.1). As already mentioned in 
Sect. 6.4, such a distribution of concentrated loads is called a spherical dilatation 
centre. 

Fig. 21.1. Spherical dilatation 
centre. 

Fig. 21.2. Spherical surface 9'1 
and arbitrary smooth surface 9' 
around a rigid inclusion in an 

infinite elastic medium. 

The volume change of a part 1" of the elastic medium that contains the point 
defect is 

JVOO = ~'y UOO • Dds, (21.12) 

11l-120 
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where [/' is the boundary of "Y, and n is the outward unit normal to [/'. It is easily 
proved that <5 VOO is independent of the choice of "Y. Indeed, let "Y 1 be a sphere of 
radius R, centred at the origin, and of boundary [/'1 (Fig. 21.2). Since div UOO = 0 at 
any point of the elastic medium outside the inclusion, we deduce from (1.52) that 

and hence, by (21.7)1 and (21.12), 

bVOO = ( uoo. Dds = ( uoo • Dds = C (2" dcp (n sinO dO = 4nC = bv, 
J9' ).9'1 )0)0 

(21.13) 

since on [/'1 we have: r = R, ds = R2sin 0 dO dcp, and e,. n = 1. Equation (21.13) 
shows that a rigid inclusion increases the volume of each finite region containing it 
by 4nC, without any elastic dilatation. 

When the elastic medium is finite, some supplementary elastic displacements 
occur from the vanishing condition of the tractions on the external boundary of the 
elastic body. Let us assume for the sake of simplicity that the elastic body is a ball 
of radius R containing a spherical concentric hole whose volume is by bv smaller 
than that of the rigid inclusion (Fig. 21.3). 

Fig. 21.3. Rigid inclusion forced 
into a spherical hole (originally of 
radius ro) of a concentric elastic 

ball of radius R. 

Since the spherical symmetry is preserved, we may again use the general solu­
tion (21.5), but subjected to the boundary conditions 

T,,(R) = 0, (21.14) 

which imply 

c5v 
C = 3 ' 

( 4Jl ro ) 4n 1 +---
3KR3 

(21.15) 
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where K is the bulk modulus. Usually ro ~ R, and thus (2l.l5)1 reduces again to 
(21.8). Substituting (21.5) into (21.2), (21.3), and considering (2l.l5)2' we find the 
non-zero strain and stress components: 

E = - }:C (1 _ ~~~), 
rr r3 3K R3 

(21.16) 

E66 = Erprp = -.£(1 + 4J1. ~), tr E = 4J1.C, 
r3 3K R3 KR3 

T = - ~J-lC (1 _~) , 
rr r3 R3 

(21.17) 

T66 = 1'. = _ _ 0 1 + - , tr T = --. 2f1C ( 2r 3 ) 12J-lC 
rprp r3 R3 R3 

Equations (2l.l6)3 and (2l.l7)3 show that the boundary condition (21.14)1 leads to 
the occurrence of a uniform dilatation, and hence to a uniform mean pressure in the 
isotropic elastic ball. 

The volume change produced by the rigid inclusion is 

(jV = 4nR2u,(R) = 4nC (I + ;~), 

or, by taking into account (2U3), 

(2 l.l 8) 

(2U9) 

When the finite elastic body has a more complicated geometry the boundary­
value problem cannot be solved generally in closed form. However, as shown by 
Eshelby [111], equation (2l.l8) still holds. To prove this, let us make use of the 
simulation of the point defect by a dilatation centre, i.e. by the distribution of 
body forces (21.11). For a finite elastic body occupying a region -r of boundary 
g we have (see also Gurtin [150], p. 97) 

wherefrom, in view of (15.2), it follows tha t 

(21.20) 
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In our case t = 0 on [/ and, by substituting (21.11) into (21.20), we obtain 

= 4nC(A. + 2/1) = 4nC (1 + 4/1), 
K 3K 

i.e. the same result as in the particular case of the elastic ball. Since u.(r) = Clr 
is a particular solution of the equilibrium equation (21.4), by repeating the reasoning 
leading to (21.11) and making use of (21.18), it is easily seen that the action of a 
rigid inclusion on an arbitrary finite elastic body is equivalent with that of the body 
force 

f(x) = -K(<5V) grad <5(x). (21.21) 

By virtue of (12.9), the potential interaction energy between a point defect D 
and a regular or singular elastic state 0* = [u*, E*, T*] is 

cPint{D, o*} = - ~t'" f. u* dv, (21.22) 

since the surface tractions corresponding to the point defect on [/ are zero. Next, 
by substituting (21.21) into (21.22) we successively have 

= - K(<5V) trE* = - f(<5V) tr T* = p* <5 V, (21.23) 

where p* is the mean pressure corresponding to T* and evaluated at the centre of 
the point defect. 

If T* is also generated by a point defect and the elastic medium is infinite, 
then, by (21.10)3, we have p* = 0, and hence cPint = O. Therefore, the interaction 
energy of two point defects simulated by small rigid inclusions in an infinite isotropic 
elastic medium is zero 1. 

It is interesting to note that the result (21.23) still holds for an anisotropic 
elastic medium with cubic symmetry, as long as the point defects are simulated by 
dilatation centres. Indeed, the reasoning leading to (21.23) remains unchanged, 
since the relation tr T = 3K tr E is also valid for cubic materials, with K = (cll + 
+ 2CI2)/3. 

1 We shall see in Sect. 23.2 that a more exact simulation of a point defect by multipolar 
forces allows to take into account non-local effects, which bring a non-vanishing contribution to 
4>int· 
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21.2. The point defect as elastic inclusion 

An improved model of a point defect may be obtained by an elastic ball of radius 
ro which is forced into a spherical hole, whose volume is by c;v' smaller than that 
of the inclusion and which is situated in another elastic ball of radius R (Fig. 21.4). 

Fig. 21.4. Elastic inclusion (origi­
nally of radius '0) forced into a 
smaller spherical hole of a concen-

tric elastic ball of radius R. 
R 

Let us denote by u', T', A.', J1.' and u, T, A., J1. the displacement vector, the 
stress tensor, and Lame's constants corresponding to the inclusion and the larger 
ball, respectively. As u must be finite for r = 0, it follows from (21.5) that the only 
non-zero components of the vectors u' and u are 

u; = C'r, (21.24) 

The constants C', C and C1 are to be determined by the condition that the radial 
stress component Trr be continuous across the surface of the inclusion and vanish 
on the external surface r = R: 

Trr(R) = 0, (21.25) 

as well as by the geometric condition 1 

(21.26) 

Substituting (21.24) into (21.3)1 gives 

T:r = 3K'C', (21.27) 

1 We assume as before that 00' is small enough to allow the treatment of the problem by 
linear elasticity theory. Consequently, we make no distinction in (21.25) and (21.27) between 
the co-ordinates of the material points before and after the deformation. For a treatment of the 
same problem in the framework of second-order elasticity theory, but with A = A', I' = 1", see 
Seeger and Mann [289J. 
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where K' = A' + 2Jl'/3, K = A + 2Jl/3. Next, by introducing (21.27) into (21.25), 
and (21.24) into (21.26), and solving the algebraic system obtained with respect to 
C, C', and Cl , we find 

C 4JlC 
1 = 3KR3' 

C' = 4JlC (_1 ___ 1 ), 
3K' R3 rg 

When the inclusion is rigid we have K' = 00, C' = 0, and C and Cl reduce to their 
previous values (21.15). 

In what follows we neglect r8;R3 with respect to unity, which is certainly ad­
missible for any point defect. Then, (21.24) and (21.3) yield 

(i v' 
C= , 

41t (1 + 4Jl) 
3K' 

T. = T. = 2JlC (1 + 2r3
), 

88 '1''1' r3 R3 

tr T' = _ 12JlC . 
r~ 

(21.28) 

(21.29) 

(21.30) 

while the other components of u and T are zero. Equations (21.29) and (21.30) show 
that the elastic inclusion is subjected to a pure hydrostatic pressure, while the stress 
state outside the inclusion is characteristic of the presence of a dilatation centre. 
By comparing (21.30) with (21.17) and (21.28)3 with (21.15)1> it is easily seen that 
an elastic inclusion with the bulk modulus K' and of strength C exerts the same action 
on the external elastic ball as a rigid inclusion of strength C/(l + 4Jl/3K'). Finally, 
we remark that the volume change of the inclusion is 

4Jl (iv' 
(iv = 41tr~u;(ro) = - - . -----

3K' 1 + 4Jl/(3K') 
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and that of the external ball is 

1 + 4J1/'(3K) 
<5V = 4rrR2 u,(R) = <5v'. 

1 + 4J1/(3K') 

Actually, the evaluation of the bulk modulus K' for a single point defect, 
if possible, is always questionable. Therefore, the use of the above model is reason­
able only when extrinsic point defects of the same nature agglomerate by diffusion 
and generate larger inclusions. 

21.3. The inhomogeneity effect of point defects 

The above models of point defects were based on their description as rigid or elastic 
balls that are forced into holes of a smaller volume. The elastic state generated in 
this way is called the size effect or the paraeiastic effect of point defects. The last 
name was introduced by Kroner [192] on the analogy of electrodynamics and was 
suggested by the simulation of point defects by force dipoles. 

Extrinsic point defects may also have an inhomogeneity effect, which occurs 
when they are placed in a stress field different from their own. As shown by Eshelby 
[111], the change in the elastic state outside the point defect may be ascribed to the 
induction by the applied stress field of supplementary force dipoles in the extrinsic 
point defect; for this reason, Kroner [193] called this effect the diaeiastic effect, 
again by analogy with the similar situation in electrodynamics. 

Usually, the size and the inhomogeneity effects occur simultaneously, one 
of them being eventually preponderant with respect to the other. In the linear theory 
of elasticity, however, these effects may be considered separately and then superpos­
ed. Since the size effect has been studied above, we will treat in this subsection the 
pure inhomogeneity effect. Such an ideal situation could be realized if an atom of 
the lattice were replaced by a foreign atom of the same atomic volume, i.e. without 
displacing the neighbouring atoms. 

Let us consider the point defect as a small elastic ball that replaces a subregion 
f' of volume Q and boundary [/' of the region f of boundary [/ occupied by the 
elastic body (Fig. 21.5). Denote by c' and c the tensors of the second-order elastic 
constants in '"1" and '"1''' = '"I'''-..,f', respectively. Let <1 = [u, E, T] and <1' = [u', 
E', T'] be the elastic states produced in f' before and after changing the elastic 
constants in '"1" by an external force system [t, f, P], about which we assume only 
that it is applied outside '"1". 

The potential energy of interaction (shortly: the interaction energy) between 
the inhomogeneity N in f' and the elastic state <1 is by definition the change in the 
potential energy produced by changing the elastic constants in f'. Hence, we may 
write 

4>int{N, <1} = 4>{<1'} - 4>{<1} = .£14>' + .£14>", (21.31) 

where .£14>' and .£14>" are the changes in the potential energies of the parts '"1", res­
pectively f", of the body. 
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By making use of (12.4)3, we first deduce that 

AlP' = -! ( (t'. u' - t. u) ds, 
2 ).9" 

Fig. 21.5. Elastic body containing 
a small spherical inclusion with 

different elastic constants. 

where t' and t are the stress vectors acting on the boundary [/' ofj'"' before and after 
changing the elastic constants in j'"'. On the other hand, the change in the potential 
energy of j'"" results from the change of the surface tractions acting on the subboun­
dary [/' of j'"" from -t to -t' and in the presence of the external forces acting on 
j'"". It is therefore additively composed of the potential energy of the elastic state 
produced in j'"" by the surface forces t - t' acting on [/ and by the interaction energy 
between this state and the state <1. Consequently, by (12.4)3 and (12.9)2' we have 

AlP" = ! ( (t' - t) . (u' - u) ds + ( (t' - t) . u ds. 
2 ).9" 19' 

Substituting the last two relations into (21.31) we obtain 

lPint{N, a} = }- ( (t'. u - t . u') ds. 
2 J9" 

(21.32) 

Finally, by applying (1.53) and taking into account that a and a' are regular elastic 
states in j'"' which correspond, respectively, to the surface tractions t and t' acting 
on [/', we successively deduce 

or 

(21.33) 
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In the isotropic case, by substituting (5.26) into (21.33), it results 

(21.34) 

o 0 

Next, introducing the deviators E, E' of the strain tensors E, E', defined by 

o 

E~z = EkZ - ~ E:'m bkl> 
(21.35) 

equation (21.34) may be rewritten as 

= 2. [(K' - K)(tr E') (tr E) + 2(Jl' - Jl)E' . E] dv, ~ 0 0 

2 f' 
(21.36) 

where K = A + 2Jl/3, K' = A' + 2Jl' /3 are the bulk moduli inside and outside 
the inclusion, respectively. 

In what follows we assume that the strain E is uniform, i.e. it does not depend 
on x. Then, it may be shown (Eshelby [lIO]) that the strain field E' inside the spherical 
inclusion is also uniform, being related to E by 

tr E' = (Aa + 1) tr E, 

where 

K'-K 
A= , 

(K - K')a-K 

I I + v 
a = ---, 

3 I - v 

o 0 

E' = (BP + I)E, 

Jl' - Jl B= , 
(Jl - Jl') p - Jl 

2 4 - 5v 
P=15 I-V' 

(21.37) 

(21.38) 

Introducing (21.37) into (21.36) and taking into account (6.5-7), we obtain 

4'int{N, o}=--[KA(trE)2+2JlBE .E] =--- --(trT)2+--T.T , o 00 O[A BOO] 
2 2 9K ~ 

(21.39) 
o 

where T is the deviator of the stress tensor T outside the inclusion. 
Usually, the quantities K' - K and Jl' - Jl can be only roughly evaluated. 

It is therefore preferable to consider the parameters A and B as independent macro­
scopic constants and to determine them from data on the apparent elastic constants 
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of materials containing a large number of point defects [III]. Indeed, under constant 
surface tractions producing a uniform strain field E, the strain energy density per 
unit volume W changes, in view of (12.4)1 and (21.31)1> by -n4>int{N, o}, where n 
is the number of point defects per unit volume and 4>int{N,o} is given by (21.39)~ 
On the other hand, in the absence of point defects, it follows from (15.24) and 
(15.25) that 

10 0 

W = T [K(tr E)2 + 2/lE. EJ. (21.40) 

Consequently, the apparent elastic constants are 

Kapp = K(l + cA), /lapp = /l(l + cB), (21.41) 

where c = nQ is the volume concentration of point defects. Clearly, equations 
(21.41) hold only for small values of c, since in deriving them we have neglected 
the interaction of point defects. However, they permit, at least in principle, the 
determination of the constants A and B by macroscopic experiments. 

We have assumed so far that the strain field E is uniform and is produced by 
an external force system. Nevertheless, the final result (21.39) may also be applied 
to non-uniform strain fields produced by other defects, provided they have a negli­
gible variation on distances comparable with the dimensions of the point defect. 
On this ground, we shall make use of (21.39)1 for calculating the inhomogeneity 
interaction between two point defects DI and D2 in an infinite isotropic elastic 
medium 1. Considering the point defects as rigid inclusions and denoting by bVI 

and bV2 the volume changes produced by them, we obtain from (21.9) and (21.8) 

tr El = tr E2 = 0, 

Substituting this result into (21.39)1 and taking into account that the integration 
leading from (21.36) to (21.39) must be performed over the volumes of both point 
defects, we find 

where now r = IIx2 - XIII is the separation distance between point defects. Finally, 
the force exerted by the defect Dl situated at Xl on the defect D2 at X2, originating 
in the inhomogeneity effect, is 

(21.42) 

where again r = IIx2 - XIII. 

1 We have seen above that the corresponding size effect interaction vanishes. 
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22. Description of point defects by force multipoles 

A point defect exerts forces on the neighbouring atoms, which are different from 
those acting on these atoms in the perfect lattice. Let p. be the additional force exert­
ed by a point defect centred at x' on the atom situated at x' + I·. According to 
(6.32), the force system pv produces in an infinite elastic medium the displacement 
field 

N 

um(x) = ~ Gm.(x - x' - IV)P;, (22. I) 
v=1 

where G is Green's tensor function of the elastic medium, while N is the number 
of atoms on which extra forces are exerted. Theoretically, N = 00, but, as pv decays 
very rapidly when IIlv If -+ 00, it is usually sufficient to take into account only the 
forces exerted on the first and second neighbours. 

Developing G(x - x' - IV) in a Taylor series about x - x' yields 

(22.2) 

= Gm.{x - x') + Gms.n'(x - x')/~+ ;! Gms.n'q' (x - x')/~ lq + ... , 

where ('),m' = o(.)/ox'",. Clearly, the expansion (22.2) converges only for suffi­
ciently small values of III· II, i.e. only if the application points of the forces pv are 
sufficiently close to the point defect. 

By substituting (22.2) into (22.1), it results 

00 1 
u (x) - ~ - G ' ,(x - x')p(k) -m -.l.J k' ms·q1 • · ·qk q1 . .. qk -

k=O • 

(22.3) 

- G ( - ')P(O) + G ,( - ,)p(l) + G ,,( _ ')P(2) + - ms X X S ms.n X X ns mS.n q X X nqs ••• , 

where 
N N 

P(O) = ~ p., PiO) = ~ p; (22.4) 
v=1 v=1 

is the resultant force, and 

N 
P(k) = ~ IV IV ••• I" p., 

v=l~-
(22.5) 
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is the multipolar moment of k'th order, k = 1,2, ... , of the system of additional 
forces pv exerted by the point defect on its surroundings. In particular, we call 
dipole moment, quadrupole moment, and respectively octo pole moment, the tensors 

N N 
P<l)= ~ I" P", P(l)= ~ IV pv ns n .f) (22.6) 

v=1 v=1 

N N 
P(2)= ~ I" I" pv, p(2) _ 

nqs - ~ I~ Iq P;, (22.7) 
v=1 v=1 

N N 
P(3) = ~ I" I" I" P", P(3) _ ~ IV Iv IV pv 

1Iqrs- 11 q r s' (22.8) 
v=1 v=1 

Formula (22.3) may be also given a somewhat different interpretation. Namely. 
we have seen in Sect. 6.5 that Green's tensor function G satisfies the equation 

(22.9) 

in the sense of the theory of distributions. Applying on this equation the differential 
operator 

and summing with respect to s, we obtain 

c.. {_I p(k) G" (x _ XI)} + _1_ p<k) (j, ,(x - x') = 0 
'Jm1l k! ql '" qkS ms·Q1· . ·qk ,jn k! ql · · ·qkS • q1' . . 9k • 

Finally, by comparing these relations with the equilibrium equations 

Cijmnum.jix) + h(x) = 0, i = 1,2,3, 

we conclude that the body force 

(22.10) 

generates the displacement field 

(22.11) 
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The body force (22.10) is called 1 a multipolar force of k'th order, and of strength 

(22.12) 

By making use of this terminology and comparing (22.3) with (22.11), we may say 
that the action of a point defect on the elastic medium is equivalent to that of a 
body force field which consists of force dipoles, quadrupoles, octopoles, etc. applied 
at the centre of the defect, namely 

(22.13) 

the strengths of the multipolar forces being completely determined through (22.12) 
by the multipolar moments associated with the point defect 2. 

We shall constantly assume in what follows that the resultant force and couple 
exerted by a point defect on its surroundings are zero. Then, the equilibrium condi­
tion implies 

N N 

~ pV = 0, ~ IV X pv = O. (22.14) 
.=1 v=1 

The last relation may be rewritten as 

N 

~ Ekll.I;P; = EkllsP~!) = 0, 
v=1 

wherefrom it follows that the dipole moment pm must be a symmetric tensor. Hence, 
conditions (22.14) are equivalent with 

pco) = 0, (22.15) 

By introducing (22.15)1 into (22.3) and taking into account that 

we obtain 

(22.16) 

- G ( ')PCI) + 1 G ( ')PC2) 1 G ( ')PC3) + - - ms.1I X - X liS 2! ms.lIq X - X nq. - 3! m •• lIqr X - X nqrs ••• 

1 This designation generalizes that of "double force" introduced by Love [222], Sect. 132. 
2 Kroner [190, 192, 193] was the first to give a systematic description of point defects witb 

the aid of multipolar moments or as multipolar forces of second and higher orders (cf. also Deb­
linger and Kroner [85]). 
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Equation (22.16) shows that the elastic state produced by a point defect in an infinite 
elastic medium is completely determined by the multipolar moments P(k), k= 1, 2, ... , 
provided Green's tensor function of the medium is known. For an isotropic 
material this function is (cf. Sect. 6.4) 

Gm.{x - x') = 1 [c5m.<3 _ 4v) _1 + (xm - x;") (x. - X~)], (22.17) 
16nJl(l - v) r r3 

where r = Ilx - x' II. By substituting (22.17) into (22.16), we see that u(x) is of the 
order O(r-2) as r -+ 00, in agreement with the results obtained in modelling point 
defects by rigid spherical inclusions in an infinite isotropic medium (Sect. 21). 

As already mentioned, the elastic field of a point defect is characterized by its 
multipolar moments. There exist so far three main procedures for evaluating these 
quantities. 

The first method consists in calculating the interaction energy of point defects 
with other elastic fields and comparing the results obtained with experimental data. 
Unfortunately, due to the rather limited range of available experimental results, 
the applicability of this otherwise straightforward method is restricted to point 
defects and crystal lattices with high symmetry. 

A second method is based on the direct calculation of the forces pv, exerted 
by the point defect on its surroundings, by means of the lattice theory. Namely, 
it is assumed that the interatomic forces depend linearly on the separating distances 
between atoms (harmonic lattice theory), and only the interaction between first 
and second neighbours is taken into account. The proportionality constants between 
the interatomic forces and the axial or tangential relative displacements of the atoms 
are evaluated by using second-order elastic constants and experimental data on 
phonon or neutron scattering. Then, the radial forces pv exerted by the point defect 
on its first and second neighbours are calculated by using a relaxation technique 
to determine the deformed configuration of the lattice around the point defect 1. 

This method, which was elaborated by Kanzaki [177), has been refined by Bullough 
and Hardy [48), who employed it to calculate the displacements produced by a vacancy 
and the vacancy-vacancy interaction in copper and aluminium. The method has 
been subsequently applied to study interstitials in copper (Flocken and Hardy [117) 
and vacancies in alkali halides (Flocken and Hardy [118, 119)). As shown by Te­
wary [348), the calculation of the atomic displacements around point defects may 
be considerably simplified by using the so-called static Green's tensor function of 
the lattice G(XIX - xp) (cf. Sect. 16). The main advantage of using this function 
is that it may be calculated directly from data on neutron scattering (Tewary and 
Bullough [349]), without previously determining the interatomic forces. 

The discrete method has anyway the advantage that it allows the simultaneous 
determination of the forces exerted by a point defect on its neighbours and of the 
application points of these forces on the imperfect lattice. The main disadvantage 
of this method is the use of the harmonic lattice theory, which usually proves to be 
inadequate for the large atomic displacements in the close neighbourhood of the 
point defect. 

1 For a detailed description of this method see Bullough [50]. 
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A third way for the evaluation of the multipolar moments of the defect is the 
use of a semidiscrete method (see, e.g. Seeger and Mann [290], Johnson and Brown 
[172], Schottky, Seeger, and Schmid [284], Doyama and Cotterill [90], and Johnson 
[173], [174], where further references on previous literature devoted to this topics 
may be also found). Like in the case of dislocations (Sect. 16), the crystal is divided 
into two regions: the region A, close to the point defect, in which one applies the 
lattice theory, and the remaining part of the crystal, say E, which is considered 
as a linearly elastic continuum, the action of the point defect on this region being 
considered equivalent with a spherical dilatation centre. Then, the variation of 
the potential energy produced by the introduction of the point defect is minimized 
as a function of the positions of the atoms in region A and of the strengths of the 
force dipoles of the dilatation centre. The semidiscrete method has the advantage 
of allowing the consideration of non-linearities in the lattice theory, by using a sui­
table interatomic potential for region A. However, the correct application of this 
method requires that the interatomic potential be fitted to the experimental values 
of second and third-order elastic constants and to data on phonon scattering. 

Another version of the semi discrete method, which allows a smoother passage 
across the boundary between regions A and E, has been proposed by Seeger, Mann, 
and v. Jan [291] and used for determining the dipole moments of interstitials in 
copper. In this approach, the crystal is divided into three regions: an atomic region 
A (r ~ ro), an intermediate region I (ro < r < r1), and an elastic region E(r ~ 1"1) 

(Fig. 22.1). In region A the atoms are permitted to have individual displacements, 
and the potential energy is calculated by means of the interatomic potential; in 
the intermediate region, the atomic displacements are derived from the elastic dis­
placement field but the energy is still calculated with the aid of the interatomic 
potential; finally, in region E, both the displacement field and the energy are calculat­
ed by the elasticity theory. Apparently, this version of the method resembles the 
semidiscrete method of the overlapping regions used for simulating the dislocation 

Fig. 22.1. Concentric arrangement 
of regions for the semidiscrete me­
thod of Seeger, Mann, and v. Jan. 

core and described in Sect. 16.3. However, the boundary conditions on the surface 
r = ro are ignored, and the potential energy is minimized as in Sinclair's method, 
by taking the dipole moment of the point defect as unique adjustable parameter 
in the elastic solution. 

The multipolar moments (22.5) of a point defect may be reduced to a simpler 
form by taking into account the symmetry of the imperfect lattice, i.e. the symmetry 
of the lattice containing the point defect. It should be noticed that this microscopic 
or defect symmetry is lower than or equal to the macroscopic elastic symmetry 
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of the crystal 1. Since the symmetry transformations of the imperfect lattice must 
leave unchanged the place of the point defect, they must form a point group. We 
have seen in Sect. 5 that there exist 32 crystallographic classes, each of which corres­
ponding to a point group; their symbols after Schoen flies [283[, which will be re­
peatedly used in the following, are shown in Table 5.1. The significance of these 
symbols may be found in any standard course on crystallography and in many books 
on general or solid state physics (see, e.g. Landau and Lifshits [206], Sect. 93)2. 

Let C§p be the point group of an imperfect lattice containing a single point 
defect. We take the centre of the defect as origin w of a Cartesian frame {w, ek }. 

Each transformation belonging to C§p is a displacement of the crystal that leaves 
unchanged the point wand superposes the imperfect lattice on itself. It is more con­
venient, however, to consider such a lattice transformation as a change of the ortho­
normal basis {ek } into another orthonormal basis {e;} which has the same orien­
tation with respect to the preferred crystallographic directions of the imperfect 
lattice. Then, by denoting qkr = ek• e~ as in Sect. 1.1, each matrix [qkr] will define 
a transformation that leaves invariant all multipolar moments of the point defect, 
for IV and pv depend only on the relative positions of the atoms of the imperfect 
lattice. Hence, by (1.35), we must have 

(22.18) 

In particular, from (22.18) it follows that whenever the point defect is a centre of 
symmetry of the imperfect lattice, i.e. when C§p contains the inversion qkr = -bkr> 
all multipolar moments of even order p(2), p(4), • •• are zero. 

The moment dipole pm is of particular interest, since it generally determines 
the principal singularity of the displacement field produced by the point defect, 
i.e. the terms which have the slowest decay to 0 as r --+ 00. According to the spectral 
theorem (Sect. 1.1),the component matrix of the symmetric tensor pel) may be always 
reduced to a diagonal form, by choosing the Cartesian axes along the principal 
directions of the tensor. The three components thus obtained, which are the principal 
values of p(I), may be distinct or not. It may be shown, however, that if a three-fold 
or a four-fold symmetry axis of the imperfect lattice passes through w (hexagonal, 
respectively tetragonal symmetry of the imperfect lattice), then, by taking this 
axis as direction of e3 , the dipole moment assumes the form 

(22.19) 

two principal values being thus equal (cf. also (1.37 a» . Furthermore, when two 
mutually perpendicular four-fold symmetry axes pass through w, then, by choosing 
them as co-ordinate axes, the dipole moment reduces to the spherical form 

P(l) = PI, (22.20) 

1 Defects whose symmetry system is lower than that of the crystal allow the production of 
anelastic relaxation (cf. Nowik and Berry [455], Sect. 8.2.) 

2 For a detailed investigation of the conditions imposed by the crystal symmetry on tensors 
of various orders describing material properties see Jagodzinski [171], Chap. II. 
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i.e. all principal values are equal (cf. also (1.37b)). The same form of po) may be 
obtained when through OJ there passes a three-fold axis which trisects a trihedron 
having two-fold symmetry axes as edges. Inspection of Table 5.1 shows that both 
these situations belong to the ca se of the cubic symmetry of the imperfect lattice. 

The above considerations may be extended to composite defects, made up of 
more than one foreign, extra, or missing atom. This generalization is particularly 
straightforward for pairs of like or unlike atoms and for divacancies. Thus, for the 
like pair the appropriate choice of OJ is obviously the midpoint of the pair, while for 
the unlike pair any point on the pair axis may be chosen to survey the symmetry 
of the surrounding lattice. 

Fig. 22.2. Stable equilibrium posi­
tions of intrinsic interstitials in an 

f.c.c. metal. 

In order to illustrate the possible symmetries of point defects 1 we have repre­
sented in Fig. 22.2 the stable equilibrium positions of intrinsic interstitials in an f.c.c. 
metal, which are denoted after Seeger, Mann, and v. Jan [291] by, 0, C, T, Hm He, 
and H T' By repeating the cubic cell in the three directions parallel to the edges of 
the cell, it can be easily seen that the f.c.c. lattice may be decomposed into a sequence 
of regular tetrahedra and octahedra of side aNi, where a is the side of the cube. 

The point defect 0 lies in the centre of the octahedron, i.e. of the cube; that 
is why it is said to be in an octahedric position. The point group of this defect, which 
coincides with that of a vacancy and of a substitutional atom, is the group Oh 
of all symmetry transformations of the cube and belongs to the cubic system. 

The point defect C, called a crowdioll, is situated at the midpoint between 
two neighbouring atoms of the lattice in < llO)-direction. It is also a centre of sym­
metry of the lattice, through which pass three mutually perpendicular two-fold axes. 
The point group of the crowdion is D2h and belongs to the rhombic system. 

The point defect T lies in the centre of the tetrahedron; its position divides 
the cube diagonal in the ratio 1 :3 and is called a tetrahedric position. Its point group 
is the group Td of all symmetry transformations of the tetrahedron and belongs to 
the cubic system. 

If the interstitial 0', which occupies a crystallographic site equivalent with 
that of 0, is pushed towards the atom situated at the cube corner G, this latter will 
also move in the same direction. Finally, an equilibrium situation may occur, in 
which the interstitial and the corner atom occupy positions that are symmetrical 
with respect to G, situated on the <l00)-direction, and denoted by Ho in Fig. 

1 For a more detailed discussion of various types of point defects in metals we refer to Johnson 
[173, 174], KronmUIler [197, 198], and especially to Nowik and Berry [455], Sects. 7 and 8. 

20 - c, 120 
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22.2. This typical configuration, composed of two neighbouring interstitials is 
called a dumbbell. Dumbbells He and HT> situated on directions < 110), and res­
pectively < 111 ), are defined in a similar way. By inspecting the symmetry of the 
imperfect lattice with respect to the midpoints of the dummbbells, it may be seen 
that Ho has the point group D4h of the tetragonal system, He possesses the same 
symmetry as C, while HT has the point group C3i of the hexagonal system. 

According to the above discussion, the moment dipole P(1) may be reduced 
to (22.20) for the interstitials 0 and T, and to (22.19) for the dumbbells Ho and H T• 

In the case of the crowd ion and of the dumbbell He, the matrix of the compo­
nents of P(l) may be also reduced to a diagonal form, but with different diagonal 
elements 1. 

23. The elastic interaction between point defects 

In the present section we shall deal with the elastic interaction between point defects 
which are simulated by force multi poles acting in an infinite elastic medium. It 
should be mentioned from the very beginning that this description of point defects 
provides a good approximation only if the separation distance between point defects 
is large enough. Otherwise, a semidiscrete or fully atomic model of the interacting 
defects must be adopted. 

Most of the following considerations in this section are based on a paper 
by Siems [297J. 

23.1. Interaction energy of two point defects 
in an infinite elastic medium 

The elastic interaction energy between a point defect located at x and an elastic 
displacement field u is given, according to (12.9), by the work done against the 
forces pv exerted by the point defect on the neighbouring atoms, i.e. 

N 
cPint = - t pv . u(x + IV). (23.1) 

v=1 

By expanding u(x + IV) in a Taylor series around x, we obtain 

(23.2) 

1 By using the semidiscrete method described above, Seeger Mann, and v. Jan (291) suc­
ceeded to prove that the dumbbell Ho represents for eu the position of absolute minimum self­
energy with respect to all other interstitial configurations. 
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Substituting this expansion into (23.1) and considering (22.4), (22.5), and (22.15), 
we find 

(23.3) 

In a homogeneous strain field we have umix) = const. and (23.3) reduces to 

(23.4) 

i.e. only the dipole moments contribute to the interaction energy. 
Returning to the general case, we recall that the force exerted on the point 

defect by the elastic state which generates the displacement field u is 

F = - gradx <Pint. 

Hence, by taking into account (23.3), we have 

O<p· tOOl 
Fs = - __ 10_ = :E - Um,j . . • j .(x) p~n} . = 

oXs n=l n! 1 n J1·· · Jnm 

= Pl1.1um,i.(X) + ;! P8lnUm,ijS(X) + ... 

(23.5) 

(23.6) 

We can now easily derive the elastic interaction energy of two point defects 
situated at points x and x' in an infinite elastic mediu m and having the multipolar 
moments PO), P(2), .. • , and respectively })(1), P(2), ••• , by substituting the expression 
(22.16) of the displacement field produced by one of the defects into (23.3). The 
result reads 

<Pint = - ~ _1_ p<n) . ~ ( - l)k P<k) G . j (x _ x') (23.7) 
.l.J , J J m ~ k! q,··· qks ms,Q,·· ·QkJl · ·· n • 
n=l n. 1 ' " n k=l 

Since G(x - x') = 0(,-1) as , = Ilx - x' II ~ 00, we see that the first three 
terms of the expansion (23.7) decrease as ,-3, ,-4, and ,-s, respectively, for suffi­
ciently large values of the separation distance , betwee n the point defects. 

23.2. Point defects with cubic symmetry 
in an isotropic medium 

We will apply now (23.7) for calculating the interactio n energy between two point 
defects with symmetry group Ok' Since any such defect is a centre of symmetry of 
the imperfect lattice, all multipolar moments of even order, and in particular P(2), 

vanish. 
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Owing to the cubic symmetry, only the components of multipolar moments 
whose indices occur in pairs of equal numbers are non-zero. Moreover, the three 
co-ordinate axes chosen parallel to the cube edges are crystallographically equivalent, 
so that 

Therefore, the components of the dipole and octopole moments may be written as 

where the symbol b/jkm equals 1 for i = j = k = m and vanishes otherwise. Substi­
tuting these expressions into (23.7) and retaining only the first three terms of the 
expansion, we obtain 

4'int = PPGms.m.(x - x') + i (ppm2 + ppm2) LfGm •• m.(x - x') + 

(23.8) 

Assuming now that the elastic medium is isotropic, we deduce from (22.17) 
that 

oGm.(x- x') 1 - 2v Xm - x;" 
=-ax. 81tJl(l - v) r3 

o2Gm.(x - x') = O. 
OXmOXs 

(23.9) 

Consequently, the dipole-dipole interaction, i.e. the first term in the right-hand side 
of (23.8), vanishes, in agreement with the result obtained in Sect. 21.1 by simulating 
point defects as rigid spherical inclusions. Next, from (23.9)1 it follows that 

04Gm.(X - x') = 21(1 - 2v) _1_ {_ 3 + 5 (X~ -X1)4+(X~-X2)4+(X~-X3)4} . 
a~ax. 81tJl(1 - v) r 5 r 4 

(23.10) 

To simplify the writing, we choose the centre of one point defect as origin of the 
system of co-ordinates and denote the position vector of the other defect with respect 
to the first one by x. Then, by putting x = 0, x' = x and substituting (23.9) and (23.10) 
into (23.8), we obtain the relation 

'.(lint - P UU - P U22 + PUll - P U22 X 
"" _ 7(1 - 2v) {p-( (~) 3 (3» P( -(3) 3 -(3) )} 

161tJl(1 - V) 

1 ( xt + x~ + X~ ), X - 3 - 5 ---='----=---"-
r5 rl 

(23.11) 
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which shows that the principal singularity of the elastic interaction energy between 
two point defects with cubic symmetry in an isotropic medium is determined by 
the dipole-octopole interaction. 

Because of the cubic symmetry, all forces pv have radial direction. Taking 
into account only the forces exerted by the point defects on their first and second 
neighbours, we have pv = KIlv, v = 1, ... , Nl for the Nl nearest neighbours, and 
P = K21v, v = 1, ... , N2 for the N2 next nearest neighbours. Introducing these 
relations into (22.6) and (22.8), we obtain 

Nt N. 
PU) = Kl ~ IV IV + K2 ~ IV IV, (23.12) 

v= 1 v=1 

Nt N2 
pea) = Kl b IV IV IV IV + K2 ~ IV IV IV IV. (23.13) 

v=1 v=1 

For a vacancy or a substitutional atom in an f.c.c. crystal with lattice parameter 
a = 2d, we have IV= d(ek ± e/), d( -ek ± e/), k, I = 1,2,3, k < I, for the Nl = 
= 12 first neighbours and IV = ±2d ek' k = 1,2,3, for the N2 = 6 second neigh­
bours, where ek , k = I, 2, 3 are the unit vectors of the co-ordinate axes directed 
parallel to the cube edges. It then follows from (23.12) and (23.13) that 

and (23.11) becomes 

cIJint = - 28(1-2v) d6KJ(l(I-7 g + g _8gg)_I_(_3+5X~+X~+X~)' 
1tJl(l - v) 2 r5 r4 

(23.14) 

where g = K 2IKl , g = K21K1• 

The mean value ~int of cIJinh calculated for all possible orientations of the 
pair of point defects, which gives the interaction energy between a defect situated 
at 0 and a uniform distribution of defects on the surface of a sphere centred at 0, 
is zero, as (Xklr )4 = 1/5, k = 1, 2, 3. The variation of the orientation factor 

(23.15) 

over the orientation triangle of an f.c.c. lattice is shown in Fig. 23.1, after Siems 
[297]. The stationary directions of S, given by conditions S,k = 0, XkXk = const., 
k = 1,2,3, are (100) with S = 2, (111) with S = - 4/3 and (110) with S = -1/2. 
For g ~ 1, g ~ 1 the sign of «Pint does not depend on g and g. Then, the interaction 
energy has minima in (100 )-directions, maxima in (111 )-directions, and saddle 
points in (110 )-directions. 
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For an octahedral interstitial in an f.c.c. lattice, we have P = ±d fA' k = I, 2, 3, 
for the NI = 6 first neighbours, and IV = d(±t'l + C2 + 8 a), d (el ± c2 + ea), 
d(e1 + 8 2 ± 83) for the N2 = 8 second neighbours (see Fig. 22.2). It then folows 
from (23.12) and (23.13) that 

P = PI (II) = 2d2(KI + 4K2), pea) 2d4(K + 4K) p(3) 8d4K 1111 = 1 2 , 1122 = 2, 

-1.3 

-1.2 
-1.1 Fig. 23.1. Variation of the orienta-
-1.0 tion factor S over the orientation 
-0.9 triangle of an f.c.c. lattice (after 
-0.8 Siems [297]). 
-0.7 

-0.5 

and (23.11) becomes 

with S(XI' X2' xa) given by (23.15). Consequently, iP int is again zero. However, since 
«Pint has now opposite sign, the interaction energy has minima in (111 )-directions, 
maxima in < lOO)-directions, and saddle points in (llO)-directi ons. 

The extrema of the interaction energy are of particular interest, for they 
determine the stable and metastable equili brium posi ti ons of point defects, and hence 
the diffusion of vacancies and interstitials and the reorientation of defect pairs, 
phenomena playing a decisive role in mechanical and magnetic relaxation. 

Siems' results have also a special theoretical value, as they show that simulat­
ing point defects by force multi poles acting in an elastic continuum allows to cor­
rectly determine the order 0(r-5) of the principal singularity in the interaction energy, 
in accordance with results obtained by the lattice theory (Hardy and Bullough [152]). 

23.3. Point defects with tetragonal symmetry 
in an isotropic medium 

As shown in Sect. 22, the stable dumbbell Ho in f.c.c. lattices has tetragonal symme­
try. The same type of symmetry is encountered at the C-atoms occupying one of the 
octahedric positions in the b.c.c. lattice of a-Fe (Fig. 23.2). 

In the case of tetragonal symmetry the dipole-dipole interaction is no longer 
zero. On the other hand, since this interaction is preponderant for sufficiently large 
separation distances between point defects, we shall neglect in what follows higher­
order interactions. 
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By choosing the principal directions of the dipole moment P(l) as co-ordinate 
axes 1, it assumes the reduced form (22.19). Clearly, the interaction energy depends 
on whether the principal value of the dipole moment which differs from the other 
two is the same diagonal element for both point defects or not. We are thus led to 
consider the following two cases. 

Fig. 23.2. Carbon interstitial in 
an octahedric position of the b.c.c. 

lattice of (X iron. 

Case 1: 
(23.17) 

Assuming again that one of the defects is situated in the origin and the other at x, 
introducing (23.17) into (23.7), and taking into account (23.9)2' we obtain the dipole­
dipole interaction energy 

4>iot = PP{(th + Q1)G1S•1S + 111Q1Gll.ll}' 

which, in view of (22.17), may be rewritten as 

4>jot= - PP _1 {2(111 + ij1)(1 -2V)(1 _ 3Xi)+ 
161tJl(1 - v) r3 r2 

(23.18) 

Case 2; 
( -( """ -Pi) = P()ij + 111()li()1), Pi» = P()ij + 112()i2()j2)' (23.19) 

Proceeding as above, we find 

4> iot = - - 2(1 - 2v) 111 I - 3 - + 112 1 - 3 - + P P- 1 { [{ xi ) _ ( x~ )] 
161tJl(l - v) r3 r2 r2 

+ 111112 - -' - [ 1 + 3(xi + xD 15xix~ ]} 
r2 r4 

(23.20) 

As (x1/R)2 = (x21R)2 = 1/3 and (x1x2IR2)2 = 1115, we again obtain 4)iDt = 0 
in both cases I and 2. 

1 For the dumbbell Ho in f.c.c. lattices and for the C-atom in (X-Fe the principal directions 
are parallel to the cube edges. 
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23.4. Point defects in anisotropic media 

The calculation of the elastic interaction energy between two point defects by means 
of (23.7) requires the knowledge of Green's tensor function of the elastic medium 
and of the multipolar moments of both defects. The first condition may be presently 
considered as fulfilled by the available methods for tabulation of Green's tensor 
function in the general case of anisotropy (cf. Sect. 6.4). In exchange, the determination 
of the multipolar moments of point defects by one of the methods described in Sect. 
22 has been undertaken so far only for a reduced number of crystals with cubic 
lattice. This explains why the numerical results concerning the interaction of point 
defects are still not numerous and restricted to cubic crystals. 

To obtain a first evaluation of the influence of anisotropy on the elastic in­
teraction between point defects, Eshelby [110, Ill] proposed to additively decompose 
the second-order elastic constants as CKM = C~M + CKM, such that C~M satisfy the 
isotropy relations 1. Unfortunately, such a decomposition is not unique, and there 
exists no way to ensure that the condition II c' /I ~ /Ie /I be fulfilled in the general 
case. For materials with cubic symmetry, Eshelby's result [110] reads 

3PPC44 H 2 
«Pint = S(Xl' X2' X3) + O(H ), 

4n(Crl)2 r3 
(23.21) 

where H = 1 - (cn - C12)/C44 is the anisotropy factor, and S is the orientation 
factor (23.15). The constant Crl obviously depends on the choice of C~M. Barnett 
[14] has retaken the problem of expanding «Pint in power series of H, determined 
the higher-order corections, and studied the effect of choosing different initial appro­
ximations for Lame's constants. 

Formulae of the type (23.21) have a limited application, since the first aniso­
tropic correction can be considered as satisfactory only for few weakly anisotropic 
cubic crystals, such as aluminium and diamond. However, (23.21) has the merit 
of showing that the vanishing of the dipole-dipole interaction is typical for isotropic 
materials, whereas for anisotropic materials the principal singularity in this inte­
raction is of the order O(r- 3) for large values of r. 

24. The elastic interaction between dislocations 
and point defects 

24.1. Various types of interaction between dislocations 
and point defects 

The interaction between dislocations and point defects governs the kinetics of 
migration of point defects to dislocations, and hence the segregation of point defects 
from supersaturated solid solutions to dislocations, a process which plays an impor-

1 Leibfried [213] used a similar method to determine the first order anisotropic corrections 
in the elastic field of straight dislocations; he also suggested to calculate c ~M as mean values of the 
anisotropic elastic constants CKM over all possible orientations of the crystal. 
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tant role in radiation damage, internal friction \ dislocation motion during plastic 
deformation, electric conduction, etc. In this subsection we shall briefly indicate 
the various interactions that can exist between a point defect and a dislocation 2. 

The linear elastic interaction is undoubtedly the most important interaction 
between a point defect and a dislocation and will be analyzed in more detail in the 
next subsection. When the point defect is simulated by an elastic inclusion, we may 
decompose this interaction into afirst-order size interaction, generated by the diffe­
rence in size between the inclusion and the hole into which it is being forced, and 
an inhomogeneity interaction, which is due to the difference between the elastic cons­
tants of the inclusion and those of the host lattice. Alternatively, when the point 
defect is simulated by force multi poles acting upon an elastic continuum, both types 
of linear elastic interaction are simultaneously taken into account. 

The non-linear elastic interaction arises from the second-order effects in the 
elastic field of the dislocation and of the point defect. This type of interaction be­
comes significant especially when the linear elastic interaction vanishes, as in the case 
of the first-order size interaction between an interstitial and a screw dislocation in 
an infinite isotropic elastic medium. 

By using the solution obtained by Pfleiderer, Seeger, and Kroner [270] for 
the non-linear elastic field of a straight dislocation in an isotropic medium, BuIIough 
and Newman [49] have shown that the second-order elastic interaction between a 
straight (screw or edge) dislocation and a point defect situated at a distance r from 
the dislocation line decreases as ,- 2 when r _ 00. 

The interaction between the dislocation core and the point defect, which is also 
a non-linear effect, can be satisfactorily described only by using a semidiscrete 
method that uses the lattice theory for the neighbourhood of the dislocation line, 
and the theory of elasticity for the remaining part of the crystal. Such a calculation 
has been performed by Perrin, Englert, and Bullough [267], who evaluated the 
interaction between interstitials and various edge dislocations in eu and used the 
results obtained for explaining the growth in irradiated materials. 

Electrical interaction. Due to the preferential attraction of electrons by the 
tensile zones around edge dislocations, it is to be expected that the supplementary 
electric charges thus created will interact with solute atoms, if the latter also carry an 
effective charge. This electrical interaction is usually negligible in metals, compared 
to the size-effect interaction, because of screening effects (Friedel [124]), but may 
become preponderant in polar crystals (Bullough [50]). 

Chemical interaction (of Suzuki type) occurs owing to the local change in 
the chemical potential in the stacking fault region of dislocations in f.c.c. crystals, 
which makes the solid solubility of impurity atoms be different in the fault region 
from the surrounding crystal. Although of short range, this interaction may cause 
diffusion flow of impurity atoms into the faults. 

1 For a thorough analysis of the influence exerted by the interaction between dislocations and 
point defects on the internal friction in metals see Nowik and Berry [455] and Aczel and Bozan [1]. 

2 In this connection see also Bullough and Newman [49], Bullough [50], and Hirth and 
Lothe [162], Part III. 
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Anisotropy interaction (Snoeck ordering) arises from the supplementary ani­
sotropy induced by the strain field around dislocations. This anisotropy introduces 
a discrimination between sites and/or directions that were energetically equivalent 
in the perfect lattice, thus leading to a certain ordering, correlated with the strain 
state in the vicinity of dislocation lines. This ordering involves single atomic jumps 
and/or reorientations of defect pairs, but does not directly contribute to the migra­
tion of point defects to dislocations. 

24.2. The linear elastic interaction between dislocations 
and point defects 

The first-order size interaction. The potential energy of interaction between a 
dislocation and a point defect in an infinite isotropic elastic medium can be calculat­
ed with the aid of (21.23), by simply replacing <5V with <5v, and E* with the strain 
field E of the dislocation. 

For an edge dislocation with Burgers vector b(b, 0, 0) we have from (8.52) 

and hence 

tr E = b(l - 2v) sin () , 
2rr(1 - v) r 

«Pint = _ Jlb(l + V) <5v sin () , 
3rr(1 - v) r 

(24.1) 

(24.2) 

where r, () are cylindrical co-ordinates of the point defect, the positive direction 
of the dislocation line being chosen as z-axis. 

For a screw dislocation, it follows from (8.60) that tr E = 0, and hence the 
first-order size effect vanishes. It should be noticed, however, that this result is no 
longer valid when the simplifying hypotheses about the isotropy of the material and 
the perfect spherical form of the inclusion are given up. In this connection, the 
result of Boyer and Hardy [37] is particularly illuminating. These authors have used 
a fully atomic description of the size interaction between a vacancy and a screw 
dislocation in various b.c.c. metals and deduced that this interaction, admittedly, 
decreases very rapidly as r -+ 00, but is non-zero even for isotropic materials. This 
shows once again that the continuum theory produces correct results only if the 
separation distance between defects is sufficiently large. 

TIl{ inhomogeneity interaction. The expression of this interaction energy can 
be immediately derived from (21.39) by replacing E with the infinitesimal strain 
field produced by the dislocation. As already mentioned, the parameters A and B 
occurring in (21.39) must be considered rather as independent material constants 
that are to be determined by macroscopic experiments. However, two particular 
cases, characterizing the extreme situations of a very soft or very hard point defect, 
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may be treated by directly using the results in Sect. 21.3. These are the vacancy 
{K' = II' = 0), for which (21.38) yields 

A = ___ 1 __ = 3(1 - v) , 

1 - IX 2(1 - 2v) 

1 15(1 - v) 
B= - --_ 

1-P 7 - 5v 

A 7 - 5v 
-= , 
B 10(1- 2v) 

(24.3) 
and the perfectly rigid inclusion (K' = JI' = 00), for which 

A = _ ~ _ 3(1 - v) - , 
IX 1 + v 

B = _ ~ = _ 15(1 - v) , 
P 2(4 - 5v) 

A 4 - 5v 
-=----
B 10(1 + v) 

(24.4) 
In the case of an edge dislocation of Burgers vector b(b, 0, 0), situated in an 

infinite isotropic elastic medium, by substituting (8.52) into (21.39)2' we find 

4>int = - IIb2QB _1 {I + ~- (~(1 + v)(1 - 2v) -(1 + 2v- 2V2) sin20]}' 
8n2(1 - V)2 r2 3 B 

(24.5) 
where r, 0 are the cylindrical co-ordinates of the point defect, the positive direction 
of the dislocation line being chosen as above as z-axis. 

Analogously, for a screw dislocation of Burgers vector b(O, 0, b), it follows 
from (8.60)2 and (21.39)2 that the interaction energy is 

(24.6) 

The expressions of the interaction energy corresponding to a vacancy or an 
infinitely rigid inclusion may be derived by simply introducing (24.3), respectively 
(24.4), into (24.5) and (24.6); their correct form has been first obtained by Bullough 
[49]. Inspection of (24.5) and (24.6) reveals that the angular dependence of the 
inhomogeneity interaction energy is either very weak or entirely absent and that 
the sign of this interaction depends on the relative hardness of the defect and matrix. 
Thus, a vacancy is always (for any 0) attracted to a dislocation, whereas a perfectly 
rigid point defect is always repelled. 

As already mentioned above, when the point defect is simulated by force 
multi poles exerted on the neighbouring atoms, then both types of linear elastic 
interaction are simultaneously taken into account. Such a calculation has been per­
formed by Meissner, Savino, Willis, and Bullough [245], who evaluated the inter­
action between a (100)-dumbbell and a prismatic circular dislocation loop with 
Burgers vector 1/3 < Ill), in copper, by using the force multipoles previously calcu-
1ated by Bullough and Tewary [52] for the dumbbell and the expression of the elastic 
distortion determined by Willis [383] for the dislocation loop. The result obtained 
has shown that both the symmetry of the point defect and the anisotropy of the 
host lattice have a pronounced influence on the interaction energy between the point 
defect and the dislocation. The most significant distinction from the isotropic cal-



316 v. The elastic field of point defects 

culations is that, in general, anisotropy greatly reduces the drift path length that 
any interstitial would have to take to be captured by the interstitial loop. Thus, 
anisotropy increases the efficiency of interstitial capture by an interstitial loop, 
accelerating the void growth, and hence the development of radiation damage 1. 

The same hybrid discrete-continuum method has been applied by Heinisch 
and Sines [425] to several cases of dislocation-point defect interactions in IX iron, 
potassium, and some hypothetical b.c.c. metals. These authors have also thoroughly 
compared the results obtained by the hybrid method with those given by anisotropic 
elasticity and by lattice statics. In particular, they found that the hybrid method 
retains the versatility of the continuum approach and also includes the essential 
atomistic features of the dislocation-point defect interactions at separation distances 
greater than a few atomic spacings. In comparison with lattice statics, the hybrid 
method has the advantage of requiring less computation time and of being easily 
adapted to different dislocations in the same crystal structure, by merely changing 
a few input data. 

Clearly, when a point defect lies in the very dislocation core, its interaction 
with the dislocation can no longer be evaluated by continuum or hybrid methods. 
In such situations the use of the semidiscrete methods is still the most attractive 
alternative, especially when accurate interatomic potentials are known. Thus, Perrin, 
Englert, and Bullough [267] have applied the rigid-boundary method to study the 
interaction bctween intrinsic interstitials and glissile edge dislocations or sessile 
Frank dislocations in copper. More recently, Puis, Woo, and Norgett [463] have 
elaborated a general method (based on the flexible-boundary method Flex-II) for 
the evaluation of the point defect-dislocation interaction in cubic ionic crystals and 
have applied it to calculate the binding energies of both cation and anion vacancies 
at various positions in the core of an aj2 [110] edge dislocation in MgO. The inter­
action energy is evaluated in two steps: the first determines the equilibrium confi­
guration of the dislocation core; this forms the input for the subsequent calculation 
of the point-defect formation energy in the dislocated lattice. Then, the difference 
between the formation energies of the point defect in the dislocation lattice and in 
the perfect crystal gives the point defect-dislocation interaction energy. 

1 The stress-induced point defect-dislocation interaction and its relevance to irradiation 
creep has been also studied by modelling the point defect as a spher;cal inclusion (Bullough 
and Willis [405 J), or by making use of the hybrid discrete-continuum method (Savino [467 ). 
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field, 18, 23, 24 
Symmetry axis: 

of the imperfect lattice, 304 
of the material, 61 

Symmetry group, 60 
generators of, 60-64 
minimal, 60 

Tensor(s) of n'th order, 15 
Tensor(s) of second order: 

addition, 13 
antisymmetric, 14 
as linear vector functions, 13 
Cartesian components of, 13 
contraction, 14 
determinant, 15 
field, 17 
inner product, 14 
inverse, 15 
orthogonal, 15 

principal direction, 16 
principal (characteristic) value, 16 
product with a real number, 13 
skew part, 14 
symmetric, 14 

transpose, 14 
unit, 13 

zero, 13 
Tensor produc t of: 

n vecto rs, 15 
two vectors, 13 

two second-order tensors, 14 

Subject Index 

Theorem of work and energy, 77 
Thermodynamic: 

system, 48 
state, 48 
state variable, 48 

Thermodynamic process: 
adiabatic, 55-56, 186 
cyclic, 48, 49 
irreversible, 48, 51 
isentropic, 55 
isothermal, 55-56, 186 
reversible, 48, 51 

Thermodynamics: 
first law of, 48-50 
second law of, 50-52 

Transformation rule: 
of elastic constants, 74-75 
of tensor components, 16 
of vector components, 16 

Translation vector space 11 
Transverse isotropy, 61, 156 

Unit: 
concentrated force, 84 
double force, 87 
extension, 28 
second-order tensor, 13 

Van der Merwe model, 264 
Vector, 11 

axial,14 
field, 17 

Vector product of two vectors, 12 
Velocity, 25 
Volterra dislocation, 39, 104-109 
Voterra solution, 250, 255 
Volterra's uniqueness theorem, 81 

Weingarten's theorem, 38 
Whisker, 126, 246 
WiIlis'scheme, 208-214 
Willis' method, 177 
Work-hardening, 100, 246 

Zener's formula, 235, 241-243 




